空调系统故障检测及基于性能优化的在线容错控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空调系统的设备或传感器故障,可能导致系统能耗增大,热舒适性降低,室内空气品质恶化,控制系统失灵,甚至造成某些设备的损坏。及时准确地检测出系统所发生的故障,并获知故障对系统运行性能的劣化程度,从而做出故障修正决策,具有非常重要的现实意义。但是,实际过程中,面临不少亟待解决的问题:如何建立准确的运行或性能参数预测模型、可靠的故障检测方法;故障对系统运行性能的影响程度以及如何评价;故障修正决策方案等等。
     针对上述问题,本文主要进行了以下四方面的工作。
     第一,建立了基于支持向量回归(support vector regression, SVR)的运行参数预测模型,预测无故障运行时的参考数据和系统运行性能数据。通过预测多种运行工况的运行参数,对模型进行了仿真验证。预测模型的验证结果表明,SVR预测模型输入参数的选取,必须能够正确反映空调系统的运行情况。
     其次,综合考虑统计残差和分形维数两种方法的优缺点,开发了两种方法相结合的故障检测法,并对送风温度固定偏差故障和漂移偏差故障进行了故障检测试验。仿真试验的结果表明,统计残差法对较小偏差故障的正确故障检测率较低。对于送风温度±0.2oC、+0.3oC固定偏差故障,以及±0.05oC/h、+0.1oC/h漂移偏差故障,正确故障检测率低于50%。分形维数法能够检测出这些故障,但需要一段时间收集测量信号。将两种方法结合的故障检测方法,采用统计残差法检测出相对大的偏差故障,采用分形维数法检测出相对小的故障;对于统计残差法,可采用较大的判别阈值来比较统计残差,这种组合式故障检测方法能够更加有效地对不同程度的故障情况进行检测。
     第三,建立了改进的消去与选择转换法(elimination et choicetranslating reality,ELECTRE)的空调系统运行性能评价模型,引入了绝对阈值和分区间阈值概念来构建伪准则。评价准则中引入最小有效控制率来表征故障对控制系统性能的影响。针对送风温度故障和新风流量故障下的不同运行工况,采用评价模型对它们进行了评价分析。仿真结果表明,ELECTRE评价模型适用于空调系统不同运行工况或方案的优劣排序。
     第四,开发了基于运行性能优化的在线容错控制策略,以提高系统运行性能为目标,对故障测量信号进行在线容错修正。针对送风温度、新风流量和新风温度传感器的不同故障情况,通过在线容错控制策略进行了验证分析。仿真结果表明,提出的在线容错控制策略能够在不同运行方案优劣排序的基础上,得到最优运行方案,相应优化系数的倒数,作为故障测量信号的修正系数,实现在线容错控制。对于送风温度+13%故障,从第6次修正开始,故障修正系数维持0.84不变;对于新风流量+39%故障,从第7次修正开始,故障修正系数维持0.66不变;对于新风温度–34%故障,在第一次计算优先满意得分时,就能得到故障修正指令。
     总之,本文提出的统计残差法和分形维数相结合的组合式故障检测方法,能够有效地检测出不同程度的故障;开发的改进ELECTRE评价模型能够更加合理地对空调系统不同运行方案进行优劣排序;提出的在线容错控制策略,能够对空调系统传感器故障实现在线修正,并优化系统运行性能。更进一步的研究应考虑数据缺失或同时发生多个故障时,如何进行故障检测以及如何实现在线容错等。
The faults generated in air conditioning equipments or sensors, willresult in increasing the energy consumption, decreasing the thermal comfort,deteriorating the indoor air quality, removing the regulating role from controlsystems, or even damaging some certain equipment. It has very important andpractical significance to detect these faults accurately in time, to diagnose thedamage severity to system performance, and thus to make the correctingdecision. In real systems, however, some problems are inevitable to face andto be solved. The operating or performance parameters should be simulated orpredicted accurately. The fault detection methods should find out thegenerated faults reliably. The effect of faults on system operating performanceshould be evaluated objectively and fairly. And the decision-making schemesshould be established appropriately.
     In view of the preceding discussions, this dissertation focuses on fourmain problems.
     Firstly, the operating performance prediction model is established bysupport vector regression (SVR) to provide the fault-free operating referenceand system performance parameters. The prediction model is validated byseveral different operating conditions. The prediction results show that theinput parameters to SVR prediction model must be selected appropriately toreflect the operating performance of the air conditioning system.
     Then, to balance the strengths and weakness of the statistics residualsand fractal dimension, a hybrid method has been proposed to detect fault. Themethod is validated by fixed bias and drifting bias faults of supply airtemperature. The fault detection results show that, for the lower bias faults,the statistics residual method presents smaller correct fault detection rates. Forthe supply air temperature fixed bias faults±0.2oC,+0.3oC, and drifting biasfaults±0.05oC/h,+0.1oC/h, the correct fault detection rates are lower than50%. The fractal dimension method can detect these relatively small faults, but needs a long period to collect the measured signals. In view of theirstrengths and drawbacks, two methods can be combined to a novel faultdetection tool. The statistics residual method can detect the relatively largebias faults, and the fractal dimension method can detect the small ones. Thestatistics residual method uses larger residual threshold, while the fractaldimension method must employ the suitable dimension threshold. Thecombined method can effectively detect the various degrees of faults.
     Furthermore, an improved ELECTRE (Elimination Et ChoiceTranslating Reality) model has been developed to evaluate air conditioningsystem performance. The absolute thresholds and dividing thresholds hasbeen introduced to construct the pseudo-criteria in the improved evaluationmodel. The minimum valid control efficiency has been defined as anevaluation criterion to represent the influence of fault on the performance ofthe control system. The evaluation model is validated by dozens of operatingstates under supply air temperature faults and fresh air flow rate faults,respectively. The ELECTRE evaluation model can be completely suitable tooutrank the system performance under different fault and different operatingconditions.
     Fourthly, an online fault-tolerant control strategy based on operatingperformance optimization is developed to correct the faulty measurementsonline. The strategy is validated by supply air temperature faults, fresh airflow rate faults, and fresh air temperature faults. By outranking the differentoperating alternatives, the online fault-tolerant control strategy can achievethe fault correction factor according to the optimal operating scheme. Theonline fault tolerant can thus be implemented to correct the faultymeasurements. For the supply air temperature fault+13%, the total faultcorrection factor keeps at0.84from the sixth correction. For the fresh air flowrate fault+39%, the total fault correction factor maintains at0.66from theseventh correction. For the fresh air temperature fault–34%, the faultcorrection responses are output by the first calculation of the outrankingsatisfaction scores.
     Generally, the proposed fault detection method combined the statisticalresiduals with the fractal dimension, can detect the various degrees of faults with more effectiveness. The improved ELECTRE evaluation model canmore outrank dozens of operating alternatives with more reasonability. Thedeveloped online fault tolerant control strategy can correct the sensor faultsgenerated in air conditioning systems, and can optimize the system operatingperformance. Further investigation should focus on how to identify severalfaults and how to complete the online fault tolerant control under the data lossor several faults conditions.
引文
[1] Katipamula S., Brambley M.R. Methods for fault detection, diagnostics, and prognostics forbuilding systems-A review, Part II[J]. HVAC and R Research,2005,11(2):169-187.
    [2] Schein J., Bushby S.T., Castro N.S., et al. A rule-based fault detection method for air handlingunits[J]. Energy and Buildings,2006,38(12):1485-1492.
    [3] Yiu J.C.M., Wang S. Multiple ARMAX modeling scheme for forecasting air conditioning systemperformance[J]. Energy Conversion and Management,2007,48(8):2276-2285.
    [4] House J.M., Lee W.Y., Shin D.R. Classification techniques for fault detection and diagnosis of anair-handling unit[J]. ASHRAE Transactions,1999,105:1087-1097.
    [5] Lee W.-Y., Park C., Kelly G.E. Fault detection in an air-handling unit using residual and recursiveparameter identification methods[J]. ASHRAE Transactions,1996,102(1):528-539.
    [6] Visier J.C.(Ed.). Commissioning Tools for Improved Energy Performance[R].2004.
    [7] Wang S.W. Dynamic simulation of building VAV air-conditioning system and evaluation ofEMCS on-line control strategies[J]. Building and Environment,1999,34(6):681-705.
    [8] Dexter A., Pakanen J.(Ed.). Demonstrating Automated Fault Detection and Diagnosis Methodsin Real Buildings[R]. International Energy Agency:2001.
    [9] Bertagnolio S. Study, modeling and analysis of heat pumping solutions in a commercialbuilding[D]. Master Thesis, University of Liège Liège,2007.
    [10] Yang X.B., Du Z.M., Jin X.Q., et al. Wavelet Packet and Neural Network Methods for Fixed BiasFault Diagnosis for Air Handling Unit Sensors. In6th International Symposium on Heating,Ventilating and Air Conditioning, Vol I-Iii, Proceedings,2009; pp1992-1999.
    [11] Du Z., Jin X., Yang Y. Wavelet neural network-based fault diagnosis in air-handling units[J].HVAC and R Research,2008,14(6):959-973.
    [12] Dong B., Cao C., Lee S.E. Applying support vector machines to predict building energyconsumption in tropical region[J]. Energy and Buildings,2005,37(5):545-553.
    [13] Yoshida H., Kumar S., Morita Y. Online fault detection and diagnosis in VAV air handling unit byRARX modeling[J]. Energy and Buildings,2001,33(4):391-401.
    [14] Yoshida H., Kumar S. ARX and AFMM model-based on-line real-time data base diagnosis ofsudden fault in AHU of VAV system[J]. Energy Conversion and Management,1999,40(11):1191-1206.
    [15] Reddy T.A. Development and evaluation of a simple model-based automated Fault Detection andDiagnosis (FDD) method suitable for process faults of large chillers[J]. ASHRAE Transactions,2007,113(2):27-39.
    [16] Salsbury T.I., Diamond R.C. Fault detection in HVAC systems using model-based feedforwardcontrol[J]. Energy and Buildings,2001,33(4):403-415.
    [17]晋欣桥,杜志敏,肖晓坤,等.冷水机组系统的温度传感器故障诊断[J].上海交通大学学报,2004,38(6):976-981.
    [18] Du Z.M., Jin X.Q., Yang X.B. A robot fault diagnostic tool for flow rate sensors in air dampersand VAV terminals[J]. Energy and Buildings,2009,41(3):279-286.
    [19] Du Z., Jin X. Detection and diagnosis for sensor fault in HVAC systems[J]. Energy Conversionand Management,2007,48(3):693-702.
    [20] Wang S.W., Wang J.B. Robust sensor fault diagnosis and validation in HVAC systems[J].Transactions of the Institute of Measurement and Control,2002,24(3):231-262.
    [21] Yang H., Cho S., Tae C.S., et al. Sequential rule based algorithms for temperature sensor faultdetection in air handling units[J]. Energy Conversion and Management,2008,49(8):2291-2306.
    [22] Nan C., Khan F., Iqbal M.T. Real-time fault diagnosis using knowledge-based expert system[J].Process Safety and Environmental Protection,2008,86(1):55-71.
    [23] Wang S., Xiao F. Sensor fault detection and diagnosis of air-handling units using acondition-based adaptive statistical method[J]. HVAC and R Research,2006,12(1):127-150.
    [24] Hou Z., Lian Z., Yao Y., et al. Data mining based sensor fault diagnosis and validation forbuilding air conditioning system[J]. Energy Conversion and Management,2006,47(15-16):2479-2490.
    [25] Yang X.B., Jin X.Q., Du Z.M. Wavelet packet and neural network methods for fixed bias faultdiagnosis for air handling unit sensors. In Proceedings of The6th International Symposium onHeating, Ventilating and Air Conditioning, X. S. Zhang, H. Qian and B. Zhou, Eds. Nanjing:Dongnan University Press:2009; pp1982-1989.
    [26] House J.M., Lee W.Y., Shin D.R. Classification techniques for fault detection and diagnosis of anair-handling unit[J]. ASHRAE Transactions,1999,105.
    [27] Detroja K.P., Gudi R.D., Patwardhan S.C. A possibilistic clustering approach to novel faultdetection and isolation[J]. Journal of Process Control,2006,16(10):1055-1073.
    [28] Namburu S.M., Azam M.S., Luo J.H., et al. Data-driven modeling, fault diagnosis and optimalsensor selection for HVAC chillers[J]. IEEE Transactions on Automation Science AndEngineering,2007,4(3):469-473.
    [29] Du Z., Jin X. Detection and diagnosis for multiple faults in VAV systems[J]. Energy andBuildings,2007,39(8):923-934.
    [30] Xu X., Xiao F., Wang S. Enhanced chiller sensor fault detection, diagnosis and estimation usingwavelet analysis and principal component analysis methods[J]. Applied Thermal Engineering,2008,28(2-3):226-237.
    [31] Nyberg M., Perkovic A. Model based diagnosis of leaks in the air-intake system of anSI-engine[J]. SAE Special Publications,1998,1357:25-31.
    [32] Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance[M].Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg,2006.
    [33] Castro N.S., Remington G. Performance evaluation of a reciprocating chiller using experimentaldata and model predictions for fault detection and diagnosis[J]. ASHRAE Transactions,2002,108PART1:889-903.
    [34] House J.M., Lee W.Y., Shin D.R. Classification techniques for fault detection and diagnosis of anair-handling unit[J]. ASHRAE Transactions,1999,105(1):1087-1097.
    [35] Cho S.H., Yang H.C., Zaheer-Uddin M., et al. Transient pattern analysis for fault detection anddiagnosis of HVAC systems[J]. Energy Conversion and Management,2005,46(18-19):3103-3116.
    [36] Reddy T.A. Application of a generic evaluation methodology to assess four different chiller FDDmethods (RP-1275)[J]. HVAC and R Research,2007,13(5):711-729.
    [37] Li H., Braun J.E. Economic evaluation of benefits associated with automated fault detection anddiagnosis in rooftop air conditioners[J]. ASHRAE Transactions,2007,113(2):200-210.
    [38] Reddy T.A. Formulation of a generic methodology for assessing FDD methods and its specificadoption to large chillers[J]. ASHRAE Transactions,2007,113(2):334-342.
    [39] Reddy T.A., Niebur D., Gordon J.(Ed.). Final report: Development and comparison of on-linemodel training techniques for model-based FDD methods applied to vapor compressionchillers[R]. ASHRAE Research Project1139-RP:2001.
    [40] Du Z., Jin X. Multiple faults diagnosis for sensors in air handling unit using Fisher discriminantanalysis[J]. Energy Conversion and Management,2008,49(12):3654-3665.
    [41] Djuric N., Novakovic V., Frydenlund F. Heating system performance estimation usingoptimization tool and BEMS data[J]. Energy and Buildings,2008,40(8):1367-1376.
    [42] Kintner M.M., Brambley M.R. Pros&cons of wireless[J]. ASHRAE Journal,2002,44(11):54-61.
    [43] Magnier L., Haghighat F. Multiobjective optimization of building design using TRNSYSsimulations, genetic algorithm, and Artificial Neural Network[J]. Building and Environment,2010,45(3):739-746.
    [44] Chantrelle F.P., Lahmidi H., Keilholz W., et al. Development of a multicriteria tool for optimizingthe renovation of buildings[J]. Applied Energy,2011,88(4):1386-1394.
    [45] Marks W. Multicriteria optimisation of shape of energy-saving buildings[J]. Building andEnvironment,1997,32(4):331-339.
    [46] Soebarto V.I., Williamson T.J. Multi-criteria assessment of building performance: theory andimplementation[J]. Building and Environment,2001,36(6):681-690.
    [47] Avgelis A., Papadopoulos A.M. Application of multicriteria analysis in designing HVACsystems[J]. Energy and Buildings,2009,41(7):774-780.
    [48] Blondeau P., Spérandio M., Allard F. Multicriteria analysis of ventilation in summer period[J].Building and Environment,2002,37(2):165-176.
    [49] Jreijiry D., Husaunndee A., Inard C. Numerical evaluation of hybrid ventilation control strategies.In Ninth International IBPSA Conference, Montréal, Canada,2005.
    [50] Wright J.A., Loosemore H.A., Farmani R. Optimization of building thermal design and controlby multi-criterion genetic algorithm[J]. Energy and Buildings,2002,34(9):959-972.
    [51]龚俊华.集成的ELECTRE方法研究[D].硕士学位论文,四川大学,成都,2006.
    [52] Zhou P., Ang B.W., Poh K.L. Decision analysis in energy and environmental modeling: Anupdate[J]. Energy,2006,31(14):2604-2622.
    [53] Salminen P., Hokkanen J., Lahdelma R. Comparing multicriteria methods in the context ofenvironmental problems[J]. European Journal of Operational Research,1998,104(3):485-496.
    [54] Wang J.-J., Jing Y.-Y., Zhang C.-F., et al. Review on multi-criteria decision analysis aid insustainable energy decision-making[J]. Renewable and Sustainable Energy Reviews,2009,13(9):2263-2278.
    [55] Avgelis A. Building energy management with emphasis on air quality and indoor climate[D].Aristotle University of Thessaloniki, Thessaloniki,2008.
    [56] Diakaki C., Grigoroudis E., Kolokotsa D. Towards a multi-objective optimization approach forimproving energy efficiency in buildings[J]. Energy and Buildings,2008,40(9):1747-1754.
    [57] Roulet C.A., Flourentzou F., Labben H.H., et al. ORME: A multicriteria rating methodology forbuildings[J]. Building and Environment,2002,37(6):579-586.
    [58] Figuiera J., Mousseau V., Roy B. ELECTRE methods. In Multiple Criteria Decision Analysis:State of the Art Surveys, J. Figueira, S. Greco and M. Ehrgott, Eds. Springer: Berlin,2005; pp133-162.
    [59] Malekmohammadi B., Zahraie B., Kerachian R. Ranking solutions of multi-objective reservoiroperation optimization models using multi-criteria decision analysis[J]. Expert Systems withApplications,2011, In Press, Corrected Proof.
    [60] Rogers M., Bruen M. Choosing realistic values of indifference, preference and veto thresholds foruse with environmental criteria within ELECTRE[J]. European Journal of Operational Research,1998,107(3):542-551.
    [61] Beccali M., Cellura M., Mistretta M. Decision-making in energy planning. Application of theElectre method at regional level for the diffusion of renewable energy technology[J]. RenewableEnergy,2003,28(13):2063-2087.
    [62] Haurant P., Oberti P., Muselli M. Multicriteria selection aiding related to photovoltaic plants onfarming fields on Corsica island: A real case study using the ELECTRE outranking framework[J].Energy Policy,2011,39(2):676-688.
    [63] Cavallaro F. A comparative assessment of thin-film photovoltaic production processes using theELECTRE III method[J]. Energy Policy,2010,38(1):463-474.
    [64] Rogers M., Bruen M. A new system for weighting environmental criteria for use withinELECTRE III[J]. European Journal of Operational Research,1998,107(3):552-563.
    [65]张红涛,毛罕平.四种客观权重确定方法在粮虫可拓分类中的应用比较[J].农业工程学报,2009,25(1):132-136.
    [66]王中兴,李桥兴.依据主、客观权重集成最终权重的一种方法[J].应用数学与计算数学学报,2006,20(1):87-92.
    [67] Wang Y.-M., Luo Y. Integration of correlations with standard deviations for determining attributeweights in multiple attribute decision making[J]. Mathematical and Computer Modelling,2010,51(1-2):1-12.
    [68] Karagiannidis A., Moussiopoulos N. Application of ELECTRE III for the integrated managementof municipal solid wastes in the Greater Athens Area[J]. European Journal of OperationalResearch,1997,97(3):439-449.
    [69] Giannoulis C., Ishizaka A. A Web-based decision support system with ELECTRE III for apersonalised ranking of British universities[J]. Decision Support Systems,2010,48(3):488-497.
    [70] Takeda E. A method for multiple pseudo-criteria decision problems[J]. Computers&OperationsResearch,2001,28(14):1427-1439.
    [71] Wang J.-J., Jing Y.-Y., Zhang C.-F., et al. A fuzzy multi-criteria decision-making model fortrigeneration system[J]. Energy Policy,2008,36(10):3823-3832.
    [72] Figueira J., Roy B. Determining the weights of criteria in the ELECTRE type methods with arevised Simos' procedure[J]. European Journal of Operational Research,2002,139(2):317-326.
    [73] Figueira J.R., Greco S., Roy B. ELECTRE methods with interaction between criteria: Anextension of the concordance index[J]. European Journal of Operational Research,2009,199(2):478-495.
    [74] prEN15603, Energy performance of buildings—overall energy use and definition of ratings[S].2008.
    [75] prEN15251: Indoor environmental input parameters for design and assessment of energyperformance of buildings-addressing indoor air quality, thermal environment, lighting andacoustics [J].2006.
    [76] Wong L.T., Mui K.W. An energy performance assessment for indoor environmental quality (IEQ)acceptance in air-conditioned offices[J]. Energy Conversion and Management,2009,50(5):1362-1367.
    [77] Hatami-Marbini A., Tavana M. An extension of the Electre I method for group decision-makingunder a fuzzy environment[J]. Omega,2011,39(4):373-386.
    [78] Chatterjee P., Athawale V.M., Chakraborty S. Selection of materials using compromise rankingand outranking methods[J]. Materials&Design,2009,30(10):4043-4053.
    [79] Montazer G.A., Saremi H.Q., Ramezani M. Design a new mixed expert decision aiding systemusing fuzzy ELECTRE III method for vendor selection[J]. Expert Systems with Applications,2009,36(8):10837-10847.
    [80] Leyva-López J.C., Fernández-González E. A new method for group decision support based onELECTRE III methodology[J]. European Journal of Operational Research,2003,148(1):14-27.
    [81] Papadopoulos A., Karagiannidis A. Application of the multi-criteria analysis method Electre IIIfor the optimisation of decentralised energy systems[J]. Omega,2008,36(5):766-776.
    [82] Aiello G., Enea M., Galante G. A multi-objective approach to facility layout problem by geneticsearch algorithm and Electre method[J]. Robotics and Computer-Integrated Manufacturing,2006,22(5-6):447-455.
    [83] Zhang Y., Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J].Annual Reviews in Control,2008,32(2):229-252.
    [84] Wang S., Chen Y. Fault-tolerant control for outdoor ventilation air flow rate in buildings based onneural network[J]. Building and Environment,2002,37(7):691-704.
    [85] Liu X.F., Dexter A. Fault-tolerant supervisory control of VAV air-conditioning systems[J]. Energyand Buildings,2001,33(4):379-389.
    [86] Jin X., Du Z. Fault tolerant control of outdoor air and AHU supply air temperature in VAV airconditioning systems using PCA method[J]. Applied Thermal Engineering,2006,26(11-12):1226-1237.
    [87] Gao D.-c., Wang S., Sun Y. A fault-tolerant and energy efficient control strategy for primaryecondary chilled water systems in buildings[J]. Energy and Buildings,2011,43(12):3646-3656.
    [88] Ma Z., Wang S. Online fault detection and robust control of condenser cooling water systems inbuilding central chiller plants[J]. Energy and Buildings,2011,43(1):153-165.
    [89] Hao X., Zhang G., Chen Y. Fault-tolerant control and data recovery in HVAC monitoringsystem[J]. Energy and Buildings,2005,37(2):175-180.
    [90] Sch lkopf B., Smola A.J., Williamson R.C., et al. New support vector algorithms[J]. NeuralComputation,2000,12(5):1207-1245.
    [91] Zhao Y.-P., Sun J.-G., Zou X.-Q. Reducing samples for accelerating multikernel semiparametricsupport vector regression[J]. Expert Systems with Applications,2010,37(6):4519-4525.
    [92] Zhao Y.-P., Sun J.-G. Robust truncated support vector regression[J]. Expert Systems withApplications,2010,37(7):5126-5133.
    [93] Paniagua-Tineo A., Salcedo-Sanz S., Casanova-Mateo C., et al. Prediction of daily maximumtemperature using a support vector regression algorithm[J]. Renewable Energy,2011,36(11):3054-3060.
    [94] Liang J., Du R. Model-based Fault Detection and Diagnosis of HVAC systems using SupportVector Machine method[J]. International Journal of Refrigeration,2007,30(6):1104-1114.
    [95] Kumar M., Kar I.N. Non-linear HVAC computations using least square support vectormachines[J]. Energy Conversion and Management,2009,50(6):1411-1418.
    [96] Yao Y., Lian Z., Hou Z., et al. An innovative air-conditioning load forecasting model based onRBF neural network and combined residual error correction[J]. International Journal ofRefrigeration,2006,29(4):528-538.
    [97] Mohanraj M., Jayaraj S., Muraleedharan C. Applications of artificial neural networks forrefrigeration, air-conditioning and heat pump systems-A review[J]. Renewable and SustainableEnergy Reviews,2012,16(2):1340-1358.
    [98] Grassberger P. Do climatic attractors exist?[J]. Nature,1986,323(6089):609-612.
    [99] Grassberger P., Procaccia I. Characterization of strange attractors[J]. Physical Review Letters,1983,50(5):346-349.
    [100] Regis J.S. Ergodic theorems arising in correlation dimension estimation[J]. Journal of StatisticalPhysics,1996,85(1-2):25-40.
    [101] Roy P.N.S., Ram A. A correlation integral approach to the study of26January2001Bhujearthquake, Gujarat, India[J]. Journal of Geodynamics,2006,41(4):385-399.
    [102] Lai Y.C., Lerner D. Effective scaling regime for computing the correlation dimension fromchaotic time series[J]. Physica D: Nonlinear Phenomena,1998,115(1-2):1-18.
    [103] Sivakumar B. Correlation dimension estimation of hydrological series and data size requirement:Myth and reality[J]. Hydrological Sciences Journal,2005,50(4):591-603.
    [104] Kacimi S., Laurens S. The correlation dimension: A robust chaotic feature for classifying acousticemission signals generated in construction materials[J]. Journal of Applied Physics,2009,106(2).
    [105] Kacimi S., Laurens S. The correlation dimension: A robust chaotic feature for classifying acousticemission signals generated in construction materials[J]. Journal of Applied Physics,2009,106(2):024909.
    [106] Leonard A S. Intrinsic limits on dimension calculations[J]. Physics Letters A,1988,133(6):283-288.
    [107] Nerenberg M.A.H., Essex C. Correlation dimension and systematic geometric effects[J]. PhysicalReview A,1990,42(12):7065-7074.
    [108]杨文平,陈国定,石博强,等.基于分形理论的斯太尔汽车发动机故障诊断的研究[J].机械工程学报,2002,38(2):49-52.
    [109] Jin X.Q., Ren H.G., Xiao X.K. Prediction-based online optimal control of outdoor air ofmulti-zone VAV air conditioning systems[J]. Energy and Buildings,2005,37(9):939-944.
    [110] Lee S.H., Yik F.W.H. A study on the energy penalty of various air-side system faults inbuildings[J]. Energy and Buildings,2010,42(1):2-10.
    [111] Mustafaraj G., Chen J., Lowry G. Development of room temperature and relative humidity linearparametric models for an open office using BMS data[J]. Energy and Buildings,2010,42(3):348-356.
    [112] Zhou Q., Wang S., Xiao F. A novel strategy for the fault detection and diagnosis of centrifugalchiller systems[J]. HVAC and R Research,2009,15(1):57-75.
    [113] Wang S., Cui J. A robust fault detection and diagnosis strategy for centrifugal chillers[J]. HVACand R Research,2006,12(3):407-428.
    [114] Isermann R. Model-based fault-detection and diagnosis-Status and applications[J]. AnnualReviews in Control,2005,29(1):71-85.
    [115] Wang S., Wang J.B. Law-based sensor fault diagnosis and validation for building air-conditioningsystems[J]. HVAC and R Research,1999,5(4):353-380.
    [116] Hyv rinen J., K rki S.(Ed.). IEA Annex25. Building Optimization and Fault Diagnosis SourceBook[R]. International Energy Agency:1996.
    [117] Seem J.E. Using intelligent data analysis to detect abnormal energy consumption in buildings[J].Energy and Buildings,2007,39(1):52-58.
    [118] ASHRAE. ANSI/ASHRAE Standard62.1-2007: Ventilation for acceptable indoor air quality[S].Atlanta: American society of heating, refrigerating and air-conditioning engineers.2007.
    [119] Buchanan J., Sheppard P., Vanderpooten D. Project ranking using ELECTRE III[J].http://www.mngt.waikato.ac.nz/jtb/Electwp.pdf,1999.
    [120] M.M M. ELECTRE III model for value engineering applications[J]. Automation in Construction,2011,20(5):596-600.
    [121] Zhang T., Yuan J., Kong Y.H. An approach based on AHP/ELECTRE III for decision-aid inpower distribution system planning[J]. Proceedings of the CSEE,2006,26(11):121-127.
    [122] Pirlot M. A characterization of Min as a procedure for exploiting valued preference relations andrelated results[J]. Journal of Multi-Criteria Decision Analysis,1995,4:37-56.
    [123] CEN. prEN15251: Indoor environmental input parameters for design and assessment of energyperformance of buildings-addressing indoor air quality, thermal environment, lighting andacoustics[S].2006.
    [124] ANSI/ASHRAE62-2004. Design for acceptable indoor air quality[S]. Atlanta: American societyof heating, refrigerating and air-conditioning engineers.2004.
    [125] Mui K., Wong L., Law L. An energy benchmarking model for ventilation systems ofair-conditioned offices in sub-tropical climates[J]. Applied Energy,2007,48(1):89-98.
    [126] ISO7730: Ergonomics of the thermal environment–Analytical determination and interpretationof thermal comfort using calculation of the PMV and PPD indices and local thermal comfortcriteria[S].2005.
    [127] Yang X.B., Jin X.Q., Du Z.M., et al. A novel model-based fault detection method for temperaturesensor using fractal correlation dimension[J]. Building and Environment,2011,46(4):970-979.
    [128] Nassif N. Performance analysis of supply and return fans for HVAC systems under differentoperating strategies of economizer dampers[J]. Energy and Buildings,2010,42(7):1026-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700