基于模糊理论的数控车床可靠性分配
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控装备是制造业所必须的重要设备,更是先进制造技术的核心载体,汽车、航空航天、机械工程、船舶等行业对数控机床的需求日益增加。电子信息、生物工程等高新技术产业的兴起和发展对数控机床提出了新的需求,需要更多精密、高效和专用性机床。高档数控机床和基础制造装备是实现工业制造和工业现代化的重要保障,世界各国都非常重视高档制造装备行业,都在努力通过采用现代化技术积极发展制造业装备。中国是一个制造业大国,全面发展国内的数控装备制造业不仅有利于满足我国制造业对数控装备的需求,同时还可以提升我国的综合竞争力,具有深远的战略意义。
     结合国家项目,本文以12台某系列重型立式数控车床为研究对象,搜集整理可靠性数据并进行故障模式及影响分析,求出每个子系统的风险值;对整机和各个子系统进行数据拟合,拟合出整机和各个子系统的可靠度函数;根据所选择的影响度指标分别求解各个子系统的影响度,进行对比分析;依据第二、三、四章的结论,综合考虑影响整机可靠性的各个影响因素,对某系列数控车床进行可靠性分配。
     对数控车床子系统进行了故障模式分析,确定故障模式排序及子系统的风险排序。首先采集了12台某系列数控车床的故障数据,对故障数据进行了故障模式分析,将整机分为10个子系统分别为:液压系统(D)、伺服单元(F)、数控刀架(M)、电气系统(V)、主传动系统(S)、工作台(T)、横梁(B)、润滑系统(L)、CNC系统(NC)、其它(R),对每个子系统的故障模式进行分析。针对每个子系统的故障模式构建求解模糊风险优先数的模型,在求解风险优先数的过程中,对三个风险因子O、S、D赋予不同的权重,各位专家的评价结果也都采用模糊数表示,专家分配不同的权重,权重也用模糊数表示。这种方法能够有效克服传统RPN模型的缺陷,在很大程度上克服了评价的主观性并且提高了评价的准确性。对FRPN值进行去模糊化,根据去模糊化的值对各个子系统进行排序。
     对现场采集的故障数据进行初步的可靠性数据处理,根据第二章中对子系统的划分,分别求出整机和子系统的可靠性函数,采用比较分布函数曲线的拟合“相关指数法”对分布模型进行优选,确定整机和子系统均服从威布尔分布,并使用图检验法和D检验法检验模型的拟合优度。求出整机和子系统的可靠度函数便于第四章中的可靠性影响度分析,分别计算出整机和子系统的MTBF。
     求解子系统的可靠性影响度。重点考察了可靠性影响度的三个影响指标——故障次数影响度指标、故障停时影响度指标和动态影响度指标。整理计算这三个指标所需要的故障数据,计算出10个子系统在这个三个指标下的值,画出10个子系统的动态影响度曲线图,计算当T=1000时的影响度值。将这10个子系统的故障次数影响度、故障停时影响度和T=1000时的影响度值作对比分析,找出该型号数控机床的关键子系统是:液压系统(D)、伺服系统(F)、数控刀架(M)、电气系统(V)、主传动系统(S)、工作台(T)。
     对该系列数控车床进行可靠性分配。探讨了可靠性分配应该考虑的影响因素,最后确定用于指导该系列数控车床可靠性分配的因素有7个:子系统影响度、子系统风险值、复杂度、平均维修时间、工艺技术水平、环境条件和费用;针对这些影响因素对一些数据进行二次加工,综合考虑这些影响因素并构建一个可靠性综合分配模型;对于一些找不到相关可靠性数据支持的影响因素采用专家打分法,将数据代入可靠性分配模型,求出在下一批数控车床可靠性设计中所应分配的可靠性指标值。对子系统分配前后的可靠度进行对比,可以发现横梁、润滑系统、液压系统和分配后的目标值相差最大,需要进行重点的设计改进;CNC系统、电气系统和伺服系统和现有可靠性水平相差也很大,但是由于CNC系统的多数故障都是操作人员的误操作,电气系统的故障大都是由于元器件损坏,需要对操作人员进行培训,提高操作工人的业务素质,而电气元件主要是外购获得,所以企业应加强外购件的采购质量管理,从质量优选手册中优选厂家,如果不在手册中,应加强质量管理,实现质量控制。
     每个子系统的可靠性水平并不是越高越好,每提升一个等级所需要花费的费用则是呈几何级数增加的,每个子系统的可靠性都存在一个最佳值,超过这个最佳值便不会得到最优的经济效益。考虑到目前该系列数控车床的发展水平,并且目前还处于设计的初期,可靠性分配只能进行到子系统和部件级,随着我国数控车床的发展以及相关可靠性数据的积累,可以在此基础上将各个子系统的可靠性分配到各个零件。
NC machine tools are very important equipment for manufacturing, they are also the core of advance manufacturing technology with the growing of air space, mechanical engineering, vessels etc. The electronic information, biology, the rise of the high-tech industries give out more needs to the development of NC machine tool, now more accurate ,efficient machine tools are needed very much. High-tech NC machine tools are the basis for fulfill industrial manufacturing and trades, many countries are trying to make high-tech machine tools. China is a manufacturing countries, the development of its manufacturing equipment is not only meet the need of its own industry development, but also can improve the overall competitive, with profound strategic significance.
     This paper studied 12 sets a series of heavy vertical NC lathes, gathered reliability data and analysis these data,some failure model analyze had been done,and we can get the risk data of every sub-systems; According to the data fitting of whole machine and sub-system, we can get the reliability function of them; at the same time the three reliability importance index will be calculated, compare there of them, some useful conclusions will be obtained. According to the above conclusions and take the whole machine’s reliability influence factors into consideration, and give out a reliability allocation decision of this type of machine tool.
     This paper make a failure mode analysis on sub-systems and point out the order of sub-system. First of all, gathered the failure data of one type of machine tool, and the failure mode analysis have been made, the whole machine was divided into 10 sub-systems, they are electrical system, tool carrier, spindle system, CNC system, spindle system, hydraulic system, lubricate system, collecting and transferring system, external interface and other else. To target each subsystem failure patterns of risk preference for a solution as a model of risk preference, in the solution of the process, the risk factors O S D are given different weights, and the weights are expressed as fuzzy numbers. This method can effectively overcome the defects of traditional RPN method, and overcome the subjective of evaluations made by experts. De-fuzzy the fuzzy number and we will get a real value, and sort the sub-system according to these real values.
     We preliminary processed the on-site data failure data, according to the classification of subsystems in the second chapter, and then calculated reliability functions of whole system and subsystems respectively. Next, we chose the best distrubution model through comparing with the fit correlation index of distribution functions, and comfirmed that both whole system and subsystems would obey the weibull distribution. Finally, we used a chart Examination methods and D Examination methods to test the fit of model. Calculating the eliability functions of whole system and subsystems would be benefit for reliability importance analysis in the fourth chapter, so in Chapter 4 we could figure out the MTBF (Mean Time between Failures) of whole system and subsystems.
     In order to figure out the reliability importance of subsystems, we focus on three importance indicators of reliability importance, including failure number importance index, failure downtime importance index and dynamic importance index. Based on the failure data needed by above three indicators, we computed values of this three indicators for 10 subsystems, drawn up the curve graphs of dynamic importance of 10 subsystems, and then calculate the value of importance as T=1000. Comparing the failure number importance and failure downtime importance of 10 subsystems with the values of importance as T=1000, we found out the key subsystems of this type NC machine tools, including hydraulic system(D), servo system(F), CNC system (NC), electrical system (V), the transmission (S), worktable (T).
     In order to allocate the reliable allocation for this type NC machine tool, we first studied the impact factors consided by reliable allocation, and found out the significant impact factors of reliable allocation are importance of subsystems, risk value of subsystems, c omplexity of subsystems, mean of maintenance time, level of technology, environmental conditions and cost. Then based on these impact factors, we taken on secondary processing for given data, and constructed a reliable allocation model. Third, we use expert evaluation method to deal with the impact factors which could not be supported by relative reliable date, and put date into reliable allocation model to figure out the values of reliable index which should be allocated in reliable design of next NC machine tool. Fourth, comparing with the reliabilities before allocation and after allocation, we found that the mamium difference between the actual value and target value would be existed in beam, lubrication system and the hydraulic system, so we should focus on the impovement in design for these three systems. We also found that, in CNC system, electrical system and server system, the differences between actual value and target value would be large too. Because most of the failure of CNC system are fault operation of operator, the cause of most electrical system failure are damage of components, so the operator should get more training and should improve the Standardization Management of the purchase components according to quality management system, the unqualified supplier should be correct once the components which are undesirable were found. Manufacturers should make a further improvement on confirming the law of quality acceptance clauses and the acceptance method, and at the same time reinforce the work concerning on debugging and detection.
     The reliability of subsystem is not the higher the better, and when the reliability is improved a little high, it also need a large amount costs of geometric progression, and every subsystem have its own optimum value, over this value will not get the optimum economic returns. Considering it is the first level of design of this type of NC lathe, the reliability can only implement to subsystem, with the development of technology and the gathering of failure data, we can divide the reliability to components.
引文
[1]贾亚洲.提高数控机床可靠性乃重中之重[N].中国工业报,2009-10-26(B01).
    [2]L.R.MARVIN , M.W.W ILLIE. Applied Reliability Engineering [M]. 3rd ed. Maryland:Beacon Printin,2002.
    [3]冯建平.数控机床发展新趋势[J].现代制造.2007,(11):12-13.
    [4]司建楠.装备工业“十二五”关注民生与新兴产业[N].中国工业报,2010-06-10(A02).
    [5] 2009-2010年中国机床行业深度研究及投资前景分析报告[R].2009.
    [6]李昌琪译,AC普罗尼科夫.数控机床的精度与可靠性[M].北京:机械工业出版社.1987.
    [7] Rudi H.P.M.Arts,Anuj Saxena,Gerald M.Knapp. Estimation of distribution parameters of mixed failure mode data[J].Journal of quality in maintenance engineering.1997 3(2):120-135.
    [8]贾亚洲.提高机床可靠性增强企业竞争力[J].数控机床市场,2009,(1):52-54.
    [9]戴云徽,韩之俊,朱海荣.故障模式及影响分析-FMEA-研究进展[J].中国质量, 2007,(10):23-26.
    [10]Russomanno.D.J.bonnell,R.D. and Bowles,J.B. A balckboard model of an expert system for failure mode and effects analysis[J].Proceedings of Reliability and Maintainability Symposium,1992,4:83-90.
    [11] K. Xu, L.C. Tang, M. Xie,et al. Fuzzy assessment of FMEA for engine systems[J], Reliability Engineering and System Safety2005,75:17-29.
    [12] Antonio César Ferreira Guimar?es. Fuzzy inference to risk assessment on nuclear engineering systems[J] Applied Soft Computing, 2007, 7(1): 17-28
    [13] Kai Meng Tay and Chee Peng Lim. Fuzzy FMEA with Guided Rules Reduction System for Prioritization of Failures[J]. International Journal of Quality & Reliability Management,2006 ,l23:1047-1066.
    [14] Kwai-Sang Chin , Ying-Ming Wang , Gary Ka Kwai Poon , et al. Failure mode and effects analysis using a group-based evidential reasoning approach[J], Computers and Operations Research, 2009,36 (6):1768-1779.
    [15] Rajiv Kumar Sharma, Dinesh Kumar, Pradeep Kumar. Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modeling[J]. International Journal of Quality & Reliability Management,2005,22 ( 9 ):986– 1004.
    [16] P.A.A. GARCIA. A fuzzy data envelopment analysis approach for FMEA[J]. Progress in Nuclear Energy,2005, 46(3-4):359-373.
    [17] Anand Pillay.Jin Wang.Modified Failure Mode and Effects Analysis Using Approximate Reasoning[J] .Reliability Engineering and System Safety, 2003(79):69-85.
    [18] Seung J. Rhee, and Kosuke Ishii.Using Cost based FMEA to Enhance Reliability and Serviceability[J] Journal of Advanced Engineering Informatics, 2003, 17:179-188.
    [19] Fiorenzo Franceschini.Maurizio Galetto A new approach for evaluation of risk priorities of failure modes in FMEA[J]. International Journal of Production Research, 2001, 39( 13) :2991 - 3002 .
    [20] Arash Shahin.Integration of FMEA and the Kano model[J] International Journal of Quality & Reliability Management. 2004, 21(7) :731-746.
    [21] Bluvband, Zigmund; Zilberberg, Eliahu.Knowledge Base Approach to Integrated FMEA[J].Annual Quality Congress.1998,52:535-545.
    [22] Seyed-Hosseini, S.M., Safaei, N., & Asgharpour, M.J. Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique[J].ReliabilityEngineering and SystemSafety, 91(8), pp. 872-881.
    [23] C. Enrique pelaez, John B. Bowl. Applying Fuzzy Cognitive-Maps Knowledge Representation to Failure Modes Effects Analysis[J], PROCEEDINGS Annuai RELlABILITY and MAINTAINABILITY Symposium, 1995.
    [24] Vanderlei da Costa Bueno.Component importance in a random environment[J].Statistics & probability Letters,2000(48):173-179.
    [25] Wendai Wang, James Loman,Pantelis Vassiliou. Reliability Importance of Components in a Complex System the Institute of Electrical and Electronic Engineers[J]. Proceedings Annua Reliability and maintainability Symposium, 2004,1:26-29.
    [26] Patrik Hilber. Component Reliability Importance Indices for Electrical Networks[C].The Proceeding of 8th International Power Engineering conference, July 2007:258-262.
    [27] Jose F. Espiritu, David W. Coit, Upyukt Prakash.Component criticality importance measures for the power industry[J].Electric Power Systems Research,2007 ,77:407-420.
    [28] V. Carot, J.Sanz.Criticality and sensitivity analysis of the components of a system[J].Reliability Engineering and System Safety.2000,68:147-152.
    [29] Josep Freixas, Montserrat Pons.The influence of the node criticality relation on some measures of component importance[J].Operations Research Letters,2008(36):557-560.
    [30] Xueli Gao, Lirong Cui, Jinlin Lin.Analysis for joint importance of components in a coherent system[J].European Journal of Operational Research,2007[182]:282-299.
    [31] F.K.Hwang.A new index of component importance[J].Operations Research Letters,2001(28):75-79.
    [32] Enrico Zio,Luca Podofillini.Accounting for components interactions in the differential importance measure[J]. Reliability Engineering and System Safety,2006(91):1163-1174.
    [33] Shaomin Wu.Joint importance of multistate systems[J].Computers & Industrial Engineering,2005[49]:63-75.
    [34] Jose E. Ramirez-Marquez,Claudio M. Rocco.New insights on multi-state component criticality and importance[J]. Reliability Engineering and System Safety,2006(91):894-904.
    [35]李青,陆廷金.模糊重要度分析方法的研究[J].模糊系统与数学.2003, 14(1):89-93.
    [36]李常有,徐敏强.基于改进的topsis的设备重要度分析[J]震动与冲击,2009,28(6):164-167.
    [37]何明礼,向晓东,郭尹亮.基于重要度的系统可靠性分配方法[J].安全与环境工程,2009,16(4):68-74.
    [38]于捷,孙立大,石耀霖,等.基于BDD技术下的数控机床转塔刀架系统重要度分析[J].机床与液压,2009, 37(1):20-25.
    [39]曾声奎,赵廷弟,张建国,等.系统可靠性设计分析教程[M].北京:北京航空航天大学出版社,2001.
    [40]李瑞莹,康锐.电子产品可靠性预计若干问题研究[J].可靠性工程.2008,7(4):149-152.
    [41]NSWC-98/LE1.Handbook of Reliability Prediction Procedures for Mechanical Equipment[S].Naval Surface Warfare Center,1998.
    [42]赵德孜,温卫东,段成美.基于模糊理论的燃气轮机可靠性分配[J].燃气轮机技术, 2003, 16(4): 44-47.
    [43]徐勇,侯朝桢,杨国胜.系统可靠性分配的神经网络模型[J].系统工程与电子技术, 2001, 23(1): 90-92.
    [44]杨明顺,林志航,陈琨,等.基于神经网络的模糊可靠性分配[J].机床与液压, 2002, (1): 19-21.
    [45]赵德孜,温卫东.基于模糊综合评判的航空发动机可靠性分配方法[J].航空发动机, 2005, 31(1): 22-27.
    [46]王永传,庄钊文,郁文贤.基于遗传算法的模糊可靠性分配加权模型及其实现[J].机械科学与技术, 2001(20):185-187.
    [47]Yang J E, Hwang M J, Sung T Y, et al. Application of genetic algorithm for reliability allocation in nuclear powerplant[J]. Reliability Engineering & System Safety,1999, 65(3): 229-238.
    [48]孙法国,宋笔锋,韩斐.基于粗糙集和模糊理论的机械串联系统可靠性分配方法[J].机械设计,2009,26 (3):72-74.
    [49]鹿祥宾,李晓刚,林峰.复杂系统的可靠性分配和优化[J].北京航空航天大学学报,2004, 30 (6):565-568.
    [50]贺星,孙丰瑞,刘永葆,等.基于Hopfield神经网络的燃气轮机可靠性分配[J].华中科技大学学报(自然科学版),2009, 37 (6):48-51.
    [51]Yiqiang Wang, Richard C.M. Yam, Ming J.Zuo, Peter Tse. A comprehensive reliability allocation method for design of CNC lathers[J]. Reliability Engineering and System Safety, 2001,72 :247-252.
    [52] Yung-Chia Chang, Kuie-Hu Chang, Cheng-Shih Liaw. Innovative reliability allocation using the maximal entropy ordered weighted averaging method[J]. Computers & Idustrial Engineering .2007(57):1274-1281
    [53] Alice Yalaoui, Chengbin Chu, Eric Cha?telet.Reliability allocation problem in a series–parallel system[J].Reliability Engineering and System Safety ,2005,90:55–61.
    [54]曾声奎,赵廷弟等.系统可靠性设计分析教程[M].北京:北京航空航天大学出版社,2004.
    [55]张淑华,于洪波.串联系统的模糊可靠性[J].系统理论工程与实践.1994,9:28-30.
    [56] L. Behounek and P. Cintula. Fuzzy class theory[J]. Fuzzy Sets and Systems, 2005,154(1):34–55.
    [57] V. Nov′ak. On fuzzy type theory[J]. Fuzzy Sets and Systems, 2004,149(2):235–273.
    [58] G. Takeuti and S. Titani. Fuzzy logic and fuzzy set theory[J]. Archive forMathematical Logic, 1992,32:1–32.
    [59]陈德新.混联系统的模糊可靠性[J].系统理论工程与实践.1997, 14:111—144.
    [60]陈胜军.复杂系统的模糊可靠性分析[J].系统理论工程与实践.1997,4:30-34.
    [61]何佩林,李斌等.CNC系统的模糊可靠性评价[J].中国机械工程,1999,10 (11):1280-1281.
    [62]Dubois, D., & Prade, H.. Fuzzy sets and systems: Theory and application[M]. New York: Academic Press ,1980.
    [63][美]Timothy J.Ross模糊逻辑及其工程运用[M].北京电子工业出版社,2001
    [64]Chang, C. L., Liu, P. H., & Wei, C. C. (2001). Failure mode and effects analysis using grey theory[J]. Integrated Manufacturing Systems, 12(3);211–216.
    [65]王桂萍.加工中心可靠性及绿色性评价体系与技术研究[D].长春,吉林大学,2008.
    [66]唐珂.数控冲床可靠性关键技术研究[D].长春,吉林大学,2007.
    [67]李瑞莹,康锐.电子产品可靠性预计若干问题研究[J].可靠性工程.2008,7(4):149-152.
    [68] Pulcini G. An Exponential Reliability-Growth Model in Multicopy Testing Program[J].IEEE Transactions on Reliability,2001,50(4):365-373.
    [69]张英芝,申桂香,薛玉霞,等.随机截尾数控机床故障过程[J].吉林工业大学学报(工学版),2007:37(6):1346-1348.
    [70]贺国芳.可靠性数据的收集与分析[M].北京:国防工业出版社,1995.
    [71] Abbasi, Babak,Rabelo, Luis.Hosseinkouchack, Mehdi. Estimating parameters of the three-parameter Weibull distribution using a neural network[J]. European Journal of Industrial Engineering,2008(5):428-445.
    [72] H Basumatary, E Sreevalsan, K K Sasi. Weibull parameter estimation– a comparison of different methods[J]. Wind Engineering,2009,29(3):309–316.
    [73] Gong, Jianghong. Determining the confidence intervals for Weibull estimators[J]. Journal of Materials Science Letters.1999,18(17):1405-1407.
    [74]刘峰,何真,曹正清,等.机械可靠性数据处理中优选分布类型的探讨[J].机械设计与制造,1998(6): 3-5.
    [75] So Young Sohn, Kyung Bok Yoon, In Sang Chang. Random effects model for the reliability management of modules of a fighter aircraft[J]. Reliability Engineering and System Safety,2006 (91 ): 433–437.
    [76]Breder, Kristin, Wereszczak, Andrew A,Andrews, Mark J. Exploration of theWeibull modulus as a function of surface preparation and flexure testing conditions[J]. Ceramic Engineering and Science Proceedings. 1998,19(4):89-97.
    [77] J. Ashayeri. Development of computer-aided maintenance resources planning(CAMRP): A case of multiple CNC machining centers[J]. Robotics and Computer-Integrated Manufacturing, 2007(23):614–623.
    [78] Y.Dutuit,A.Rauzy.Approximate estimation of system reliability via fault trees[J].Reliability engineering and System sagety.2005(87):163-172.
    [79]于捷,贾亚洲.数控车床故障模式影响与致命性分析[J].哈尔滨工业大学学报.2005,12:1725-1727.
    [80]王超,王金.机械可靠性工程[M].北京:冶金工业出版社,1992.
    [81] Sinan Gurel, M. Selim Akturk. Considering manufacturing cost and scheduling performance on a CNC turning machine[J]. European Journal of Operational Research,2007(177): 325–343.
    [82] Mitchell J. Mondro. Approximation of Mean Time Between Failure.When a System has Periodic Maintenance[J]. IEEE Transactions on Reliability, 2002,51(2):166-167.
    [83]于捷,贾亚洲.数控车床的故障间隔时间分布模型与拟合检验[J].机床与液压,2005(11):198-200.
    [84]许弟春.关于最小二乘法的参数估计问题探讨[J]. 2009, 28(2): 21-23.
    [85]茆诗松,汤银才.可靠性统计[M].北京:高等教育出版社,2008.
    [86]孙志杰,张慧娟,陆贵友. CNC系统故障间隔时间的分布模型[J].长春理工大学学报, 2002, 25(4):75-72.
    [87]贾亚洲,杨兆军.数控机床可靠性国内外现状与技术发展策略[J] .中国制造业信息化, 2008(4):35-37.
    [88]戴云徽,韩之俊,朱海荣.故障模式及影响分析(FMEA)研究进展[J].中国质量. 2007(10):23-26.
    [89]?戴丽东.?数控机床故障模式危害度模糊综合评价[J].?吉林工程技术师范学院学报.2009,25(11):74-77.
    [90] Z. W. Birnbaum.On the importance of different components in a multi-component system[M]. Academic Press ,New York, USA, 1969
    [91]何明礼,向晓东,郭尹亮.基于重要度的系统可靠性分配方法[J].安全与环境工程. 2009(7),16(4):62-65.
    [92]曹晋华,程侃.可靠性数学引论[M].高等教育出版社.2006
    [93]Patrik Hilber,Lina Bertling.Component Reliability Importance Indices for Electrical Networks[C].The 8th International Power Engineering Conference, 3-6 December 2007,Singapore.
    [94]郭东强.利用熵权系数法评价企业信息化建设项目[J].运筹与管理,2003(3):76-79.
    [95] J. Ashayeri. Development of computer-aided maintenance resources planning(CAMRP): A case of multiple CNC machining centers[J]. Robotics and Computer-Integrated Manufacturing 2007,23: 614–623.
    [96]L. M. Leemis, Reliability– Probabilistic Models and Statistical Methods[M], Prentice Hall, Inc, 1995.
    [97]M. F. Fricks, K. S. Trivedi. Importance Analysis with Markov Chains[C]. Proceedings of the 49th Annual Reliability and Maintainability Symposium, 2003: 89-95.
    [98] Glaser R E. Weibull accelerated life testing with unreported early failures[J].IEEE Transactions on Reliability,1995,44(1):31-36.
    [99] J. Loman, W. Wang. On Reliability Modeling and Analysis of Highly-reliable, Large Systems[J]. Proceedings of the 48th Annual Reliability and Maintainability Symposium, 2002: 456-459.
    [100]ReliaSoft Corporation, System Analysis Reference: Reliability Availability & Optimization[M], ReliaSoft Publishing, 2003.
    [101]周源泉,翁朝曦.可靠性增长[M].北京:科学出版社,1992.
    [102]Leemis, L. M., Reliability, Probabilistic Models and Statistical Methods[M], Prentice -Hall, 1995
    [103]张根保,王国强,何文辉,等.基于任务的数控机床可靠性分配技术研究[J].中国机械工程.2010(19):2269-2273.
    [104]张宏斌,贾志新,郗安民.数控机床可靠性分配的模糊决策法[J].制造技术与机床.2009(2):60-63.
    [105]平志鸿.可靠性分配的因素综合法及其特性[J].北京航空航天大学学报.1997,23(3):395-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700