弱硬实时系统及其调度算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机,网络和通信技术地发展,实时系统越来越多得被应用于工业控制、网络通信、实时监控,多媒体等领域。这些新的实时网络应用得出现给实时系统地发展提出了新的要求和挑战。
     弱硬实时概念的提出,丰富和扩充了实时系统理论,也满足了实时网络应用的理论需求。弱硬实时相关问题也因此成为当前实时研究的重点问题之一。本论文的研究内容集中在弱硬实时约束规范,基于弱硬实时约束规范的调度算法及相关实验。
     弱硬实时理论能够统一描述原有各类实时系统,硬实时、软实时系统都是一类典型的弱硬实时系统。本文提出了一种新的弱硬实时规范约束。从典型弱硬实时的角度分析了总线协议的实时特性,并具体针对弱硬实时调度算法DBP,讨论其在优先级设置及调度中的问题,并给出修正策略。论文还讨论了弱硬实时系统的可扩展问题,提出了任务流归类的方法。完成的相关主要工作具体的包括了以下几个方面:
     1.简单回顾了实时系统的发展及其相关调度算法。
     2.提出了((?),p)约束,研究了其与现有弱硬实时约束之间的关系;同时修正了文献[61]中的一个约束强弱比较的定理;全面总结了弱硬实时系统的静态调度算法和静态调度中的两个主要问题,以及动态弱硬实时调度算法及其性能评价方法等。
     3.从典型弱硬实时—硬实时的角度,分析工业网络FF的MAC层任务的WCET,提出协议改进策略,并通过仿真验证了改进协议的有效性。比较了集中控制式总线协议FF和WorldFIP非周期任务调度的带宽利用率。
     4.研究了DBP算法忽略状态所包含0/1信息分布的缺点,提出了与进入失效距离对称的概念—退出失效距离,并说明了改进优先级算法设置的合理性,扩展了DBP算法的优先级类别。
     5.研究DBP算法在优先级设置时仅考虑该任务流本身的历史状态,而忽略任务流任务时间参数特性的缺点;提出了在任务优先级设置过程中考虑不同任务流之间任务时间参数特性的矩阵DBP算法,并给出了矩阵元素的计算公式。
With technical development of computer, network and communication, real-time systems are applied to the fields of automatic control, network communication, real-time monitor, multimedia. New requirements and challenges arise from these applications.The concept of weakly hard real-time is presented, which not only enriches and extends the classical theory of real-time system, but also meets new requirements and challenges. So related issues on weakly hard real-time are becoming hot research point nowadays. The content of thesis will focus on constraint specification of weakly hard real-time, scheduling algorithms based on weakly hard real-time and related experiments.The theory of weakly hard real-time can describe different real-time system, both hard real-time and soft real-time system are the typical weakly hard real-time systems. In this thesis, a new specification of weakly hard real-time is proposed; Real-time characteristic of fieldbus is analyzed from the viewpoint of weakly hard real-time, and improved algorithms are put forward to correct drawbacks of DBP in the process of its priority assignment. Furthermore, the problem of scalability in weakly hard real-time system is discussed, and schemes for classifying streams are proposed. The main detail research works in the thesis can be described as follows:1. Review in brief the development of real-time system and its scheduling algorithms;2. Propose ((m|—),p) constraint, and study the relationship with existing weakly hard real-time constraint; correct the theory of stringency compare in reference [61]; summarize fully the static scheduling algorithms and their main two primary problems for weakly hard real-time, and dynamic scheduling algorithms including their metric of performance evaluation;3. Analyze the WCET of MAC in FF from viewpoint of weakly hard real-time, and propose an improved scheme and validate the effectiveness by simulation; compare the bandwidth utilization of aperiodic task scheduling in centralized control like FF and WorldFIP;
    4. Point out the drawback of DBP, which neglects the distribution of 0/1 information in state, and propose a distance to exit to failure state, which is symmetrical notion with distance to fall into failure state; The rationality of priority assignment is explained, and the priority number is extended;5. Improve DBP by a matrix, which takes into account timing characteristics of stream like period, deadline, service time et.al and its relationship with other streams sharing the same server; The idea remedies original DBP that only considers recent history state of stream itself; The equation is given to compute element of Matrix;6. Study the problems of scalability under the limited resource in weakly hard realtime system。 Static loss-rate balance and dynamic stream number balance class selecting algorithms are designed based on multiplex queue.7. Design two different experiment project based on diverse hardwares to validate the weakly hard real-time QoS that is provided by different real-time scheduling algorithms.Finally, some concluding remarks are given, and the future research works are pointed out.
引文
[1] 王永炎,王强,王宏安,金宏,戴国忠.基于优先级表的实时调度算法及其实现.软件学报,15(3):360-370,2004.
    [2] 田东风编著.Window CE应用程序设计.机械工业出版社,2003.
    [3] 黎连业,郭春芳,向东明编著.无线网络及其应用技术.清华大学出版社,2004.
    [4] 何军.实时调度算法研究.博士学位论文,中国科学院软件研究所,06.1997.
    [5] 何军,孙玉方.提高软非周期任务响应性能的调度算法.软件学报,9(10):721-727.1998.
    [6] 阳宪惠.现场总线技术及其应用.清华大学出版社,1998.
    [7] 王智.面向现场总线的分布实时系统的建模与分析方法.博士学位论文,中科院沈阳自动化研究所,2000.
    [8] 王志平,熊光泽.实时调度算法研究.电子科技大学学报,29(2):205-208,04 2000.
    [9] 王天然.基于现场总线的实时工业通讯系统建模与分析.国家自然科学基金,中国科学院沈阳自动化研究所,2000.
    [10] 禹农,孙祥斌.实时系统中的调度算法分类研究.计算机工程与科学,24(4):38-40,2002.
    [11] 陈磊.FF非周期通信的带宽分配优化策略研究.仪器仪表学报,23(4):395-399,2002.
    [12] 王智.弱实时调度理论及其在网络服务质量中的应用.国家自然科学基金申请书,浙江大学现代控制工程研究所,2003.
    [13] 金宏,王宏安,王强,戴国忠.一种任务优先级的综合设计方法.软件学报,14(3):376—382,2003.
    [14] 陈积明,王智,宋叶琼,孙优贤.基金会现场总线非周期实时信息的调度问题研究.浙江大学学报工学版,37(3):273-277,05.2003.
    [15] 任丰原,黄海宁,林闯.无线传感器网络.软件学报,14(7):1282-1291,2003.
    [16] 陈积明.DWCS和DBP的动态性能比较.Technical report,浙江大学现代控制工程研究所,2003.
    [17] 张惠娟,周利华.一种基于EDF算法的多处理器实时调度算法.计算机工程与应用,
    [18] 王天然,周悦,于海斌,苑明哲.FF现场总线系统实时通信分析及启发式调度.仪器仪表学报,24(1):1-6,2003.
    [19] 孙优贤,宋叶琼.基于(m,k)-firm的多媒体信息网络QoS的研究.中法先进计划研究项目申请书,浙江大学现代控制工程研究所,2003.
    [20] 王文博,张金文.OPNET Moduler与网络仿真.人民邮电出版社,2003.
    [21] 涂刚.软实时系统任务调度算法研究.博士学位论文,华中科技大学,10.2004.
    [22] 刘云生,何冰,冉龙波.混合实时事务的延期调度单速率调度算法及其可调度性分析.计算机学报,27(3):289-294,2004.
    [23] 王永吉,陈秋萍.单调速率及其扩展算法的可调度性判定.软件学报,15(6):799-814,2004.
    [24] 陶学慎.基于无线传感器网络的音频信号采集与处理.本科生毕业论文,浙江大学现代控制工程研究所,07.2004.
    [25] 王济勇,林涛,王金东,韩光洁,赵海.EDF调度算法抢占行为的研究及其改进.电子学报,32(1):64-68,01 2004.
    [26] 李燕君.基于(m,k)firm的网络调度算法及其OPNET仿真.本科生毕业论文,浙江大学现代控制工程研究所,07.2004.
    [27] 陈敏.OPNET网络仿真.清华大学出版社,2004.
    [28] 尹红霞,王智,孙优贤.一种基于(m,k)-firm的加权公平队列调度算法.浙江大学学报工学版(录用),2005.
    [29] 陈积明,王智.宋叶琼,孙优贤.WorldFIP和FF非周期信息调度的性能比较.仪器仪表学报,4,2005.
    [30] L Almeida, P Pedreiras, and J Fonseca. FTT-CAN: Why and how. IEEE Transactions on Industiral Electronics, 49(6), Dec 2002.
    [31] Luis Almeida, Eduardo Tovar, Jose Alberto G Fonseca, and Francisco Vasques. Schedulability analysis of real-time traffic in WoddFIP networks: An integrated approach. IEEE Transactions on Industrial Electronics, 49(5): 1165-1174, Oct. 2002.
    [32] N Audsley and A Burns. Real-time system scheduling, Report YCS 134, University of York, Department of Computer Science, 1990.
    [33] J.J Bae and T Suda. Survey of traffic control schemes and protocols in ATM networks. IEEE Proceedings, 79: 170-189, Feb. 1991.
    [34] Ian Broster, Guillem Bernat, and Alan Bums. Weakly hard real-time constraints on controller area network. In Proceedings of 14th Euromicro Conference on Real-Time Systems, pages 134-141, Viena Austria, Jul. 2002.
    [35] Microsoft Visual C # Developer Center. http://msdn.microsoft.com/vcsharp/.
    [36] Windows Microsoft Embedded Developer Center. http://msdn.microsoft.com/embedded/ windowsce/.
    [37] J.Eker Cervin. Feedback scheduling of control tasks. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 5 of 5, pages 4871- 4876, Sydney, Australia, 2000.
    [38] Ji Ming Chen, Ye Qiong Song, Zhi Wang, and You Xian Sun. Equivalent matrix-DBP for (m,k)-firm deadline. In Proceedings of IEEE International Symposium on Industrial Electronics, pages 675-680, May. 2004.
    [39] Ji Ming Chen, Zhi Wang, Ye Qiong Song, and You Xian Sun. Extended DBP for (m,k)firm based QoS. IFIP Network and Parallel Conference, Lecture Notes in Computer Science, 3-540-23388-1:357-365, Oct. 2004.
    [40] Ji Ming Chen, Zhi Wang, Ye Qiong Song, and You Xian Sun. A scalable approach for streams with (m,k)-firm deadline. In Proceedings of IEEE Workshop on Quality of Service for Application Servers, Oct. 2004.
    [41] Ji Ming Chen, Zhi Wang, Ye Qiong Song, and You Xian Sun. Scalability and QoS guarantee for streams with (m,k)-firm deadline. Journal of Computer Standard and Interface (Accepted), 2005.
    [42] Ji Ming Chen, Zhi Wang, and You Xian Sun. Real-time capacity analysis of Ethernet in industrial application. In Proceedings of The 4th World Congress on Intelligent Control and Automation, pages 2227-2230. IEEE, JUN 2002.
    [43] Ji Ming Chen, Zhi Wang, and You Xian Sun. Switch real-time industrial Ethernet with mixed scheduling policy. In Proceedings of The 28th Annual Conference of the IEEE Industrial Electronics Society, volume 3, pages 2317-2321. IEEE, Nov. 2002.
    [44] H Chetto and M Chetto. Some results of the earliest deadline scheduling algorithm. IEEE Transaction on Software Engineering, 15(10): 1261—1269, 1989.
    [45] R Chipalkatti, J.F Kurose, and D Towsley. Scheduling policies for real-time and non real-time traffic in a statistical multiplexer. In Proceeding of IEEE INFOCOM, pages 774-783, Apr. 1989.
    [46] Jinsung Cho and Heonshik Shin. Heuristic scheduling for multimedia streams with firm deadlines. In Proceedings of the 4th International Workshop on Real-Time Computing Systems and Applications, pages 67-72, Oct. 1997.
    [47] Young Jong Cho and Chong Kwan Un. Performance analysis of reconstruction algorithms for packet voice communications. Computer Networks and ISDN Systems, 26(11):1385—1408, Aug 1994.
    [48] C C Chou and K G Shin. Statistical real-time channels on multiaccess networks. IEEE Transaction on Parallel and Distributed Systems, 8(8):769-780, Aug. 1997.
    [49] Inc. Crossbow Technology, http://www.xbow.com/.
    [50] Rene L Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE Transaction on Information Theory, 37(1):114-131, Jan 1991.
    [51] Rene L Cruz. A calculus for network delay, part II: Network analysis. IEEE Transaction on Information Theory, 37(1): 132-141, Jan. 1991.
    [52] Mohamed A El-gendy, Abhijit Bose, and Kang G Shin. Evolution of the Internet QoS and support for soft real-time applications. Proceedings of IEEE, 91(7): 1086-1104, Jul. 2003.
    [53] Y.Mohamed et al. On handling QoS traffic in wireless sensor networks. In the 37th Annual Hawaii International Conference on System Sciences (HICSS'04), Hawaii, Jan. 2004.
    [54] Domenico Ferrari. Client requirements for real-time communication services. IEEE Communications Magazine, 28(11): 65-72, Nov 1990.
    [55] B Furth. Real-Time UNIX System Design and Application Guide. Kluwer Academic Publisher, 1991.
    [56] Buttazzo Giorgio, Spuri Macro, and Sensini Fabrizio. Value vs. deadline scheduling in overload conditions. In Proceedings of 16th IEEE Real-Time Systems Symposium, pages 210-219, Pisa, Jun. 1995.
    [57] C Buttazzo Giorgio. Hard Real-Time Computing Systems: Predictable Schedulings Algorithms and Applications. Kluwer Academic Publishers, 1997.
    [58] JB Goodenough and L Sha. The priority ceiling protocol: A method for minimizing the blocking of high priority ada tasks. ACM Ada Letters, 8(7):20-31, 1998.
    [59] Bernat Guillem. Specifcation and Analysis of Weakly Hard Real-Time System. PhD thesis, University of York, Jan. 1998.
    [60] Bernat Guillem and Alan Bums. Combining (n,m)-hard deadlines with dual priority scheduling. In Proceedings of 18th IEEE Real-Time Systems Symposium, pages 46-57, San Francisco USA, Dec. 1997.
    [61] Bernat Guillem, Alan Burns, and Albert Llamosi. Weakly hard real-time systems. IEEE Transaction on Computers, 50(4):308-321, 2001.
    [62] Bernat Guillem and Ricardo Cayssials. Guaranteed on-line weakly-hard real-time systems. In Proceedings of 22nd IEEE Real-Time Systems Symposium, pages 25-35, London, Dec. 2001.
    [63] Moncef Hamdaoui and Parameswaran Ramanathan. A service policy for real-time customers with (m,k)-firm deadlines. In Proceedings of 24th International Symposium on Fault Tolerant Computing, pages 196-205, Jul. 1994.
    [64] Moncef Hamdaoui and Parameswaran Ramanathan. A dynamic priority assignment technique for streams with (m,k)-firm deadlines. IEEE Transaction on Computers, 44(4): 1443-1451, Dec. 1995.
    [65] Moncef Hamdaoui and Parameswaran Ramanathan. Evaluating dynamic failure probability for streams with (m,k)-firm deadlines. IEEE Transaction on Computers, 46(12): 1325-1337, Dec. 1997.
    [66] C C Han, K J Lin, and C J Hou. Distance-constrained scheduling and its anplcations to real-time systems. IEEE Transaction on Computers, 45(7):814-826, 1996.
    [67] S.H Hong and Y.C Kim. Implementation of a bandwidth allocation scheme in a token-passing fieldbus network. IEEE Transaction on Instrumentation and Measurement, 51(2):246—251, 2002.
    [68] http://tinyos.millennium.berkeley.edu. TinyOS.
    [69] Shaoxiong Hua and Gang Qu. Energy-efficient dual-voltage soft real-time system with (m,k)firm deadline guarantee. In Proceedings of ACM International Conference on Compilers, Architectures and Synthesis of Embedded Systems, pages 116-123, Dec. 2004.
    [70] OPNET Technologies Inc. OPNET Online Tutorial. http://www.opnet.com/.
    [71] K Jeffay, D.F Stanat, and C.U Martel. On non-preemptive scheduling of periodic and sporadic task. In Proceedings of IEEE real-time systems symposium, pages 129-139, San Antonio,USA, Dec. 1991.
    [72] Ning Jia. Ordonnancement sous contraintes (m,k)-firm et combinatoire des mots. Stage de dea, Laboratoire Lorrain de Recherche en Informatique et Aes Applications, Jun. 2004.
    [73] DI Katcher, H Arakawa, and JK Strosnider. Engineering and analysis of fixed priority schedulers. IEEE Transaction on Software Engineering, 19(9):920-934, 1993.
    [74] Gilad Koren and Dennis Shasha. Skip-over: Algorithms and complexity for overloaded systems that allow skips. In Proceedings ofIEEE Real-Time Systems Symposium, pages 110-117, Pisa, Dec. 1995.
    [75] Anis Koubba and Ye Qiong Song. Integrating (m,k)-firm real-time guarantees in the Internet QoS model. In 4th IFIP Networking Conference Networking, Lecture Notes in Ccomputer Science, pages 1378-1383, Athens, Greece, May. 2004. Springer.
    [76] Anis Koubba, Ye Qiong Song, and Jean Pierre Thomesse. Loss-tolerant QoS using firm constraints in guaranteed rate networks. In Proceedings of 10th IEEE Real-Time and Embedded Technology and Applications, May. 2004.
    [77] Annis Koubba. Gestion de la Qualit e de Service Temporelle Selon la Contrainte (m,k)-Firm Dans les reseaux a commutation de paquets. PhD thesis, Institut National Polytechnique de Lorraine, Nancy, France, Oct. 2004.
    [78] Raj Krishnamurthy, Karsten Schwan, Richard West, and Marcel Rosu. On network coprocessors for scalable, predictable media services. IEEE Transaction on Parallel and Distributed Systems, 14(7):655-670, Jul. 2003.
    [79] Raj Krishnamurthy, Sudhakar Yalamanchili, Karsten Schwan, and Richard West. Leveraging block decisions and aggregation in the sharestreams QoS architecture. In Proceedings of the International Conference of Parallel and Distributed Systems, Nice,France, 2003.
    [80] K Kubota, M Murata, H Miyahara, and Y Oie. Congestion control for bursty video traffic in ATM networks. Electronics and communication in Japan, 175: 13-19, Apr. 1992.
    [81] E. L Lawler and C.U Martel. Scheduling periodically occurring tasks on multiprocessors. Information Processing Letters, 12(1):9-12, Feb. 1981.
    [82] J P Lehoczky, L Sha, and Y Ding. The rate monotonic scheduling algorithm: Exact characterization and average case behavior. In Proceedings of 10th IEEE Real-Time Systems Symposium, pages 166-171, 1989.
    [83] J P Lehoczky, L Sha, and Stronsider. Enchanted aperiodic responsiveness in hard real-time environments. In Proceedings of Sth IEEE Real-Time Systems Symposium, pages 261-270, 1989.
    [84] J.Y-T Leung and J Whitehead. On the complexity of fixed-priority scheduling of periodic real-time tasks. Perfomrances Evaluation, pages 237-250, Feb. 1982.
    [85] Jian Li. Sufficient condition for guaranteeing (m,k)-firm real-time requirement under NPDBP-EDF scheduling. Stage de dea, Laboratoire Lorrain de Recherche en Informatique et Aes Applications, Jun. 2003.
    [86] Jian Li, Ye Qiong Song, and Simonot Lion Francoise. Schedulability analysis for systems under (m,k)-firm constraints. In Proceedings of IEEE International Workshop on Factory Communication Systems, pages 23 - 30, Sep. 2004.
    [87] Suzhen Lin and G Manimaran. Double-loop. feedback-based scheduling approach for distributed real-time systems. In Proceedings of 10th High Performance Computing, pages 268-278,2003.
    [88] William Lindsay and Parameswaran Ramanathan. DBP-M: A technique for meeting the end- to-end (m,k)-firm guarantee requirements in point-to-point networks. In Proceedings of IEEE Conference on Local Computer Networks, pages 294-303, Nov. 1997.
    [89] C L Liu and J W Layland. Scheduling algorithm for multiprogramming in a hard real-time environment. Journal of ACM, 20(l):46-61, 1973.
    [90] Dong Lin Liu, Xiao Bo Hu(Sharon), Michael D Lemmon, and Qiang Ling. Firm real-time system scheduling based on a novel QoS constraint. In Proceedings of 24th IEEE International Real-Time Systems Symposium, pages 386-395, Dec. 2003.
    [91] J.W.S Liu, K-J Lin, A.C Shih, J.Y Chung, and WZhao. Algorithms for scheduling imprecise computations. Computer, 24(5):58-68, May. 1991.
    [92] Chenyang et.al Lu. Design and evaluation of a feedback control EDF scheduling algorithm. In Proceedings of 20th IEEE RTSS, pages 56-67, Dec. 1999.
    [93] Chenyang et.al Lu. Feedback control real-time scheduling: Framework, modeling, and algorithms. Real-Time Systems, 23((l/2)):85-126, 2002.
    [94] Anita Mittal, G Manimaran, and C Siva Ram Murthy. Integrated dynamic scheduling of hard and QoS degradable real-time tasks in multiprocessor systems. Journal of Systems Architecture, 46(9):793-807, Jul. 2000.
    [95] Aloysius K Mok and Wei Rong Wang. Window-constrained real-time periodic task scheduling. In Proceedings of 22nd IEEE Real-Time Systems Symposium, pages 15-24, England, Dec. 2001.
    [96] C Montez, J Fraga, R Oliveira, and J M Farines. An adaptive scheduling approach in realtime CORBA. In Proceedings of The 2nd IEEE International Symposium on Object-Oriented Real-time Distributed Computing, pages 301-309, May. 1999.
    [97] Carlos Montez and Joni Fraga. Dealing with overloading in tasks scheduling. In Proceedings ofXII International Conference of the Chilean Computer Science Society, pages 24—29, Chile, Nov. 2002.
    [98] K Nlichols, S Blake, F Baker, and D L Black. Definition of the differentiated services field (DS field) in the IPv4 and IPv6 headers. RFC 2474, IETF, 1998.
    [99] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE Std 802. llb, 1999 Edition.
    [100] Jon M Peha and Fouad A Tobagi. A cost-based scheduling algorithm to support integrated services. In Proceedings of IEEE INFOCOM, pages 741-753. IEEE, Apr. 1991.
    [101] D.W Petr and V.S Frost. Optimal packet discarding: An ATM-oriented analysis model and initial results. In Proceedings of IEEE INFOCOM, pages 537-542, Jun. 1990.
    [102] E M Poggi, Ye Qiong Song, Anis Koubaa, and Zhi Wang. Matrix-DBP for (m,k)-firm realtime guarantee. In Proceedings of Real-Time and Embedded System, pages 457-482, Paris, 2003.
    [103] Gang Quan and Xiao Bo Hu. Enhanced fixed-priority scheduling with (m,k)-firm guarantee. In Proceedings of 21st IEEE Real-Time Systems Symposium, pages 79-88, Florida USA, Nov. 2000.
    [104] Parameswaran Ramanathan. Graceful degradation in real-time control applications using (m,k)-firm guarantee. In Proceedings of the Fault-tolerant Computing Sumposium, pages 132-141, Jun. 1997.
    [105] Parameswaran Ramanathan. Overload management in real-time control applications using (m,k)-firm guarantee. IEEE Transaction on Parallel and Distributed Systems(Special issue on Dependable Real-time Systems), pages 549-559, Jun. 1999.
    [106] M A Saleh, I W Habib, and T N Saadawi. Simulation analysis of a communication link with statistically multiplexed bursty voice sources. IEEE Journal on Selected Areas in Communication, 11(3):432-42, Apr. 1993.
    [107] H Schulzrinne, J.F Kurose, and D Towsley. Congestion control for real-time traffic in highspeed networks. In Proceedings of IEEE INFOCOM, pages 543-550, Jun. 1990.
    [108] O Sename, D Simon, and Robert.D. Feedback scheduling for real-time control of systems with communication delays. In Proceedings of IEEE ETFA, volume 2, pages 454 - 461, Sept. 2003.
    [109] L Sha, R Rajkumar, and JP Lehoczky. Priority inheritance protocols: An apporoach to realtime synchronization. IEEE Transaction on Computers, 39(9):1175—1185, 1990.
    [110] Yeqiong Song. Evaluation of FIP and Application Dimensionning,. PhD thesis, Institut National Polytechnique de Lorraine, Jul. 1991.
    [111] B Sprunt, J Lehoczky, and L Sha. Exploiting unused periodic time for aperiodic service using the extended priority exchange algorithm. In Proceedings of Real-Time Systems Symposium, pages 251-258, 1988.
    [112] B Sprunt, L Sha, and J Lehoczky. Aperiodic task scheduling for hard real-time systems. Real-Time Systems, pages 27-60, 1989.
    [113] John A Stankovic, Chenyang Lu, S.H Son, and Gang Tao. The case for feedback control realtime scheduling. In Proceedings of the 11th Euromicor Conference on Real-Time Systems, pages 11-20, York,UK, Jun. 1999.
    [114] John A Stankovic, Marco Spuri, Marco Di Natale, and C Buttazzo Giorgio. Implications of classical scheduling results for real-time systems. IEEE Computer, 28(6): 16-25, 1995.
    [115] Aaron Striegel and Govindarasu Manimaran. Best-effort scheduling of (m,k)-firm real-time streams in multihop networks. Computer Communications, 23(13): 1292—1300, Jul. 2000.
    [116] Aaron Striegel and Govindarasu Manimaran. Packet scheduling with delay and loss differentiation. Computer Communications, 25(1):21-31, Jan. 2002.
    [117] Aaron Striegel and Govindarasu Manimaran. Dynamic class-based queue management for scalable media servers. Journal of Systems and Software, 66(2): 119-128, May. 2003.
    [118] Eduardo Tovar and Francisco Vasques. Real-time Fieldbus communications using Profibus networks. 46(6):1241-1251, Dec. 1998.
    [119] Eduardo Tovar and Francisco Vasques. Distributed computing for the factory-floor: a realtime approach using WolrdFIP networks. Computers in Industry, 44(1): 11-30, Dec. 2000.
    [120] Eduardo Tovar, Francisco Vasques, and Alan Burns. Communication response time in P-NET networks: Worst-case analysis considering the actual token utilisation. Technical report.
    [121] Gang Tu, Fu Min Yang, and Yan Sheng Lu. Scheduling algorithms based on weakly hard real-time constraints. Journal of Computer Science and Technology, 18(6):815-821, Nov. 2003.
    [122] Fugui Wang and Prasant Mohapatra. Using differentiated services to support Internet telephony. Computer Communications, 24(18):1846-1854, Dec. 2001.
    [123] Zhi Wang, Ji Ming Chen, and You Xian Sun. An integrated DBP for (m,k)-firm real-time guarantee. Journal of Zhejiang University.Science, pages 816-826, 2004.
    [124] Zhi Wang, Xing Fa Shen, Ji Ming Chen, Ye Qiong Song, Tian Ran Wang, and You Xian Sun. Real-time performance evaluation of urgent aperiodic messages in FF communication and its improvement. Journal of Computer Standards and Interfaces, 27(2): 105-115, Jan. 2005.
    [125] Zhi Wang, Ye Qiong Song, and You Xian Sun. Survey of weakly hard real-time schedule theory and its application. In Proceedings of International Symposium on Distributed Computing and Applications to Business, Engineering and Science.
    [126] Zhi Wang, Ye Qiong Song, Hai Bin Yu, and You Xian Sun. Worst-case response time of aperiodc message in worldfip and its improvement in real-time capability. ISA Transaction, 43(4):623-637, Oct. 2004.
    [127] Lifeng Wei and Haibin Yu. Research on a soft real-time scheduling algorithm based on hybrid adaptive control architecture. In Proceedings of American Control Conference, pages 4022-4027, Colorado, Jun. 2003.
    [128] Michael Welzl and Max Muhlhauser. Scalability and quality of service: A trade-off? IEEE Communications Magazine, 41(6):32-36, 2003.
    [129] Richard West. Adaptive Real-Time Management of Communication and Computation Resources. PhD thesis, College of Computing,Georgia Institute of Technology, Aug. 2000.
    [130] Richard West and Christian Poellabauer. An optimal on-line window-constrained scheduler for real-time heterogeneous activities. Technical Report GIT-CC-99-11, Georgia Institute of Technology, 1999.
    [131] Richard West and Christian Poellabauer. Analysis of a window-constrained scheduler for real-time and best-effort packet streams. In Proceedings of the 21st IEEE Real-Time Systems Symposium, pages 239-248, Florida USA, Dec. 2000.
    [132] Richard West and Karsten Schwan. Dynamic window-constrained scheduling for multimedia applications. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems, pages 87-91, 1999.
    [133] Richard West, Karsten Schwan, and Christian Poellabauer. Scalable scheduling support for loss and delay constrained media streams. In Proceedings of the 5th IEEE Real-Time Technology and Applications Symposium, pages 24-35, Jun. 1999.
    [134] Richard West, Yu Ting Zhang, Karsten Schwan, and Christian Poellabauer. Dynamic windowconstrained scheduling of real-time streams in media servers. IEEE Transaction on Computers, 53(6):744-759, Jun. 2004.
    [135] David J Yates, James F Kurose, Don Towsley, and Michael G Hluchyj. On per-session endto-end delay distributions and the call admission problem for real-time applications with QoS requirements. In Proceeding of ACM SIGCOMM Symposium on Communications Architectures and Protocols, pages 2-12, Sep. 1993.
    [136] Hong Xia Yin, Zhi Wang, Ji Ming Chen, Ye Qiong Song, and You Xian Sun. Dynamic management of real time QoS according to (m,k)-firm. In Proceedings of 5th IEEE World Congress Intelligent Control and Automation, volume 6, pages 5600-5604, Jun. 2004.
    [137] Hong Xia Yin, Zhi Wang, and You Xian Sun. A weighted fair queuing scheduling algorithm with (m,k)-firm guarantee. In Proceedings of 30th Annual Conference of the IEEE Industrial Electronics Society, Nov. 2004.
    [138] Hong Xia Yin, Zhi Wang, You Xian Sun, and Shan Bin Li. Enhanced WFQ algorithm with (m,k)-firm guarantee. In Proceedings of The First Internationa! Conference on Embedded Software and System, pages 266-273, Dec. 2004.
    [139] Yu Ting Zhang, Richard West, and Xin Qi. A virtual deadline scheduler for windowconstrained service guarantees. Technical Report 2004-013, Boston University, Mar. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700