基于无线传感系统的大跨度空间结构风效应实测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现场实测、实验室模拟及理论分析是结构风工程的三种主要研究方法,其中实验室模拟及理论分析必须以现场实测为标准。由于实施难度较大,世界范围内的实测试验数量较少。本文对世界上已有的实测试验进行了列表总结和综述,阐明了实测设备是制约实测试验开展的最重要因素。
     首先,本文在实测“数据采集三原则”基础上研发了适用于土木工程领域的无线风速风压传感系统。本文提出风致内压理论可以解决风压传感器标定所面临的困难,并制作了一个立方体模型,利用模型内压成功标定了无线风压传感系统。
     其次,对风压实测试验所必须面对的参考压力问题进行了分析,分析结果显示,参考静压问题的本质是建筑物周围的风致静压场。本文在风洞中对一个立方体模型的周围静压场进行了探测,针对目前无法精确测量静压的情况,提出了一种无量纲化方法,给出了静压场的分布规律,运用幅值域及频域方法详细分析了建筑物周围各区域的流场特性,之后给出了静压场主要方向的分布函数型式,并推断了静压场的静力及动力边界。通过CFD数值风洞方法深入研究静压场分布规律,发现建筑物周围近距离范围内有两条狭长地带能用于快速测量参考静压,称之为“静压走廊”,通过一定方法可确定其位置及走向。其后,对一典型三心圆柱面网壳进行了风洞试验和CFD数值模拟,结果显示数值模拟能较准确反映实际情况,在此基础上,对两个柱面网壳并列布置的风致干扰效应进行了研究,该结果与静压场的研究结果相符。
     再次,本文利用所研发的无线风速风压传感系统对浙江大学体育馆屋盖进行了风效应实测。试验过程显示,相比有线设备,无线设备能大大降低设备安装难度及减少试验资金耗费,无线设备的便利性极其突出。
     实测过程中经历了强台风“海葵”,在其经过杭州前后的近4个小时进行了风效应实测。以实测风速数据对台风“海葵”的风特性进行了分析总结,风洞可利用此风特性模拟强台风。以实测风压数据对浙江大学体育馆的屋盖风压特性进行了研究,发现浙江大学体育馆上的所有风压测点都体现出了强非高斯分布特征,这意味着使用峰值因子法预测大跨度空间结构峰值风压需要特别谨慎,文中给出了峰值因子的推荐取值,并指出了按照现行风洞试验方法所设计的大跨度空间结构屋盖上可能会比较偏危险的区域。实测脉动风速及脉动风压功率谱密度两两不相同,这说明大跨度空间结构屋盖的风压脉动不完全取决于风速脉动,故本文通过风速风压实测确定准定常假定在大跨度空间结构上不适用。
     本文通过设备研发、设备标定、实测方法研究,再到利用此设备进行真实建筑的实测试验,开启了利用无线传感设备进行结构风工程实测的崭新途径,本文的思路及设备可对未来结构风工程实测试验提供参考。
The three main research methods of structural wind engineering are field measurement, lab simulation and theoretical analysis. Lab simulation and theoretical analysis must be validated by field measurement. But very limited number of field measurements has been obtained around the world because of the difficulty. The field measurements around the world were listed and reviewed, and the most difficult thing that restricts the development of field testing is the instrumentation.
     Hence wireless sensor devices were developed based on the three principles of field measurement data acquisition firstly in this paper.
     The wireless sensor devices must be calibrated before actual use, so the wind-induced internal pressure theory was introduced to the test. Then a cubic model was made and the devices were calibrated by measuring the internal pressure of the cube in wind tunnel.
     The choices of the reference pressure of pressure sensor were analyzed, and it was noted that the nature of problem of the reference static pressure is the static pressure field around a building. Thus wind tunnel tests in smooth and turbulent flow, with and without a building were carried out to detect static pressure fields. A dimensionless method was proposed to solve the problem that static pressure can hardly be measured exactly, therefore the distributions of static pressure fields were investigated, dynamic characteristics of different flow areas around a building were analyzed in details by amplitude domain and frequency domain analysis methods, distribution formulas of main directions were given, and then the static and dynamic boundaries were concluded. More CFD investigations of static pressure fields revealed there are two narrow strips of regions near a building which can be used to quickly measure reference static pressure and so be named "static pressure corridor", and the method to find their positions and directions was proposed.
     CFD simulation was performed to compute a typical three-center cylindrical latticed shell, and the results from the computation and the wind tunnel test was compared, which indicated that the numerical result was closed to the practical mean wind pressure distribution. Based on this, two latticed shells were arranged in parallel and the wind-induced interference effect was investigated, and the result is the same with the static pressure field study.
     After that, full-scale field measurement of wind effect on the roof of Zhejiang University gym was carried out with self-designed wireless sensor devices. The test indicated that device installation will be much easier and the cost will be reduced with wireless devices, the convenience of wireless devices is impressive.
     Severe typhoon "Haikui" passed through Hangzhou city in the period of the field measurement, and near4hours data were collected then. Wind characteristics of "Haikui" were generalized from the measured wind velocity data, which can be referenced to the simulation of typhoon in wind tunnel test. Wind pressure characteristics on the roof of Zhejiang University gym was revealed from the measured wind pressure data, non-Gaussian characteristics is noted at all pressure taps, so it must be careful to employ the peak factor approach on long-span spatial structures. The value of the peak factor was recommended in this paper. And the dangerous areas were pointed out if the nowaday wind tunnel analysis method was employed. The power spectrum density figures of wind speed and wind pressure are all different, which implies that fluctuating wind pressure on long-span roof does not depend on fluctuating wind velocity, therefore the quasi-steady approach is not applicable to long-span spatial structure.
     Device development, device calibration, investigation of field test method, then field measurement on a real building were introduced in detail in this paper, a way out of full-scale field measurement with wireless sensor devices was present, the ideas and the devices here can be referenced to the future field measurement of structural wind engineering.
引文
[1]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [2]Baker C J. Wind engineering——past, present and future[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(9-11):843-870.
    [3]孙斌.大跨屋盖建筑开孔风致平均内压的数值模拟研究[D].杭州:浙江大学结构工程,2006.
    [4]祝成民,忻鼎定,庄逢甘.绕椭球三维流动的分离结构随雷诺数的变化[J].空气动力学学报,2003,21(1):75-81.
    [5]杨洁,涂光备,张旭.干扰效应对高层住宅建筑风压差系数的影响[J].同济大学学报(自然科学版),2004,32(11):1442-1446.
    [6]Mehta K. C, Smith D A. Full-scale measurements for wind effects on buildings[C]//Ninth Biennial Conference on Engineering, Construction, and Operations in Challenging Environments. League City, Houston, Texas, United States:American Society of Civil Engineers,2004.
    [7]Zisis I, Stathopoulos T. Wind-induced cladding and structural loads on low-wood building[J]. Journal of Structural Engineering,2009,135(4):437-447.
    [8]Toriumi R, Katsuchi H, Furuya N. A study on spatial correlation of natural wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,87(2-3):203-216.
    [9]Xu Y L, Zhan S. Field measurements of di wang tower during typhoon york[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(1):73-93.
    [10]庞加斌,林志兴,葛耀君.浦东地区近地强风特性观测研究[J].流体力学实验与测量,2002,16(3):32-39.
    [11]Harikrishna P, Annadurai A, Gomathinayagam S, et al. Full scale measurements of the structural response of a 50 m guyed mast under wind loading[J]. Engineering Structures,2003, 25(7):859-867
    [12]Schroeder J L, Smith D A. Hurricane bonnie wind flow characteristics as determined from wemite[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(6):767-789
    [13]Li Q S, Xiao Y Q, Fu J Y, et al. Full-scale measurements of wind effects on the jin mao building[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(6):445-466
    [14]Fu J Y, Li Q S, Wu J R, et al. Field measurements of boundary layer wind characteristics and wind-induced responses of super-tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(8-9):1332-1358.
    [15]李正农,宋克,李秋胜,等.广州中信广场台风特性与结构响应的相关性分析[J].实验流体力学,2009,23(4):21-27.
    [16]张玥,胡兆同.山西禹门口黄河大桥实测风特性分析[J].公路,2008(11):77-82.
    [17]Cao S, Tamura Y, Kikuchi N, et al. Wind characteristics of a strong typhoon[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):11-21.
    [18]邓扬,李爱群,丁幼亮,等.润扬大桥悬索桥桥址风环境的长期监测与分析[J].空气动力学学报,2009,27(6):632-638.
    [19]谢以顺,李爱群,王浩.润扬悬索桥桥址区实测强风特性的对比研究[J].空气动力学学报,2009,27(1):47-51.
    [20]顾明,匡军,全涌,等.上海环球金融中心大楼顶部风速实测数据分析[J].振动与冲击,2009,28(12):114-118,122.
    [21]Li Q S, Zhi L, Hu F. Boundary layer wind structure from observations on a 325 m tower[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(12):818-832.
    [22]Song L, Pang J, Jiang C, et al. Field measurement and analysis of turbulence coherence for typhoon nuri at macao friendship bridge[J]. Science China(Technological Sciences),2010, 53(10):2647-2657.
    [23]Kim J Y, Yu E, Kim D Y, et al. Long-term monitoring of wind-induced responses of a large-span roof structure[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011, 99(9):955-963.
    [24]Siringoringo D M, Fujino Y. Observed along-wind vibration of a suspension bridge tower[J]. Journal of Wind Engineering and Industrial Aerodynamics,2012,103:107-121.
    [25]罗尧治,蔡朋程,孙斌,等.国家体育场大跨度屋盖结构风场实测研究[J].振动与冲击,2012,31(3):64-68,78.
    [26]俞阿龙.传感器原理及其应用[M].南京市:南京大学出版社,2010.
    [27]孙运旺.传感器技术与应用[M].杭州市:浙江大学出版社,2006.
    [28]Holmes J D. Wind loading of structures[M]. London:Spon Press,2001.
    [29]Hansen S O, Sorensen E G. The aylesbury experiment. Comparison of model and full-scale tests[J]. Journal of Wind Engineering and Industrial Aerodynamics,1986,22(1):1-22.
    [30]Richardson G M, Robertson A P, Hoxey R P, et al. Full-scale and model investigations of pressures on an industrial/agricultural building[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,36, Part 2:1053-1062.
    [31]Richardson G M, Surry D. The silsoe building:a comparison of pressure coefficients and spectra at model and full-scale[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992, 43(1-3):1653-1664.
    [32]Levitan M L, Mehta K C. Texas tech field experiments for wind loads part 1:building and pressure measuring system[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992, 43(1-3):1565-1576.
    [33]Levitan M L, Mehta K C. Texas tech field experiments for wind loads part ii:meteorological instrumentation and terrain parameters[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1-3):1577-1588.
    [34]Richards P J, Hoxey R P. Quasi-steady theory and point pressures on a cubic building[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(14-15):1173-1190.
    [35]Richards P J, Hoxey R P. Flow reattachment on the roof of a 6 m cube[J]. Journal of Wind Engineering and Industrial Aerodynamics,2006,94(2):77-99.
    [36]Snaebjornsson J T, Geurts C P W. Modelling surface pressure fluctuations on medium-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2006,94(11):845-858.
    [37]Robertson A P, Hoxey R P, Short J L, et al. Prediction of structural loads from fluctuating wind pressures:validation from full-scale force and pressure measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76:631-640.
    [38]Kato N, Niihori Y, Kurita T, et al. Full-scale measurement of wind-induced internal pressures in a high-rise building[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997, 69-71:619-630.
    [39]Stathopoulos T, Marathe R, Wu H. Mean wind pressures on flat roof comers affected by parapets: field and wind tunnel studies[J]. Engineering Structures,1999,21(7):629-638.
    [40]Watakabe M, Ohashi M, Okada H, et al. Comparison of wind pressure measurements on tower-like structure obtained from full-scale observation, wind tunnel test, and the cfd technology[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002, 90(12-15):1817-1829.
    [41]Caracoglia L, Sangree R H, Jones N P, et al. Interpretation of full-scale strain data from wind pressures on a low-rise structure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96(12):2363-2382.
    [42]Caracoglia L, Jones N P. Analysis of full-scale wind and pressure measurements on a low-rise building[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(5-6):157-173.
    [43]Doudak G, McClure G, Smith I, et al. Comparison of field and wind tunnel pressure coefficients for a light-frame industrial building[J]. Journal of Structural Engineering,2009, 135(10):1301-1304.
    [44]Liu Z, Prevatt D O, Aponte-Bermudez L D, et al. Field measurement and wind tunnel simulation of hurricane wind loads on a single family dwelling[J]. Engineering Structures,2009, 31(10):2265-2274.
    [45]Li Q S, Hu S Y, Dai Y M, et al. Field measurements of extreme pressures on a flat roof of a low-rise building during typhoons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012,111:14-29.
    [46]胡尚瑜,李秋胜.低矮房屋风荷载实测研究(Ⅰ)——登陆台风近地边界层风特性[J].土木工程学报,2012(1).
    [47]李秋胜,胡尚瑜,李正农.低矮房屋风荷载实测研究(Ⅱ)——双坡屋面风压特征分析[J].土木工程学报,2012(9).
    [48]申建红,李春祥.强风作用下超高层建筑风场特性的实测研究[J].振动与冲击,2010,29(5):62-68,77.
    [49]Li H, Laima S, Ou J, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures,2011, 33(6):1894-1907.
    [50]史文海,李正农,罗叠峰,等.台风“鲇鱼”作用下厦门沿海某超高层建筑的风场和风压特性实测研究[J].建筑结构学报,2012,33(1):1-9.
    [51]李正农,罗叠峰,史文海,等.台风“鲇鱼”作用下厦门沿海某超高层建筑风压特性的风洞试 验与现场实测对比研究[J].建筑结构学报,2012,33(1):10-17.
    [52]朱丙虎,张其林.世博轴索膜结构屋面风效应的监测分析[J].华南理工大学学报(自然科学版),2012,40(2):13-18.
    [53]王旭,黄鹏,顾明.海边坡角可调试验房风荷载现场实测研究[J].振动与冲击,2012,31(5):176-182.
    [54]Frandsen J B. Simultaneous pressures and accelerations measured full-scale on the great belt east suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001, 89(1):95-129.
    [55]石延奎.基于实测风压谱的高层建筑结构顺风向风致振动分析[D].哈尔滨工业大学土木工程,2010.
    [56]Dalgliesh W A, Surry D. Blwt, cfd and ham modelling vs. The real world:bridging the gaps with full-scale measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003, 91(12-15):1651-1669.
    [57]Cheung J C K, Holmes J D, Melbourne W H, et al. Pressures on a 110 scale model of the texas tech building[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997, 69-71:529-538.
    [58]Ticleman H W, Hajj M R, Reinhold T A. Wind tunnel simulation requirements to assess wind loads on low-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998, 74-76:675-685.
    [59]He J, Song C C S. A numerical study of wind flow around the ttu building and the roof corner vortex[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68:547-558.
    [60]Panneer Selvam R. Computation of pressures on texas tech university building using large eddy simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68:647-657.
    [61]Chen X, Zhou N, Smith D A. Equivalent static wind loads on low-rise buildings based on full scale measurements[C]//17th Analysis and Computation Specialty Conferenc at Structures 2006. St. Louis, Missouri, United States:American Society of Civil Engineers,2006:1-10.
    [62]Chen X, Zhou N. Equivalent static wind loads on low-rise buildings based on full-scale pressure measurements[J]. Engineering Structures,2007,29(10):2563-2575.
    [63]Levitan M L, Mehta K C, Chok C V, et al. An overview of texas tech's wind engineering field research laboratory[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,36, Part 2:1037-1046.
    [64]Ng H H T, Mehta K C. Pressure measuring system for wind-induced pressures on building surfaces[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,36, Part 1:351-360.
    [65]Cook N J. Discussion on "influence of incident wind turbulence on pressure fluctuations near flat-roof corners by:f. Wu, p.p. Sarkar, k.c. Mehta, z. Zhao"[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(2):127-130.
    [66]Richardson G M, Blackmore P A. The silsoe structures building:comparison of 1:100 model-scale data with full-scale data[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,57(2-3):191-201.
    [67]Hoxey R P, Robertson A P, Richardson G M, et al. Correction of wind-tunnel pressure coefficients for reynolds number effect[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:547-555.
    [68]Hoxey R P, Reynolds A M, Richardson G M, et al. Observations of reynolds number sensitivity in the separated flow region on a bluff body[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,73(3):231-249.
    [69]戴益民,李秋胜,李正农.低矮房屋屋面风压特性的实测研究[J].土木工程学报,2008,41(6):9-13.
    [70]李秋胜,胡尚瑜,黄建平,等.双坡屋面低矮房屋风荷载实测研究[C]//第十四届全国结构风工程学术会议.北京,2009.
    [71]戴益民,李秋胜,李正农.低矮房屋风载特性的实测及风洞试验研究[C]//第十四届全国结构风工程学术会议.北京,2009.
    [72]李秋胜,胡尚瑜,戴益民,等.低矮房屋屋面实测峰值风压分析[J].湖南大学学报(自然科学版),2010,37(6):11-16.
    [73]李秋胜,戴益民,李正农.强台风”黑格比”作用下低矮房屋风压特性[J].建筑结构学报,2010,31(4):62-68.
    [74]纽兰D.E.随机振动与谱分析概论[M].方同,译.北京市:机械工业出版社,1980.
    [75]克莱斯·迪尔比耶,斯文·奥勒·汉森.结构风荷载作用[M].薛素铎,李雄彦,译.北京市:中国建筑工业出版社,2006.
    [76]蔡朋程.大跨度空间结构风场实测系统开发及应用[D].杭州:浙江大学结构工程,2011.
    [77]洪江波.大跨度空间结构风场实测系统验证及应用[D].杭州:浙江大学结构工程,2012.
    [78]梁宸宇.结构健康监测无线传感器组网系统研究与开发[D].杭州市:浙江大学结构工程,2011.
    [79]罗尧治.空间结构监测技术研究新进展[C]//第十三届空间结构学术会议.深圳,2010.
    [80]谢壮宁,倪振华,石碧青.脉动风压测压管路系统的动态特性分析[J].应用力学学报,2002,19(1):5-9.
    [81]卢旦.风致内压特性及其对建筑物作用的研究[D].浙江大学结构工程,2006.
    [82]杜功焕.声学基础[M].南京市:南京大学出版社,2001.
    [83]余世策.开孔结构风致内压及其与柔性屋盖的耦合作用[D].浙江大学结构工程,2006.
    [84]Blackmore P A. A static pressure probe for use in turbulent three-dimensional flows[J]. Journal of Wind Engineering and Industrial Aerodynamics,1987,25(2):207-218.
    [85]黄汉杰,李明水,贺德馨.大气湍流中的悬索桥颤振时域分析[J].空气动力学学报,2005,23(1):10-15.
    [86]Okuda Y, Katsura J, Kawai H. Characteristics of static pressure on the ground[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(14-15):1525-1537.
    [87]鲁绍曾.现代计量学概论[M].北京市:中国计量出版社,1987.
    [88]Van Melle A. Measurements of the static pressure around an actual residence[J]. Journal of Wind Engineering and Industrial Aerodynamics,1986,23:273-281.
    [89]Ginger J D, Letchford C W. Net pressures on a low-rise full-scale building[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1-3):239-250.
    [90]Dalley S, Richardson G. Reference static pressure measurements in wind tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,42(1-3):909-920.
    [91]孙瑛.大跨屋盖结构风荷载特性研究[D].哈尔滨工业大学结构工程,2007.
    [92]蔡亦纲.流体传输管道动力学[M].杭州市:浙江大学出版社,1990.
    [93]许超洋,郝点,闫玉玉.基于声电类比法的管系气柱固有频率的计算[J].管道技术与设备,2007(2):10-12.
    [94]埃米尔·希缪,罗伯特·H-斯坎伦.风对结构的作用——风工程导论[M].刘尚培,译.上海:同济大学出版社,1992.
    [95]黄本才,汪丛军.结构抗风分析原理与应用(第二版)[M].上海市:同济大学出版社,2008.
    [96]黄鹏,顾明.高层建筑横风向动力干扰效应的试验研究[J].工程力学,2003,20(5):53-58.
    [97]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京市:清华大学出版社,2004.
    [98]陶文铨.数值传热学(第2版)[M].西安市:西安交通大学出版社,2001.
    [99]庞加斌,刘晓晖,陈力,等.汽车风洞试验中的雷诺数、阻塞和边界层效应问题综述[J].汽车工程,2009,31(7):609-615.
    [100]马静,贾青,杨志刚.基于数值计算的高速列车气动阻力风洞试验缩比模型选取方法[J].计算机辅助工程,2007,16(3):110-113,118.
    [101]Richardson G M, Hoxey R P, Robertson A P, et al. The silsoe structures building:comparisons of pressures measured at full scale and in two wind tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,72:187-197.
    [102]黄鹏,顾明.高层建筑静风荷载的干扰效应研究[J].建筑结构学报,2002,23(5):67-72.
    [103]黄鹏,顾明.高层建筑顺风向动力干扰效应的试验研究[J].同济大学学报(自然科学版),2002,30(12):1417-1422.
    [104]顾明,黄鹏.群体高层建筑风荷载干扰的研究现状及展望[J].同济大学学报(自然科学版),2003,31(7):762-766.
    [105]刘若斐.大型冷却塔的抗风研究[D].浙江大学结构工程,2006.
    [106]罗尧治.大跨度储煤结构——设计与施工[M].北京市:中国电力出版社,2007.
    [107]张誉,李正良,王汝恒,等.建筑结构风荷载干扰效应的试验研究[J].西南科技大学学报,2007,22(3):20-23.
    [108]邱传涛,李丁华.平均风向的计算方法及其比较[J].高原气象,1997(01):95-99.
    [109]肖仪清,孙建超,李秋胜.台风湍流积分尺度与脉动风速谱——基于实测数据的分析[J].自然灾害学报,2006,15(5):45-53.
    [110]庞加斌.沿海和山区强风特性的观测分析与风洞模拟研究[D].同济大学防灾减灾工程及防护工程,2006.
    [111]史文海,李正农,张传雄.温州地区近地强风特性实测研究[J].建筑结构学报,2010,31(10):34-40.
    [112]陈丽,李秋胜,吴玖荣,等.中信广场风场特性及风致结构振动的同步监测[J].自然灾害学 报,2006,15(3):169-174.
    [113]Solari G, Piccardo G. Probabilistic 3-d turbulence modeling for gust buffeting of structures[J]. Probabilistic Engineering Mechanics,2001,16(1):73-86.
    [114]孙建超.土木工程相关的近地台风特性观测研究[D].哈尔滨工业大学结构工程,2006.
    [115]Kasperski M, Hoxey R. Extreme-value analysis for observed peak pressures on the silsoe cube[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6-7):994-1002.
    [116]Uematsu Y, Isyumov N. Wind pressures acting on low-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,82(1-3):1-25.
    [117]金虎.X型超高层建筑三维风荷载与风致响应研究[D].浙江大学建筑工程学院浙江大学结构工程,2008.
    [118]汕头大学风洞实验室.浙江大学紫金港校区文体中心体育馆风荷载特性风洞试验数据图表——第一分册平均风压系数[R].汕头:2005.
    [119]汕头大学风洞实验室.浙江大学紫金港校区文体中心体育馆风荷载特性风洞试验数据图表——第二分册 峰值风压系数[R].汕头:2005.
    [120]Hoxey R P, Richards P J. Full-scale wind load measurements point the way forward[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,57(2-3):215-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700