光纤光栅智能材料与结构理论和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料与结构的智能化是21世纪具有挑战性的课题。利用智能材料与结构技术解决重大工程结构在整个生命周期内的健康监测和安全评估问题,是一个世界性的研究热点,具有重大的社会意义和经济价值。“结构健康监测”是智能材料与结构发展与综合的象征,是高新技术开发与集成的标志,也是现代结构实验技术的集中体现。研究开发在长期稳定性上满足工程要求的传感元件、发展新型光纤光栅智能材料结构系统是从根本上实现结构健康监测的核心工作之一。
     本论文在国家自然科学基金、国家863计划和湖北省重点攻关项目的支持下,在导师的悉心指导下,从基础理论、基本实验、工程应用上研究了光纤光栅智能材料与结构的理论和应用技术,从材料、构件、结构等方面探讨了用于重大工程结构的光纤光栅传感器的制备技术、光纤光栅传感网络设计技术和系统集成技术。目的是研制出光纤光栅应变、温度和压力等传感器及其所构成的健康监测系统,并实现在重大工程建设中的应用。本论文的相关研究工作历时五年,多项研究成果通过相关的成果鉴定,并已在多个重大工程项目上获得实际应用,成为国家科技进步二等奖的部分内容。
     本文主要内容包括:光纤光栅的智能传感机理,稳定、可靠的光纤光栅传感元件和多参量光纤光栅传感器的研制,光纤光栅智能材料与结构系统及其自诊断功能实现方法的研究,以及“结构健康监测”在重大工程中的应用研究等。
     一、对智能材料与结构、智能材料与结构中的传感技术、光纤光栅传感技术的研究现状和发展趋势进行了回顾和展望,探讨了光纤光栅智能材料与结构的基本概念和构成方式。
     二、从光纤光栅光敏性的研究出发,对光纤光栅的传输理论和基本智能传感特性进行了理论推证,分析了光纤光栅的传感机理。从传感用光纤光栅的要求出发,通过对载氢、光栅结构参数、光刻条件和退火工艺对光纤光栅光谱特性影响理论和实验的研究,总结出有关制备具有长期稳定性光纤光栅传感元件较理想的技术和工艺条件。
     三、基于智能材料与结构的相容性要求,通过对光纤光栅/传感器/待测界面应变传递特性、光纤光栅复合弹性体结构的理论研究和分析,形成基于应变传递效率的光纤光栅应变传感器的基本设计方法。总结了基于热、力耦合作用加速检验光纤光栅传感器长期稳定性的新方法。
The intellectualizing of materials and structures is the most challenging subject in the 21th century. The study on the health monitoring and safety evaluation within the whole life cycle of the huge engineering structure is a popular subject all over the world and has great social significance and economic benefits. The " health monitoring of structure " has become the symbol of the development and integration of intelligent materials and structures, the development and integration of high-tech., and also the concentrated reflection of the experimental technique of the modern structure. One of the key work to realize the health monitoring of structure fundamentally is to study and develop the sensing components whose durability and stability can meet the engineering needs and to develop the new kinds of fiber optic grating intelligent materials and structures.Financially supported by the National Natural Science Fund, National 863 Program, Key Research Projects of Hubei Province, and under the elaborate guidance of my tutor, in this thesis, the basic theories, fundamental experiments and engineering application of the intelligent materials and structures of fiber optic grating have been studied. The preparation technology for fiber optic grating sensors, the design and system integration technology for fiber optic sensing network, which will be used in huge engineering structures, have been explored in the aspects of materials, components and structures. The purpose is to develop the fiber optic strain, temperature and pressure sensors and their health monitoring system, and to use them in huge engineering construction. The related research work has been undertaken for five years and several achievements were evaluated. They were used in several huge engineering and became parts of the second class of the National Scientific and Technological Prize .The main contents of this thesis include the intelligent sensing mechanism of the fiber optic grating, the manufacturing technology for the stable and reliable fiber optic grating sensing components, the development of fiber optic grating sensors with multiparameter, the study of fiber optic grating intelligent materials and structures, the realization of self-diagnose function, and the application of "health monitoring of structures" in huge engineering.
    1. The current study situation and development direction of intelligent materials and structures, their sensing technology and fiber optic grating sensing technology were reviewed and forecasted. The basic concepts and forming patterns of the fiber optic grating intelligent materials and structures were explored.2. According to the study of photosensitive mechanism, the transmitting theory and basic intelligent sensing characteristics of fiber optic grating were reasoned and proved theoretically, the sensing mechanism of fiber optic grating was illustrated, and the sensing mechanism of fiber optic grating was analyzed. According to the demands of fiber optic grating used for sensing and through the theoretical and experimental study on the influence of hydrogen loading, structural parameters of fiber optic grating, photoetching strips and annealing process to the characteristics of grating spectra, the rather perfect technics and process conditions for preparing the fiber optic grating sensing components have been summarized.3. Based on the compatibility demand of intelligent materials and structures, and through the theoretical study and analysis on the strain transmitting characteristics of fiber optic grating/sensors/interface to be detected and the structures of the complex elastomer of fiber optic grating, the basic theories and methods for the design of fiber optic grating strain sensor based on the strain transmitting efficiency were formed. The new method based on the study of the coupling of heat and force to detect the long-term stability of fiber optic grating sensors has been summarized.(1) The fiber optic strain, temperature and pressure sensors were developed and used in the safety monitoring of several huge engineering projects.(2) The mechanical states of the complex interface of the detecting structure-optic fiber-elastomer-encapsulation materials were analyzed and the problems of their strain transmitting were studied. Analyzed by finit element method, the basic design principle and method for fiber optic strain sensors which can meet the detection need of concrete structure and metal structure has been proposed.(3) The encapsulation technics and the properties standardization method for fiber optic grating sensors have been formed.(4) It has been found that the main factor to influence the long term stability of fiber optic grating sensors was the change of the stain transmitting
    characteristics caused by the coupling effect of heat and force. The new method for improving the long term stability of fiber optic grating sensors based on the coupling of heat and force was proposed.4. The design theory and method for fiber optic grating intelligent materials andstructures have been studied.(1) The experimental device based on the structure damage recognition of the fiber optic grating sensing array was designed by studying the multi-application sensing technology of fiber optic grating. The damage recognition mechanism of four-side upholded plank structure was studied through BP nerve net and model experiment. And the technology and method for realizing the self-diagnosing of fiber optic grating intelligent materials and structures were explored(2) The basic composition and function of the health monitoring and damage diagnosis system for huge engineering structure have been proposed initially.(3) The rationality of the installation and arrangement technics of fiber optic strain sensors were validated by huge structure tests. The ideal installation technics, organizing and implementing methods for the health monitoring system of huge engineering structure have been proposed.5. The fiber optic grating sensors and their monitoring system for structure safety have been used in many huge engineering structures firstly , including steel structure, concrete bridge and prestress structure, which were compared with the traditional detecting technology. The application results show that fiber optic grating sensors and their monitoring system are suitable for the detection of complex stress and supramaxilmal strain parameters for several object structure with several working condition, and that their stability and durability can meet the practical engineering demand of the construction monitoring and long term health monitoring for huge engineering structure, demonstrating the realization of the application of fiber optic grating sensors in engineering and in large scale.
引文
[1] 曹照平,史庆轩.智能材料结构系统在土木工程中的应用研究.西北建筑工程学院学报:自然科学版.,2000.17(3):1~4
    [2] 欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金.,2005.19(1):8~12
    [3] 姜德生,何伟.光纤光栅传感器的应用概况.光电子.激光.,2002.13(4):420~430
    [4] Raymond M , Measures. Fiber Optic Strain Sensing. 1995. 171-247
    [5] 杨亲民.新材料与功能材料的发展趋势.功能材料信息.,2004.1(3):22~26
    [6] 姜德生,梁磊,周雪芳等.光纤光栅机敏混凝土的研究.硅酸盐通报.,2003.22(3):78~81
    [7] 黄尚廉.智能结构系统——防灾减灾的研究前沿.土木工程学报,2000.33(4)(2000):1~5
    [8] 姚康德,成国祥.智能材料仿生构思.化工进展.,2002.21(7):518~521
    [9] M. Maalej, A. Karasaridis, S. Pantazopoulou et al. Structural health monitoring of smart structures. Smart Materials & Structures, 2002. 11(4): 581-589
    [10] 曹照平,王社良.试论生命建筑结构.西北大学学报:自然科学版.,2000.30(4):366~369
    [11] 缪钱江,方征平,蔡国平.自修复复合材料研究进展.材料科学与工程学报.,2004.22(2):301~303
    [12] I. Chopra. Status of application of smart structures technology to rotorcraft systems. Journal of the American Helicopter Society, 2000. 45(4): 228~252
    [13] S. Kalaycioglu, D. Silva. Minimization of vibration of spacecraft appendages during shape control using smart structures. Journal of Guidance Control and Dynamics, 2000. 23(3): 558~561
    [14] H. S. Tzou, HA. Lee, S. M. Arnold. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures, 2004. 11(4-5): 367~393
    [15] N. Tajima, T. Sakurai, M. Sasajima et al. Overview of the Japanese smart materials demonstrator program and structures system project. Advanced Composite Materials, 2004. 13(1): 3~15
    [16] Brian Cuishaw. ASSET: Collaboration in Europe on Smart Structures. 2001. Proceedings of SPIE Vol. 4332 (2001): 22~28
    [17] N. Tajima, T. Sakurai, M. Sasajima et al. Overview of the Japanese smart materials demonstrator program and structures system project. Advanced Composite Materials, 2004. 13(1): 3~15
    [18] T. Takagi. Present state and future of the intelligent materials and systems in Japan. Journal of Intelligent Material Systems and Structures, 1999. 10(7): 575~581
    [19] T. L. Vigo. Intelligent fibrous materials. Journal of the Textile Institute, 1999. 90(3): 1~13
    [20] Y. Adachi, S. Unjoh, M. Kondoh. Development of a shape memory alloy damper for intelligent bridge systems. Shape Memory Materials, 2000. 327-3: 31~34
    [21] Z. Ahmad. Intelligent sensors for the oil and gas industry. Materials Performance, 2000. 39(8): 74~77
    [22] N. Shinya, J. Tani. Fourth International Conference on Intelligent Materials-Preface. Journal of Intelligent Material Systems and Structures, 1999. 10(7): 507~507
    [23] N. Shinya, J. Tani. Fourth International Conference on Intelligent Materials. Journal of Intelligent Material Systems and Structures, 1999. 10(6): 433~433
    [24] S. Wojciechowski, A. Boczkowska. Intelligent materials 2004. Archives of Metallurgy and Materials, 2004. 49(4): 723~734
    [25] Naoyuki Tajima, Tateo Sakurai, Nobuo Takeda. Progress in Demonstrator Program of Japanese Smart Material and Structure System Project. 2005. Proceedings of SPIE Vol. 4701 (2002): 108~118
    [26] 梁大开,邱浩.碳敷层光纤在碳纤维复合材料智能结构中的应用.南京航空航天大学学报.,2000.32(6):723~726
    [27] 杨明,梁大开,万鹏飞.多重分形的智能材料损伤诊断应用.兵器材料科学与工程.,2004.27(2):19~22
    [28] 袁慎芳,方明.紧密结合智能材料结构新学科的发展培养创新性人才.南京航空航天大学学报:社会科学版.,2000.2(B12):105~107
    [29] 姜德生.智能材料 器件结构.武汉工业大学,2001.
    [30] 孙明清,李卓球等.水泥及水泥基复合材料的机敏性研究.材料导报.,2002.16(5):52~54
    [31] 瞿伟廉,陈超等.深圳市民中心屋顶网架结构支撑钢牛腿瞬时应力场的识别.地震工程与工程振动.,2002.22(4):41~46
    [32] 瞿伟廉,王锦文.基于神经网络的大跨度网架结构.武汉理工大学学报.,2004.26(12):59~62
    [33] 瞿伟廉,周耀.三峡升船机结构简化力学模型.华中科技大学学报:城市科学版.,2003.20(4):1~3
    [34] 瞿伟廉,李学安等.压电材料智能力矩控制器对具有不确定参数升船结构顶部厂房地震反应的鲁棒控制.地震工程与工程振动.,2001.21(2):145~151
    [35] 谢建宏,张为公.智能材料结构的研究与发展.传感技术学报.,2004.17(1):164~167
    [36] 杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000.
    [37] 姜德生.中国光纤传感器的发展与产业化.自动化信息.,2002.(1):16~19
    [38] 姜德生,陈大雄,梁磊.光纤光栅传感器在建筑结构加固检测中的应用研究.土木工程学报.,2004.37(5):50~53
    [39] 姜德生,梁磊,周雪芳等 光纤光栅机敏混凝土的研究.硅酸盐通报.,2003.22(3):78~81
    [40] 李小甫,余海湖,姜德生.离子自组装成膜技术制备TiO2/SiO2薄膜光波导.光电子.激光.,2003.14(5):478~481,488
    [41] Brian Culshaw, Craig Michie. Smart Structures and Applications in Civil Engineering. Proceedings of the IEEE, 1996. vol. 84. No. 1(IEEE): 78~87
    [42] B Cuishaw. Smart Structures Activities Worldwide. 2005. ISPIE Vol. 2717: 2~17
    [43] B. Culshaw, W. C. Michie. OPTICAL FIBER SENSOR AND THEIR ROLE IN SMART STRUCTURES. 1998. SPIE Vol. 2718/389: 432~443
    [44] Samuel Vurpillot. Bridge spatial displacement monitoring with 100 fiber optic sensors deformations. 1997. SPIE, Vol 3043: 243~252
    [45] Inaudi. Embedded and surface mounted fiber optic sensors for civil structural monitoring. 1997. SPIE Vol. 3044: 16~25
    [46] Nicholns Leakos, Microbend. Application of optical fiber sensors: Technical and market trends. 2000. Proceedings of SPIE, Vol. 4074: 27~35
    [47] Peter L. Fuhr, Timothy P. Ambrose. Fiber Optic Corrosion Sensing for Bridges and Roadway Surfaces. 1997. SPIE Vol. 2446: 2~9
    [48] Dryver R Huston, Peter L Fuhr. Intelligent civil structures 梐 ctivities in Vermont. Smart Mater. Struct., 2005. 3(1994): 129~139
    [49] Peter L. Fuhr, Dryver R. Huston, Timothy EAmbrose. Embedded Sensors Results from the Winooski One Hydroelectric Dam. 2005. ISPIE Vol. 2191: 446~457
    [50] H. Hanselka, C. M. Sonsino. Structural durability and reliability of complex and intelligent structures. Materialwissenschaft und Werkstofftechnik, 2003. 34(9): 883~891
    [51] W. B. Spiliman Jr., R. O. Claus. Sensory phenomena and measurement instrumentation for smart structures and materials: conference overview. 1998. 2~5
    [52] J. A. Gmes, M. Frovel, Rodriguez-Lence. Embedded fiber Bragg grating as local damage sensors for composite materials. 2002. Proceedings of SPIE Vol. 4694 (2002): 118~129
    [53] Pascal Mauron, Philipp M. Nellen, Urs Sennhauser. High-strength proof-test parameters for fibre Bragg grating sensors. 2001. Proceedings of SPIE Vol. 4215 (2001): 183~191
    [54] Andrea Cusano. Fiber Optic Sensing System for Smart Materials and Structures. 2001. 2001 IEEE/ASNE International Conference on Advanced Intelligent Mechatronics Proceedings: 401~410
    [55] 周智,欧进萍.土木工程智能健康监测与诊断系统.传感器技术.,2001.20(11):1~4
    [56] W. W. Morey. Fiber Optic Grating Technology. 1995. Proceedings of SPIE, Vol. 2574: 2~8
    [57] Karen Wood, Timothy Brown, Robert Rogowski. Fiber optic sensors for health monitoring of morphing airframes: Ⅰ. Bragg grating strain and temperature sensor. Smart Mater. Struct, 2005. 9 (2000): 163~169
    [58] J. Leng, A. Asundi. Structural health monitoring of smart composite materials by using EFPI and FBG sensors. Sensors and Actuators A-Physical, 2003. 103(3): 3302~340
    [59] S.C.Tjin, Y.Wang, X.Sun et al. Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures. Measurement Science & Technology, 2002. 13(4) : 583-589
    [60] N.Takeda. Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors. International Journal of Fatigue, 2002. 24(2-4): 281-289
    [61] H.Tsutsui, A.Kawamata, J.Kimoto et al. Impact damage detection system using small-diameter optical-fiber sensors embedded in CFRP laminate structures. Advanced Composite Materials, 2004.13(1): 43-55
    [62] Y.Okabe, R.Tsuji, N.Takeda. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites. Composites Part A-Applied Science and Manufacturing, 2004. 35(1): 59-65
    [63] A.Wang , GR.Pickrell. Optical Sensor Research At Virginia Tech Center For Photonics Technology. 2001. Proceedings of SPIE Vol. 4578 (2002)(Brian Culshaw,): 1-7
    [64] R.M.Measures, S.Huang, M.LeBlanc. Bragg Intra-Grating Sensing...........Implications for Smart Structures. 1994. SPIE Vol. 2191:436-446
    [65] R.Willsch. Application of optical fiber sensors: technical and market trends. 2001. Proc. of SPIE Vol.4074: 23-34
    [66] R.Willsch. "Optical Fiber Grating Sensor Networks and their Application in Electric Power Facilities, Aerospace and Geotechnical Engineering. 2005. 49-54
    [67] Y.J.Rao. Recent progress in applications of in-"bre Bragg grating sensors. Optics and Lasers in Engineering, 1999.31 (1999): 297-324
    [68] Ferdinand P . Magne S. Applications of Bragg Grating Sensors in Europe. 2005. Proceedings of the 12th International Conference on Optical Fibre Sensors : 14-19
    [69] Fiber Grating Systems for Traffic Monitoring. 2001. Proceedings of SPIE Vol. 4337 (2001): 510-517
    [70] J.E.Udd. Monitoring Trucks, Cars, and Joggers on the Horsetail Falls Bridge Using Fiber Grating Strain Sensors. 2005. Proceedings of SPIE, Vol 4185 :872-883
    [71] Marley Kunzler*. Traffic Monitoring Using Fiber Optic Grating Sensors On the 1-84
    Freeway & Future Uses in WIM. 2005. Proceedings of SPIE Vol. 5278 :122-128
    [72] Reinhardt Willsch, Wolfgang Ecke. Potential Low-Cost Optical Fiber Bragg-Grating Sensor Systems for Structural Health Monitoring and Examples of their Application. 2002. Proceedings of SPIE Vol. 4920 (2002): 382-392
    [73] E J Friebele, C G Askins, B Bosse. Optical fiber sensors for spacecraft applications. Smart Mater.Struct., 2005. 8 (1999). 813-838
    [74] N.M.Theune. Multiplexed Temperature Measurement for Power Generators. 2002. Proc. of SPIE Vol. 4074 : 214-221
    [75] Valery N.Filippov, Andrey N.Starodumov, and and Fransisco GPefla Lecona. Fiber Optic Sensor for Simultaneous Measurement of Voltage and Temperature. 2005. Proceedings of SPIE Vol. 4578 (2002):
    [76] Jennifer Elsterl, Dr.AngeIa Trego, Charles Catteral13. Flight Demonstration of Fiber Optic Sensors. 2003. Editors, Proceedings of SPIE Vol. 5050 (2003): 34-43
    [77] Jennifer L. . Elster. "Corrosion Monitoring in Aging Aircraft Using Optical Fiber-Based Chemical Sensors. 2000. 2-9
    [78] K.Murphy, M.Gunther, and A.Vengsarkar. Fabry-Perot Fiber Optic Sensors in Full Scale Fatigue Testing on an F-15 Aircraft. 1991.
    [79] J.Borinski, S.A.Meller, W.Pulliam. Optical Fiber Sensors for In-FIight Health Monitoring. 2000. SPIE Proceedings, vol. 3986 :143-152
    [80] Jennifer L.Elster, Mark E.Jones, Mark E.Jones. Optical Fiber Extrinsic Fabry-Perot Interferometric (EFPI)-Based Biosensors. 2000.
    [81] Hjelme DR, Bjerkan L, Neegard S. Application of Bragg grating sensors in the characterization of scaled marine vehicle modes. Appl Opt, 1997.36 : 328-344
    [82] Jason S.Kiddy* , Chris S.. Certification of a submarine design using fiber Bragg grating sensors. 2005. Proceedings of SPIE Vol. 5388 : 387-399
    [83] GWang, K Pran. Ship hull structure monitoring using fibre optic sensors. Smart Mater.Struct., 2001.10 : 472-479
    [84] Brown C J. A wave-induced fatigue strain recorder for surface ships. 1999. 20-36
    [85] C.Baldwin, J.Niemczuk. Structural testing of Navy vessels using Bragg gratings and a prototype Digital Spatial Wavelength Domain Multiplexing (DSWDM) system. NavalEngineers Journal, 2001. Vol. 114, No. 1,63-70
    [86] Rao YJ, Webb DJ, Jackson DA. In-"bre Bragg grating temperature sensor system for medical applications. Lightwave Technol, 2005.15 : 779-815
    [87] Rao YJ, Webb DJ, Jackson DA. In-"bre Bragg grating #ow-directed thermodilution catheter for cardiac monitoring. 1997.
    [88] A.F.Fernandez, A.I.Gusarov, B.Brichard et al. Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors. Optical Engineering, 2002. 41(6) : 1246-1254
    [89] M.Aleixandre, P.Corredera, M.L.Hernanz et al. Development of fiber optic hydrogen sensors for testing nuclear waste repositories. Sensors and Actuators B-Chemical, 2005. 107(1): 113-120
    [90] A.M.Anisfeld, H.R.Kast-Woelbern, H.Lee et al. Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling. Journal of Lipid Research, 2005. 46(3): 458-468
    [91] W.T.Garvey, S.Kwon, D.Zheng et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes, 2003.52(2): 453-462
    [92] Schroeder. High Pressure and Temperature Sensing for the Oil Industry Using Fiber Bragg Gratings Written onto Side Hole Single Mode Fiber. 2005. Gratings", Proceedings of - SPIE, Vol. 3042,(Eric Udd Blue Road Research): 1-4
    [93] Wavering, Elster J., Luo S. Fiber optic ligand sensors sensors for quantification of petroleum and bioremediation. 2001. SPIE 2001(4200):
    [94] Prohaska JD, Snitzer E. Fibre optic Bragg grating strain sensor in large scale concrete structures. 1997. Proc SPIE 1798: 286~294
    [95] C. K. Y. Leung, N. Elvin, N. Olson. "A novel distributed optical crack sensor for concrete structures. Engrg. Fract. Mech., 2000. 65 : 133~148
    [96] F. O. Ferdinand P, Lechien JL, Lescop B. Mine operating accurate stability control with optical "bre sensing and Bragg grating technology. Lightwave Technol, 1995. 13(1303): 1316~
    [97] John Seim, Eric Udd. Development and Deployment of Fiber Optic Highway and Bridge Monitoring Systems. 2005. Proceedings of SPIE Vol. 3995 (2000): 479~483
    [98] Y. M. Gebremichael, W. Li, B. T. Meggitt et al. A field deployable, multiplexed Bragg grating sensor system used in an extensive highway bridge monitoring evaluation tests, leee Sensors Journal, 2005.5(3) : 510~519
    [99] S. C. Tjjn, Tjjna s.Rupalib, P.MOyO. Application of fibre Bragg grating based strain sensors for civil infrastructure health monitoring. 2005. Proceedings of SPIE Vol. 5062 (2003) : 728-736
    [100] 姜德生,郭明金,袁宏才 等.光纤布拉格光栅压力传感器的高压实验研究.仪表技术与传感器.,2004.6
    [101] 姜德生,南秋明,梁磊.光纤光栅传感技术在锚索监测中的应用研究.承德石油高等专科学校学报.,2004.6(3):1~4
    [102] 姜德生,郭会勇,黄俊 等,一种准分布式光纤光栅漏油传感器.光学与光电技术.,2004.2(1):15~19,33
    [103] 姜德生,左军,信思金等,.光纤Bragg光栅传感器在水布垭工程锚杆上的应用.传感器技术.,2005.24(1):72~74
    [104] 姜德生,梁磊,周雪芳等,光纤Bragg光栅传感器在冷饭盒大桥的应用.交通科技..2003.48
    [105] K. O. Hill, G.Meltz. Fiber Bragg Grating Technology Fundamentals and Overview. Lightwave technology, 2005. vol. 15 : 1263~1276
    [106] 鲍吉龙,章献民.双波长光纤光栅的矩阵分析.光子学报.,2000.29(1):87~90
    [107] M. G. Xu, J-L.Archambault, L.Reekie. Discrimination between strain and temperature effects using dual-wave length fibre grating sensors. Electron. Lett, 1994. 30(13): 1085~1087
    [108] 陈长勇,乔学光,贾振安等.一种新颖的光纤光栅应变与温度双参量传感器.光电子.激光.,2003.14(8):787~790
    [109] 李智忠,杨华勇,刘阳等,.光纤光栅交叉敏感解决方案研究.光通信技术.,2004.28(6):20~22
    [110] 吕且妮,张以谟,光纤光栅传感测量中的交叉敏感研究.天津大学学报:自然科学与工程技术版.,2002.35(4):425~428
    [111] 叶险峰,刘涛.改进型双光栅矩阵运算光纤光栅传感器.光电工程.,2003.30(3):23~25
    [112] F. M. Haran. A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors. Meas. Sci. Technol, 1999. 9: 1165~1169
    [113] 毕卫红,李卫,傅广为.分布式光纤光栅实现应变和温度的同时测量.光电子.激光,2003.14(8):827~829,834
    [114] Cross-sensitivity of Fiber Grating Solved by. Semiconductor. Photonics. and Technology(半导体光子学与技术:英文版),2004.10(2):108~112
    [115] 孙安,乔学光,贾振安等.一种新颖的温度补偿光纤光栅应力传感测量技术.光学技术,2003.29(5):534~536,540
    [116] Mieczyslaw Szustakowski, Norbert Palka, and Tomasz Karwowski. Investigations of temperature and strain properties of fiber Bragg grating for dislocation sensors. 2003. Proceedings of SPIE Vol. 5124 (2003): 26~32
    [117] Frank M. Haran, Jason K. Rew, Peter D. Foote. A Fibre Bragg Grating Strain Gauge Rosette with Temperature Compensation. 1999. SPIE Vol. 3330: 220~231
    [118] H. Singh, J. Sirkis. Simultaneous measurement of strain and temperature using optical fiber sensors: two novel configurations. 1996. Conf. P roc. OFS-11: 19~28
    [119] C Y Weia, s w James', C C Ye. The influence of process route on mechanical and sensing performance of fibre Bragg grating optical sensors. 1999. SPIE Vol. 3670: 164~171
    [120] Ph. M. Nellen, P. Mauron, A. Frank. Mechanical and Optical Reliability of Fiber Bragg Grating Strain and Temperature Sensors at High Temperature. 1999. SPIE Vol. 3848: 195~207
    [121] W. W. Morey. Recent advances in fiber grating sensors for utility industry application. 1995. SPIE 2598: 195~202
    [122] R. Brnimann, h. M. Nellen. Application and reliability of a fiber optical surveillance system for a stay cable bridge. Smart. Mater. Struct, 1998. 7: 229~236
    [123] Y. Bin Lin, K. C. Chang, J. C. Chern et al. Packaging methods of fiber-Bragg grating sensors in civil structure applications, Ieee Sensors Journal, 2005. 5(3): 419~424
    [124] M. Song, S. B. Lee. Simultaneous Measurement of Temperature and Strain Using Two Fiber Bragg Gratings Embedded in a Glass Tube. Optical Fiber Technology, 1997. 3: 194~196
    [125] A. T. ALAVIE, R. MAASKANT, R. STUBBEt. CHARACTERISTICS OF FIBER GRATING SENSORS AND THEIR RELATION TO MANUFACTURING TECHNIQUES. 1998. SPIE Vol. 2444:
    [126] Kara Petersa, Michel Studera, John BOtSj. Measurement of Stress Concentrations Using Embedded Optical Fiber Bragg Grating Sensors. 1999. SPIE Vol. 3670: 195~202
    [127] G. Carmen, G. Sendeckyj. Review of the Mechanics of Embedded Optical Sensors. Composites Technologyand Research, 1995. 17(183): 19~3
    [128] S. Kannan. Thermal stability analysis of UV-induced fiber Bragg gratings. LightwaveTechn, 2005. 15(8): 1478~1483
    [129] C. C. Ye, S. E. Staines, S. W. James et al. A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing. Measurement Science & Technology, 2002. 13(9): 1446~1449
    [130] B. A. L. Gwandu, X. W. Shu, Y. Liu et al. Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings. Sensors and Actuators A-Physical, 2002. 96(2-3): 133-139
    [131] L. Pei, F. P. Yan, Z. Wang et al. Application of an optical fiber grating pressure sensor on a high-speed-train real-time tracing system. Microwave and Optical Technology Letters, 2003. 37(2): 148-151
    [132] Chris S. Baldwin, Anthony J. Vizzini. Acoustic emission crack detection with FBG. 2003. Proceedings of SPIE Vol. 5050 (2003): 133~144
    [133] G. Breglio, A. Cusano, A. Irace et al. Fiber optic sensor arrays: a new method to improve multiplexing capability with a low complexity approach. Sensors and Actuators B-Chemical, 2004. 100(1-2): 147-150
    [134] Measures RM, Alavie AT. Bragg grating structural sensing system...... for bridge monitoring. 1995. Proc SPIE 2294: 53~60
    [135] 叶培大,光纤理论,北京:知识出版社,1985.
    [136] 余有龙,光纤光栅传感器及其网络化技术,哈尔院:黑龙江科学出版社,2003.
    [137] 廖延彪,光纤光学.北京:清华大学出版社,2000.
    [138] 乔学光,贾振安,傅海威等 光纤光栅温度传感理论与实验.物理学报.,2004.53(2):494~497
    [139] 辛雨,余重秀等.光纤光栅的几种调谐方法.光通信研究.,2002.(5):51~54
    [140] 李营,张书练.基于可调谐F-P滤波器的光纤光栅解调系统.激光技术.,2005.29(3):237~240
    [141] 于小宁,孙成城,张勤.简支梁调谐光纤光栅波长的改进算法.半导体光电.,2004.25(2):132~133
    [142] H. Imai and H. Hoson. Dependence of defects induced by excimer laser on intrinsic structural defects in synthetic silica glasses. Phys. Rev. (B), 1994. 44(10): 4812~4818
    [143] K. O. Hill, Y. Fujii, and D. C. Johnson. Photosensitivity in optical fiber waveguides. Appl. Phys. Lett, 1995. 32, no. 10, 647~672
    [144] 江俊峰,张以谟等.掺锗光纤的光敏机理及增敏方法的研究现状与发展.光学技术.,2003.29(2):131~135
    [145] L. Dong. Photoinduced absorption change in germanosilicate preforms: evidence for the color center model of photosensitivity. Appl. Opt, 1995. 34(1995): 3436~3440
    [146] 骆英,陶宝祺.土木工程智能结构中传感器原理与应用.江苏理工大学学报:自然科学版.,2000.21(5):9~13
    [147] P. L. Swart, A. A. Chtcherbakov. Study of the pressure dependence of hydrogen diffusion in optical fiber by an interferometric technique. Optics communications, 2003. 217(2003): 189~196
    [148] J. F. Shackelford, P. L. Studt. Solubility of gases in glass. Ⅱ. He, Ne, and H2 in fused silica. Appl. Phys, 1978. Vol. 43(4): 1619~1626
    [149] Paul J. Lemaire. Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases. Optical Engineering, 2005. 30(6): 780~789
    [150] H. Patrick, S. L. Gilber. Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber. Optics Letters, 1995. Vol. 18: 1484~1486
    [151] R. M. Atkins, V. Mizrahi. 248nm induced vacuum UV spectral changes in optical fiber perform cores: support for a color center model of photosensitivity. Electronics Letters. 2005. vol. 29(: 385~387
    [152] 相艳荣,孙伟民,苑立波.光纤光栅制作技术综述.光电子技术与信息.,2004.17(6):103~104
    [153] K. C. Hsu, L. G. Sheu, K. P. Chuang et al. Fiber Bragg grating sequential UV-writing method with real-time interferometric side-diffraction position monitoring. Optics Express, 2005. 13(10): 3795~3801
    [154] 郑崇伟,戴瑜兴.倾斜对光纤光栅反射特性的影响.光电子技术.,2005.25(1):25~27
    [155] M. Li, N. Zeng, C. Z. Shi et al. Fiber Bragg grating distributed strain sensing: an adaptive simulated annealing algorithm approach. Optics and Laser Technology, 2005. 37(6): 454~457
    [156] 陈莉.光纤光栅器件的长期稳定性及其寿命预期.功能材料与器件学报.,2000.6(4):448~452
    [157] T. Erdogan, V. Mizrahi. Decay of ultraviolet-induced fiber Bragg gratings. Appl.Phys., 1994. vol. 76, no. 1: 73~80
    [158] H. Y. Liu , G. D. Peng. Thermal stability of gratings in PMMA and CYTOP polymer fibers. Optics Communications 204 (2002), 2005. 151~156
    [159] Jiang Deshen , Liang Lei. The Compatibility in Optic Fiber Smart Concrete and Structure. Journal of Wuhan. University. of technology: Materials. Science Edition (武汉理工大学学报: 材料科学版)., 2003. 18(1): 86~89
    [160] 廖延彪,黎敏.光纤传感器的今日与发展.传感器世界.,2004.10(2):6~12
    [161] 梁磊,姜德生,罗裴等.光纤Bragg光栅在结构健康监测中的实验研究.山东理工大学学报.,2003.17(3):4~7
    [162] 耿淑伟,余有龙.光纤光栅时分复用传感系统.哈尔滨工业大学学报.,2002.34(2):204~206
    [163] 余有龙,谭华耀.有源波、空分复用光纤光栅传感网络.中国激光.,2002.29(2):131~134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700