光纤Bragg光栅应变传感技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光纤光栅及其在光纤传感器和光纤通信领域中的应用研究引起了人们普遍的关注。光纤光栅是一种性能优良的敏感元件,可以对温度、压力和应变等进行传感。尤其是在一根光纤中可连续写入多个光栅构成光栅阵列,因此,将光纤光栅阵列与波分和时分复用技术相结合,实现网络传感。这种传感器在大型结构(如水坝、桥梁、重要建筑和飞行器、舰艇等)和特殊场合(如矿井、油田等)的安全监测方面具有极为广泛的应用前景。
     本人作为浙江大学与德国波茨坦地学研究中心(GeoForschungsZenturm
     Potsdam)联合培养的博士研究生,由德国联邦教育与科技部(BMBF)(项目编号 CHN/167)和德国波茨坦地学研究中心资助,在德国进行了为期一年半的研究工作。在此期间参与了欧盟的Corinth Rift Laboratory中的3F(Faults,Fractures & Fluids)-Corinth研究项目和德国的Potsdam Kaiser Bahnhof建筑现场应变监测项目,这些项目的特点是光纤Bragg光栅传感器的应用的工程化。
     本文主要以光纤Bragg光栅(FBG)为研究对象对光纤Bragg光栅静态应变传感网络、光纤Bragg光栅动态应变传感、光纤Bragg光栅传感技术与其他传感技术比较以及光纤Bragg光栅应变传感特性等方面进行了研究。主要内容包括:
     介绍分析光纤光栅特性的基本理论,用耦合模理论分析了均匀周期光纤Bragg光栅的光谱特性,并从理论上分析了光纤Bragg光栅对温度和应变的传感原理,讨论了光纤Bragg光栅应变传感技术。
     提出并建立了一套完整的分布式光纤Bragg光栅静态应变传感网络系统。该系统着重研究解决了光纤Bragg光栅静态应变传感网络技术的现场实际应用问题。系统解决了波分复用和时复复用的结合技术,实现光纤Bragg光栅深度传感网络。系统解决了光纤Bragg光栅静态应变传感现场应用传感数据精度和可靠性问题,在获得高精度传感信号同时能够识别错误信号;提出了光纤Bragg光栅静态应变传感器在恶劣应用环境中的备份方案;应用计算机软件对系统进行测量控制与管理,实现了智能化集中控制系统;实现了远程控制管理。
     提出并建立了一套基于温度控制滤波光纤Bragg光栅的光纤Bragg光栅动态应变传感系统。解决了因传感环境温度变化带来的传感光纤Bragg光栅的Bragg波长漂移和窄带滤波器滤波波长的匹配问题。系统采用计算机完全控制,实现了智能化动态光纤Bragg光栅动态应变传感。本系统的信噪比达到15dB,动态应变传感精度达到了9.745×10~(-10)/(Hz~(1/2)),绝对应变测量值达到了160nε。
     对光纤Bragg光栅应变传感器在悬臂梁结构上的应变传感进行了研究。将
In recent years, there is wide attention on fiber grating and its application in fiber sensors and fiber communications. As an excellent sensor, Fiber Bragg ggrating (FBG) sensor offer many important advantages, and can measure lots of properties, such as termperature, pressure, strain and so on. It is suitable to form FBG array, by means of writing them into a fiber continuously. With Time Division Multiplexing (TDM) and Wavelength Division Multiplexing (WDM) Technology, the FBG sensor array can build FBG sensor network, which has wide prospect for detecting the properties of the huge buildings and dangerous situations, such as the dam, bridge, mine, oil field etc.As a Ph.D candidate studing in Zhejiang University and GFZ-Pptsdam (GeoForschungsZenturm Potsdam), supported by Germany BMBF (Project No: CHN/167) and GFZ-Potsdam, I had studied in germany for one and half year. In the period, I had taken part in the Europen Union Corinth Rift Laboratory 3F (Faults, Fractures & Fluids) -Corinth Porject and Germany Potsdam Kaiser Bahnhof building strain detecting project.In the dissertation, the FBG sensor is studied, including FBG static strain sensor network, FBG dynamic strain measurement, Compareing between FBG strain sensor and traditional strain sensor, FBG strain sensor character etc. The main contents are taken as follows:The fundamental theory of the fiber grating is introduced. The spectrum of FBG is analyzed by the coupling-mode theory, and FBG sensor theory for strain and temperature is analyzed. The FBG strain senor technology which applied in the dissertation is discussed.A distributed FBG static strain sensor network is designed and established. The system is focus on the solution of FBG sensor field application. With TDM and WDM technology, system can measure a long distance strain in very deeply underground well. The system can drop the wrong signal beside a high resolution. With a backup FBGs, the system can adapt the badly condition, which will damage the FBG. With a center computer communication with all devices, the system became a smart system, which can measure the strain automatically and can be remote controlled.A FBG dynamic strain sensor system based on temperature controlled
    filter FBG is designed and established, which sloved the filter FBG and sensor FBG wavelength match problem caused by the temperature variation. The system is totally computer controlled and smart work. The singal noise ratio (S/N) of system reach 15dB, dynamic resolution is 9.745x10-10/(Hz1/2), and the absolute resolution is 160nThe FBG strain sensor applied in cantilever is studied in experiments and theories. The FBG sensor signal is compared with the result of acceleration sensor, modal analysis and finite element analysis.FBG strain sensor character is studied in experiments and theories. The memory effect of FBGand linear relationship between FBG Bragg wavelength and strain are analyzed.
引文
[1] K. O. Hill, Y. Fuji, D. C. Jonson and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication", Appl. Phys. Lett., 32 (1978): 647-649.
    [2] B. S Kawasaki, K. O. Hill, D. C. Hohnson and Y. Fujii, "Narrow-band Bragg reflectors in optical fibers," Opt. Lett., 3(1978):66-68,
    [3] G. Meltz, W. W. Morey and H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method", Opt. Lett., 14(1989):823-825.
    [4] K. O. Hill, et al., "Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask", Appl. Phys. Lett., 62(1993): 1035-1037.
    [5] P. J. Lemaire, R. M. Atkins,Mizrahi and W. A. Reed, "High pressure H_2 Loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO_2 doped optical fibers", Electron. Lett., 29 (1993): 1191.
    [6] D. Z. Anderson, et al., "Production of in-fiber gratings using a diffractive optical element", Electron. Lett., 29 (1993): 566-568.
    [7] R. Kashyap, "Assessment of tuning the wavelength of chirp and unchirp fiber Bragg grating with simple phase mask", Electron. Lett., 34(1998):2025-2027.
    [8] K. C. Byron, Sugden K, et al., "Fabrication of chirped Bragg grating in photosensitive fibre", Electron. Lett., 29, (1993): 1659.
    [9] Q. Zhang et al, "Tuning Bragg Wavelength by writing gratings on prestrained fibers", IEEE Photonics Technology Letters, 6(1994): 839-842.
    [10] S. Mihallov and M. Gower, "Recording of efficient high-order Bragg reflectors in optical fibers by mask image projection and single pulse exposure with an excimer laser", Electron. Lett. 30 (1994): 707-709.
    [11] B. Malo, et al., "Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification technique", Electron. Lett., 29 (1993): 1668-1669.
    [12] R. Kashyap., et al., "all-fiber narrow band reflection grating at 1500nrn", Electron. Lett, 26 (1990): 730-732.
    [13]H. G. Limberger, et al., "Photosensitivity and Self-organization in Optical Fiber and Waveguides", SPIE, 2044 (1993): 272.
    [14]A. Othonos, K. Kalli, "Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing", Artech House, 1999, Boston, London.
    [15]R. Kashyap, R.Wyatt and R.J.Campbell, "Wideband gain flattend erbium fiber amplifier using a photosensitive fiber blazed grating", Electron. Lett, 29(1993),: 154-156.
    [16]K.O.Hill et al., "Efficient mode conversion in telecommunication using externally written gratings", Electron. Lett., 26(1990): 1270-1272.
    [17]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-Period Fiber Gratings as Band-Rejection Filters", J Lightwave Technol., 14(1996): 58 - 65.
    [18]V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors". Opt. Lett., 21(1996):692-694.
    [19]V. Bhatia, D. Camphbell, R. O. Claus and A. M. Vengsarkar, "simultaneous strain and temperature measurement with long-period gratings", Opt. Lett., 22(1997):648-650.
    [20]H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins and A. M. Vengsarkar, "Chemical sensor based on long-period fiber grating response to index of refraction", Lasers and Electro-Optics (CLE0'97), 11(1997):420-421.
    [21]H. J. Patrick, C. C. Chang, S. T. Vohhra, "Long period fiber gratings for structural bend sensing", Electron. Lett., 34(1998): 1773-1775.
    [22]K. A. Ahmed et al., "Simultaneous mode selection and pulse compression of gain-switched pulses from a F-P laser using a 40-mm chirped optical fiber grating", IEEE Photonics Technology Letters, 7(1995):158-160.
    [23] J. A. R. Williams et al., "Fiber dispersion compensation using a chirped infiber Bragg grating", Electron. Lett., 30(1994):985-987.
    [24]J. A. R. Williams et al., "The compression of optical pulse using Self-Phase-Modulation and linearly chirped Bragg-gratings in fibers", IEEE Photonics Technology Letters, 7(1995):491 -493.
    [25] R. Zengerle and O. Leminger, "Phase-shifted Bragg grating filters with improved transmission characteristics", J. Lightwave Technol., 13(1995):2354-2358.
    [26] G. P. Agrawal and S. Radic, "Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing", IEEE Photonics Technology Letters, 6(1994):995-997.
    [27] H. Ke, K. S. Chiang and J. H. Peng, "Analysis of phase-shift long-period fiber gratings", IEEE Photonics Technology Letters, 10(1998): 1596-1598.
    [28] Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, "Phase shifted and cascadcd long-period fiber gratings", Optics Communications, 164(1999):27-31.
    [29] I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden and N. J. Doran, "UV written in-fiber Bragg gratings", Optical and Quantum Electronics, 28(1996):93-135.
    [30] 李智红,董孝义等,“正旋锥光纤光栅的数值计算分析”,光子学报,27(1998):239-242.
    [31] B. J. Eggleton et al., "Long periodic superstructure Bragg gratings in optical fibres", Electronics Lett., 30(1994):1620-1622.
    [32] J. Chow, G. Town, B. J. Eggleton et al., "Multiwavelength generation in an Erbium-doped fiber laser using in fiber comb filters", IEEE Photonics Technology Letters, 8(1996):60-62.
    [33] F. Ouellette, P. A. Krug, T. Stephens et al., "Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings", Electronics Lett., 31(1995): 899-900
    [34] J.-X. Cai, K.-M. Feng, A. E. Willner et al., "Sampled nonlinearly-chirped fiber Bragg grating for the tunable dispersion compensation of many WDM channels simultaneously", OFC/IOOC'99, Technical Digest, 4(1999):20-21.
    [35] W. W. Morey, G. Meltz, and W. H. Glenn, "Fiber Bragg grating sensors", SPIE 1169:98-107.
    [36] W. W. Morey et al., "Bragg-grating temperature and strain sensors", OFS'89, Paris, France, (1989):526.
    [37] A. D. Kersey, M. A. Davis, H. J. Patrick, et al,, "Fiber grating sensors." J. Lightwave Technol., 15(1997): 1442-1463.
    [38] S. Magne, S. Rougeault, M. Vilela and P. Ferdinand, "State-of-strain evaluation with fiber Bragg grating rosettes: application discrimination between strain and temperature effects in fiber sensors", Applied Optics, 36(1997):9437-9447.
    [39]S. Gupta, T. Mizunami, T. Yamao, T. Shimomura, "Fiber Bragg grating cryogenic temperature sensors", Applied Optics, 35(1996):5202-5205.
    [40] M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, "Optical in-fiber grating high pressure sensor", Electronics Lett., 29(1993):398-399.
    [41]M. G. Xu, H. Geiger and J. P. Dakin, "Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing", Electroni(?) Lett., 32(1996): 128-129.
    [42]G. A. Johnson, S. T. Vohra, B. A. Danver et al., "Vibration monitoring of a ship waterjet with fiber Bragg gratings", SPlE, 3746:616-619.
    [43]N. Takahashi, S. Takahashi and K. Tetsumura, "Fiber-Bragg-grating underwater acoustic sensor", SPIE, 3746:565-568.
    [44]M. W. Hathaway, N. E. Fisher, D. J. Webb et al., "Ultrasonic field and temperature sensor based on short in-fiber Bragg gratings", SPIE, 3746:549-552.
    [45]A. D. Kersey and M. G. Marrone, "Fiber Bragg grating high-magnetic-field probe", Proc. 10th International Conference on Optical Fiber Sensors (OFS'IO), Scotland, (1994):53 -56.
    [46]T. A. Berkoff and A. D. Kersey, "Experimental demonstration of a fiber Bragg grating accelerometer", IEEE Photonics Technology Letters, 8(1996): 1677-1679.
    [47]Y. L. Lo, and H. S. Chuang, "using an in-fiber Bragg-grating sensor for measurement of thermal expansion coefficient in structures", SPIE, 3746:518-521.
    [48]A. D. Kersey, T. A. Berkoff, W. W. Morey, "Multiplexed fiber Bragg grating strain sensor system with a fiber F-P wavelength filter", Optics Letters, 1993, Vo1.18, No. 16, pp. 1370-1 372.
    [49] M. A. Davis, D. G. Bellemore, M. A. Putnam and A. D. Kersey, "Interrogation of 60 fiber Bragg grating sensors with micro strain resolution capability", Electronics Lett., 32(1996): 1393-1 394.
    [50]M. G. Xu, H. Gieger, J. L. Archambault, L. Keekie and J. P. Dakin, "Novel interrogating system for fiber Bragg grating sensors using an acoustc-optic tunable filter", Electronics Lett., 29(1993): 1510-1511.
    [51] M. G. Xu, H. Gieger and J. P. Dakin, "Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic filter" IEEE Journal of Lightwave Tachnol., 14(1996): 391-396.
    [52] D. A. Jackson. A. B. I.obo Ribciro. L. Keckic and J. L. Archambault. "Simple multiplexing scheme for fiber optic grating sensor network", Optical Lett., 18(1993):1192-1194.
    [53] G. P. Grady, S. Hope, A. B. Lobo Ribeiro et al., "Bragg grating temperature and strain sensors", Optics Communication, 111(1994): 51-54.
    [54] A. B. Lobo Ribeiro, L. A. Ferraira, J. L. Santos and D. A. Jackson, "Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme", Applied Optics, 36(1997):934-939.
    [55] G. A. Ball, W. W. Morey and P. K. Cheo, "Fiber laser source/analyzer for Bragg grating sensor array interrogation", IEEE Journal of Lightwave Technol., 12(1994):700-703.
    [56] T. Coroy et al., "Peak detection demodulation of a Bragg fiber optic sensor using a gain-coupled distributed feedback tunable laser", Proceeding of 12th Internation Conference on Optical Fiber Sensors (OFC'12), Williamsburg, VA, USA, (1997):210-212.
    [57] S. H. Yun, D. J. Richardson and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser", Optics Lett., 23(1998):843-845.
    [58] M. A. Davis and A. D. Kersey, "Fiber Fourier transform spectrometer for decoding Bragg grating sensors", Proceeding of 10th Internation Conference on Optical Fiber Sensors(OFC'10), Glasgow, Scotland, (1994):167-170.
    [59] M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength encoded signals from Bragg grating sensors", IEEE Journal of Lightwave Technol., 13(1995):1289-1295.
    [60] S. Chen et al., "Digital spatial and wavelength domain multiplexing of fiber Bragg grating based sensor", Proceeding of 12lh Internation Conference on Optical Fiber Sensors (OFC'12), Williamsburg, VA, USA, (1997): 448-451.
    [61]A. Ezbiri, S. E. Kanellopoulis and V. A. Handerek, "High resolution instrumentation system for demodulating of Bragg grating aerospace sensors", Proceeding of 12lh Internation Conference on Optical Fiber Sensors (OFCI2), Williamsburg, VA, USA, (1997):456-459.
    [62]Y. Hu, S. Chen, L Zhang and I. Bennion, "Multiplexing Bragg grating using combined wavelength and spatial division techniques with digital resolution enhancement", Electronics Lett., 33(1997): 1973-1975.
    [63]T. A. Berkoff et al., "Hybrid time and wavelength division multiplexed fiber grating array," SPIE, 2444(1995):288.
    [64]A. D. Kersey et al., "Analysis of intrinsic crosstalk in tapped serial and Fabry-Perot interferometric fiber sensor arrays," in Proc. SPIE 985(1988):113-116.
    [65]C. Z. Shi, N. Zeng, C. C. Chan et al., "Improving the Performance of FBG Sensors in a WDM Network Using a Simulated Annealing Technique" IEEE Photonics Technology Letters, .16(2004):227-229
    [66]T. A. Berkoff and A. D. Kersey, "Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator," SPIE 2361 (1994) 2:350-353.
    [67]A. D. Kersey, T. A. Berkoff and W. W. Morey, "High-resolution fiber grating based strain sensor with interferometic wavelength-shift detection". Electronics Lett., 28(1992):236-238.
    [68]T. A. Berkoff, A. D. Kersey, "Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection," IEEE Photon. Technol. Lett., 8(1996):1522.
    [69]M. G. Xu, J.-L. Archambault, L. Reekei et al., "Discrimination between strain and temperature effects using duai-wavelength fiber grating sensors", Electronics Lett., 13(1994): 1085-1087.
    [70]Kanellopoulos et al., "Simultaneous strain and temperature sensing with photogenerated in-fiber gratings," Opt. Lett., 20(1995):333.
    [71]M. G. Xu et al., "Temperature-independend strain sensor using a chirped Bragg grating in a tapered optical fiber", Electronics Lett., 31(1995):823-825.
    [72]S. W. James, M. L. Dockney, R. P. Tatam, "Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors", Electronics Lett., 32(1996): 1133-1134.
    [73]W. C. Du, X. M. Tao and H. Y. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature", IEEE Photonics Technology Letters, 11 (1999): 105-107.
    [74]M. Sudo et al., "Simultaneous measurement of temperature and strain using PANDA fiber grating", Proceeding of 12th Internation Conference on Optical Fiber Sensors(OFC'12), Williamsburg, VA, USA, (1997):1133-1134.
    [75]G. P. Brady et al., "Simultaneous measurement of strain and temperature using the first-and second-order difraction wavelength of Bragg gratings", IEEE Proc. Optoelectronics, 144(1997): 156-161
    [76]J. Jung, H. Nam, J. H. Lee, N. Park and B. Lee, "Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier", Appl. Opt, 38(1999):2749-2751.
    [77]S. E. Kanellopoulos, V. A. Handerek and A. J. Rogers, "Simultaneousstrain and temperature sensing with photo generated in-fiber gratings", Optics Letters, 20(1995):333-335.
    [78]T. Iwashima et al., "Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes", Electronics Lett., 33(1997):417-419.
    [79]M. G. Xu et al., "Thermally-compensated bending gauge using surface mounted fiber gratings", International Journal of Optoelectronics, 9(1994):281-283.
    [80]M. A. Putnam, G. M. Williams, and E. J. Friebele, "Fabrication of tapered, strain-gradient chirped fiber Bragg gratings," Electron. Lett., 31(1995): 309.
    [81]A. D. Kersey, M. A. Davis, and T. Tsai, "Fiber optic Bragg grating strain sensor with direct reflectometric interrogation" Proc. 11~th Int. Conf. Optical Fiber Sensors, OFS'96, Sapporo, Japan, (1996):634.
    [82]K. Sugden et al., "Chirped gratings produced in photosensitive optical fibers by fiber deformation during exposure," Electron. Lett., 30(1994):440.
    [83]M. LeBlanc, S. Huang, M. Ohn, R. M. Measures, A. Guemes, and A. Othonos, "Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis," Opt. Lett,
     21(1996):1405-1407.
    [84] S. Huang et al., "A novel Bragg grating distributed-strain sensor based on phase measurements," SPIE, 2444(1995): 158.
    [85]S. Huang, M. M. Ohn, and R. M. Measures, "Phase-based Bragg intragrating distributed strain sensor," Appl. Opt, 35(1996):1135-1142.
    [86]A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N.S. Bergano, and C. R. Davidson, "Long-period fiber-grating-based gain equalizers," Opt. Lett., 21 (1996):336-338.
    [87]V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett, 21(1996):692-694.
    [88]H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, "Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination," IEEE Photon. Technol. Lett., 8(1996): 1223 -1225.
    [89]V. Bhatia, K. A. Murphy, R. O. Claus, and A. M. Vengsarkar, "Simultaneous measurement systems employing long-period grating sensors," Conf. Proc. Optic. Fiber Sensors-11 (OFS-11), Sapporo, Japan, (1996):702-704.
    [90]K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, "A novel temperature-insensitive long-period fiber grating using a boron-codoped-germanosilicate-core fiber," Tech. Dig. Conf. Opt. Fiber Commun., Dallas, TX, (1997):347-348.
    [91]V. Bhatia, D. K. Campbell, T. D'Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, and R. O. Claus, "Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractiveindex sensing," Tech. Dig. Conf. Opt Fiber Commun., Dallas, TX, (1997): 346-347.
    [92]J. P. Dakin et al., "Novel optical fiber hydrophone array using a single laser source and detector," Electron. Lett., 20(1984):14-15.
    [93]A. D. Kersey et al., "Analysis of intrinsic crosstalk in tapped serial and Fabry-Perot interferometric fiber sensor arrays," SPIE 985(1988): 113-116.
    [94]W. W. Morey, "Distributed fiber grating sensors," Proc. OFS'90, Sydney, Australia, (1990):285.
    [95]S. Vohra, A. Dandridge, B. Danver, and A. Tveten, "An hybrid
     WDM/TDM reflectometric array," Proc. 11th Int. Conf. Optic. Fiber Sensors, OFS'96, Sapporo, Japan, (1996): 534-537.
    [96] A. D. Kersey and M. J. Marrone, "Nested intererometric sensors utilizing fiber Bragg grating reflectors," Proc. 11th Int. Conf. Optic. Fiber Sensors, OFS'96, Sapporo, Japan, (1996): 618-621.
    [97] A. D. Kersey and M. A. Davis, "Interferometric fiber sensor with a chirped Bragg grating sensing element," Proc. OFS-10, Glasgow, Scotland, (1994): 319.
    [98] 董孝义编著,光波电磁学,南开大学出版社,1987年11月版
    [99] H. Ke, K. S. Chiang and J. H. Peng, "Analysis of phase-shift long-period fiber grating", IEEE Photo. Tech. Lett., 1998, 10(11), P1596-1598
    [100] A. D. Kersey, M. A. Davis, H. J. Patrick, et al., "Fiber grating sensor" IEEE J. Lightwave Technol., 15(1997): 1442-1463
    [101] 赵凯华,钟锡华,光学,北京:北京大学出版社,1993
    [102] Yu-Lung Lo, "In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing". IEEE Photonics Technology Lett., 10(1998):1003-1005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700