传染性疾病传播机制与控制的系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据媒介传染病、疱疹和禽流感等传染病的发生与传播规律,建立相应的系统动力学模型.并分别对其进行系统研究,揭示相应传染病的传播机制与规律,为控制相应传染病的传播提供理论依据.
     全文由三个部分构成:第一部分(含第二章,第三章)主要研究媒介传染病和疱疹传染病;第二部分(含第四章,第五章)主要研究具有不同治疗机制的禽流感传染病;第三部分(含第六章,第七章)主要建立和研究隔离和潜伏期具有传染性的年龄结构的传染病模型.全文共分七章,每章主要结果及创新点如下:
     第一章绪论部分,简单介绍本文研究问题的背景、理论和实际意义、国内外现状以及本文主要内容和方法.
     第二章建立并研究了具有非线性传染率的媒介传染病系统动力学模型,该模型可描述疟疾,登革热和西尼罗病毒等多种依靠媒介传播的疾病.得到了系统存在后向分支的条件,分析了地方病平衡点的稳定性.结果表明非线性传染率使传染病模型的动力学性态更加复杂,基本再生数小于1不足以使疾病灭绝.
     第三章建立并研究了具有非线性传染率的疱疹系统,得到了决定疾病流行与否的基本再生数表达式,证明了当基本再生数小于1时,无病平衡点全局渐近稳定,此时疾病消亡.当基本再生数大于1时,地方病平衡点全局渐近稳定,此时疾病发展为地方病.
     第四章建立并研究了带有饱和治疗的禽流感动系统力学模型.得到了系统基本再生数的表达式和无病平衡态稳定性的条件.并运用Bendixson-Dulac定理,证明了系统地方病平衡态的全局渐近稳定性.
     第五章建立并研究了药物资源或治疗能力有限情况下的禽流感传播模型,假设当患者数量在治疗能力范围内时,治疗率与染病者数量成正比;当患者数量超过治疗能力范围时,为常数治疗.分析了不同情况下平衡点的存在性和稳定性.
     第六章建立并研究了具有隔离的年龄结构传染病模型,给出了基本再生数的表达式,证明了无病平衡点的全局稳定性.得到地方病平衡点的局部稳定的条件.
     第七章建立并研究了潜伏期具有传染性的年龄结构传染病模型.运用微分方程和积分方程中的理论和方法,得到了基本再生数的表达式,证明了当基本再生数小于1时,无病平衡点是局部和全局渐近稳定的,此时疾病消亡.当基本再生数大于1时,无病平衡点不稳定,此时系统至少存在一个地方病平衡点,并且在一定条件下证明了地方病平衡点的局部渐近稳定性.
In this thesis, several system dynamics models are formulated based on the occurance and transmission patterns of some infectious diseases such as vector-borne diseases, herpes, avian influenza,etc, and are systemically studied. The transmission mechanisms for these diseases are revealed. The results obtained in this thesis can be applied to guide the control of these diseases.
     This thesis consists of three parts:the first part (contains Chapter 2 and Chapter 3) mainly concerns the vector-borne diseases and herpes; the second part (contains Chapter 4 and Chapter 5) mainly focus on avian influenza with different treatment rules; the third part (contains Chapter 6 and Chapter 7) formulate and study the age-structured epidemic models with isolation or infectiousness in latent period.
     This thesis contains seven chapters. The main results and innovations in this disser-tation can be summarized as the following:
     In chapter 1, the background, significance of the theory and practices, research on-goings at Home and Abroad, main contents and methods in this dissertation are briefly introduced.
     In chapter 2, a vector-borne systematic epidemic model with nonlinear incidence is formulated and studied. The model can describe the dynamic of many diseases spreading by vectors such as malaria, dengue, West Nile Fever and so on. We get the conditions ensuring that the system exhibits backward bifurcation and analyze the stability of the endemic equilibrium. Our results imply that a nonlinear incidence make the models more complex dynamic behavior. It is not enough to make the disease die out that the basic reproductive number is smaller than 1.
     In Chapter 3, an herpes systematic epidemic model with nonlinear incidence rate is formulated and investigated. We get the expression of the basic reproductive number which decide the spread of the diseases. If the basic reproductive number is smaller than 1, the disease-free equilibrium is globally asymptotically stable and the disease dies out. If the basic reproductive number is bigger than 1, the endemic equilibrium is globally asymptotically stable and the disease persists.
     In Chapter 4, an avian systematic epidemic model with saturation treatment is es-tablished and studied. We obtain the basic reproductive number of the model and the stability conditions of the infection-free equilibrium. By using the Bendixson-Dulac the-orem, the global asymptotic stability of the endemic equilibrium is proved.
     In Chapter 5, we develop a mathematical model for the spread of the avian influenza when drug resources and treatment capacity are limited. Moreover we assume the treat-ment rate is proportional to the number of infections when the capacity of treatment is not reach and otherwise, adopt a constant treatment. We analyze the existence and the stability of equilibria under different conditions.
     In Chapter 6, an age-structured epidemic model with isolation is proposed and an-alyzed. We get the expression of the basic reproductive number and proved globally stability results for the disease-free equilibrium. At last we get the locally stability con-ditions of the endemic equilibrium.
     Chapter 7, an age-structured HIV/AIDS epidemic model with infectivity in incuba-tive period is formulated and studied. By using the theory and methods of differential and integral equation, the explicit expression of the basic reproductive number was obtained, it is showed that the disease-free equilibrium is locally and globally asymptotically stable if the basic reproductive number is smaller than 1, at least one endemic equilibrium ex-ists if the basic reproductive number is bigger than 1, the stability conditions of endemic equilibrium are also given.
引文
1欧阳莹之,复杂系统理论基础,上海科技教育出版社,2003.
    2刘光堂,梁炳成,刘力,复杂系统建模理论、方法与技术,科学出版社,2008.
    3汤泽生,遗传学在二十一世纪的经济和社会发展中的作用和对策,四川师范学院学报,1997,18(2):134-138.
    4王亚辉,吴志纯,走向二十一世纪的生物学,华夏出版社,1992.
    5 R.Shrap, A.J.Lotka, A Problem in Age Distribution, Philos. Mag.,1911,21:435-438.
    6皮特-布鲁克史密斯,未来的灾难:瘟疫复活与人类生存之战,海南出版社,1999.
    7马知恩,周义仓,王稳地,靳祯,传染病动力学的数学建模与研究,科学出版社,2004.
    8 A.J.Lotka, The stability of the normal age distribution, Proc. Nat. Acad. Sci.,1922,8: 339-345.
    9 J.H.Pollard, Mathematical models for the growth of human population, Cambridge Uni-versity Press,1973.
    10 G.F.Webb, Theory of nonlinear age-dependent population dynamics, Marcel Dekker, 1985.
    11 N.Heyfitz, Introduction to the Mathematics of Population. Addison-Wesley, Reading, 1968.
    12 World Health Organization Report,2008.
    13艾滋病疫情动态,2005年全国艾滋病疫情简介,卫生部艾滋病预防与控制中心.
    14 Song Jian, Yu Jingyuan, Population system control, Spring-Verlag,1987.
    15 W.O.Kermack, A.G.McKendrick, Contributions to the mathematical theory of epi-demics, Proc. Roy. Soc.,1927.
    16 P.De Leenheer, H.L. Smith, Virus dynamics:a global analysis, SIAM J. Appl. Math., 2003,63:1313-1327.
    17 M. Martcheva, H.R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with super-infection. J. Math. Biol.,2003,23:385-424.
    18 S. Busenberg. P. van den Driessche, Analysis of a disease transmission model in a population with varying size, J. Math. Biol,1990,28:257-270.
    19 S.M. Moghadas. A.B. Gumel, A mathematical study of a model for childhood diseases with non-permanent immunity, J. Comput. Appl. Math.,2003,157:347-363.
    20 H.R. Thieme, Persistence under relaxed point-dissipativity with application to an en-demic model, SIAM J. Math. Anal,1993,24:407-435.
    21 H.R. Thieme, C. Castillo-Chavez, How may the infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math.,1993,53: 1447-1479.
    22 S.P. Blythe, R.M. Anderson, Distributed incubation and infectious periods in models of the tranmission dynamics of the human immunodeficiency virus(HIV), SIMA J. Appl. Med. Biol.,1988,5:1-19.
    23 M. Iannelli, R. Loro, Numerical analysis of a Model for the spread of HIV/AIDS, SIAM J. Numer. Anal.1996,33(3):864-882.
    24 R.M. Anderson, R.M. May. Infectious diseases of humans, Oxford University Press, 1991.
    25 P. Georgescu, Y.H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math.,2006,67(2):337-353.
    26肖燕妮,种群生态-流行病复合动力学系统的研究,中国科学院博士学位论文,2001.
    27 A. Korobeinikov, P.K. Maini, A lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng.,2004,1: 57-60.
    28 L.J.S. Allen, Y. Lou, A.L. Nevai, Spatial patterns in a discrete-time SIS patch model J. Math. Biol.,2009,58:339-375.
    29 X. Song, Y. Li, Global stability and periodic solution of a model for HTLV-I infection and ATL progression, J. Appl. Math. Comput.2006,180:401-410.
    30 H.W. Hethcote, The mathematics of infectious diseases, SIAM Review,2000,42(4): 599-653.
    31 L.J. Allen, Discrete and continuous models of populations and epidemics,J. Math. Sys. Estim. Control,1991,1(3):335-369.
    32 X. Li, G. Geni, G. Zhu, Mathematical theory of age-Structured epidemic dynamics, Research Information Ltd,2002.
    33李建全,具有预防接种流行病模型,西安交通大学博士学位论文,2003.
    34王稳地,传染病数学模型的稳定性和分支,西安交通大学博士学位论文,2002.
    35刘胜强,时滞种群动力系统研究,中国科学院博士学位论文,2002.
    36 X. Meng, J. Jiao, L. Chen, Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination, Chaos, Solitons & Fractals,2009, 40(5):2114-2125.
    37 X. Zhang, L. Chen, The periodic solution of a class of epidemic models, Comput. Math. Appl,199,38: 61-71.
    38 Z. Lu, X. Liu, L. Chen, Hopf bifurcation of nonlinear incidence rates SIR epidemiologi-cal models with stage structure, Communications in Nonlinear Science and Numerical Simulation,2001,6(4):205-209.
    39 L. Wang, J. Li, Global stability of an epidemic model with nonlinear incidence rate and differential infectivity, Appl. Math. Comput,2005,161:769-778.
    40 C. Sun, Y. Lin, S. Tang, Global stability for an special SEIR epidemic model with nonlinear incidence rates, Chaos, Solitons & Fractals,2007,33(1):290-297.
    41 J. Mittler, B. Sulzer, A. Neumann, A. Pereson, Influence of delayed virus production on viral dynamics in HIV-1 infected patients, Math. Biosci.,1998.152:143-163.
    42 P. Nelson, A. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci.,2002,179:73-94.
    43 A. Perelson, D. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+T-cells, Math. Biosci.,1993,114:81-125.
    44 A. Perelson, P. Nelson, Mathematical analysis of HIV 1 dynamics in vivo,SIAM Review,1999,141:3-44.
    45 A. Perelson, A. Neumann, M. Markowitz, J. Leonard, D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span and viral generation time,Science,1996, 271:1582-1586.
    46 R. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell HIV-1 that include a time delay, J. Math. Biol.,2003,46:425-444.
    47 R. Culshaw, S. Ruan, A delay differential equation model of HIV infection of CD4+ T-cells, Math. Biosci.,2000,165:27-39.
    48 D. Wodarz, M.A. Nowak, HIV therapy: managing resistence, Proc. Natl. Acad. Sci., 2000,97:8193-8195.
    49 D.D. Ho, A.U. Neumann, A.S. Perelson, W. Chen, J.M. Leonard, M. Markoeitz, Rapid turnover of the plasma virions and CD4+lymphocytes in HIV-1 infection, Nature,1995, 373:123-126.
    50 M.A. Nowak, A.L. Lloyd, G.M. Vadquez, Viral dynamics of primary viremia and antitroviral therapy in simian immunodeficiency virus infection, J. Virology,1997,71: 7518-7525.
    51 P.W. Nelson, J.D. Murray, A.S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci.,2000,163:201-215.
    52 D. Kirschner, Using mathematics to understand HIV immune dynamics, Notices of the AMS,1996,43:191-202.
    53 L. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T cells, Math. Biosci,2006,200:44-57.
    54 L. Wang, S. Ellermeyer, HIV infection and CD4+T cell dynamics, Discrete and Con-tinuous Dynamical Systems-series,2006,6:1417-1430.
    55 X. Song, A.U. Neumann, Global stability and periodic solution of viral dynamics in vivo. J. Math. Anal. Appl.,2007,329:281-297.
    56 X. Zhou, X. Song. X. Shi, Analysis of stability and Hopf bifurcation for an HIV infection model with time delay, Appl. Math, Comput.,2008,199(1):23-38.
    57 X. Song, X. Zhou, X. Zhao,Properties of stability and Hopf bifurcation for a HIV infection model with time delay, Appl. Math. Model.,2010,34(6):1511-1523.
    58 X. Wang. Y. Tao, X. Song, Stability and Hopf bifurcation on a model for HIV infection of CD4+T cells with delay, Chaos, Solitons & Fractals,2009,42(3):1838-1844.
    59 X. Zhou, X. Song, X. Shi, A differential equation model of HIV infection of CD4+ T-cells with cure rate, J. Math. Anal. Appl,2008,342(2):1342-1355.
    60 X. Jiang, X. Zhou, X. Shi, X. Song, Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+T-cells, Chaos, Solitons & Fractals,2008,38(2):447-460.
    61 L. Wang, M.Y. Li, D. Kirschner, Mathematical analysis of the global dynamics of a model for HTLV-1 infection and ATL progression, Math. Biosci,2002,179: 207-218.
    62 F.A.B. Coutinho, L.F. Lopez, Modelling infection in individuals and its implications, Bull. Math. Biol.,2001,63:1041-1062.
    63 C. Castillo-Chavez, Biomathematics mathematician statistical approaches to AIDS epi-demiology, Springer-Varlan,1989.
    64 D.M. Rao, A. Chernyakhovsky, V. Rao, Modelling and analysis of global epidemiolog-ical of avian influenza, Environmental Modelling and Software,2009,24:124-134.
    65 R.K. Upadhyay, N. Kumari, V. Sree Hari Rao, Modelling the spread of bird Flu and predicting outbreak diversity, Nonlinear Analysis,2008,9:1638-1648.
    66 W.M. Liu, S.A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemlological models, J.Math. Biol.,1986,23:187-204.
    67 W.M. Liu, H.W. Hethcote, S.A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J.Math. Biol.,1987,25:359-380.
    68 W.M. Liu, S.A. Levin. Influenza and Some related mathematical models. Springer.
    69 H.W. Hethcote, M.A. Lewis. P. van den Driessche, An epidemiological models with delay and a nonlinear incidence rate. J.Math. Biol.,1989,27:49-64.
    70 H.W. Hethcote. P. van den Driessche, Some epidemiological models with nonlinear incidence, J.Math. Biol.,1991,29:271-287.
    71 W.R. Derrick, P. van den Driessche, Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population, Discret. Contin. Dyn. Syst. Ser., 2003,3:299-309.
    72 M.Y. Li, J.S. Muldowney, P. van den Driessche, Global stability of SEIRS models in epidemiology, Can. Appl. Math. Quort.,1999,7:126-141.
    73 P. van den Driessche, J. Watmough, A simple SIS epidemic model with a backward bifurcation, J.Math. Biol.,2000,40:525-540.
    74 P. van den Driessche, J. Watmough, Epidemic solutions and endemic catastrophies, Fields Institute Communications,2003,36:247-257.
    75 W. Wang, Epidemic models with nonlinear infection forces, Math. Biosci.,2006, 267-279.
    76 D.J.Rogers, The dynamics of vectors-transmitted diseases in human communities, Phil. Trans. R. Soc.,1988,321:513-524.
    77 F.E. Mckenzie, Why Model Malaria? Parasitol Today,2000,16:511-521.
    78 H. Inaba, H. Sekine. A mathematical model for chagas disease with infection-age-dependent infectivity, Math. Biosci,2004,190:39-56.
    79 Z. Feng, D.L. Smith, F.E. McKenzie, S.A. Levin, Coupling ecology and evolution: malaria and the S-gene across time scales, Math. Biosci.,2004,189:1-16.
    80 G. Cruz-Pacheco. L. Esteva, J. A. Montano-Hirose, C. Vargas, Modelling the dynamics of West Nile Virus, Math. Biosci.,2005,67:1157-1172.
    81 C. Bowman. A.B. Gumel, P. van den Driessche, J. Wu. H. Zhu. A mathematical model for assessing control strategies against West Nile Virus, Bull. Math. Biol.,2005,67: 1107-1125.
    82 E.A. Newton, P Reiter, A model of the transmission of dengue fever with an evaluation of the impact of Ultra-low Volume (ULV) insecticide applications on dengue epidemics, Am. J. Trop. Med. Hyg.,1992,47:709-721.
    83 L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci.. 1998,150:131-142.
    84 Z. Feng, J.X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue virus,J. Math. Biol.,1997,35:523-534.
    85 L. Esteva, C. Vargas, A model for dengue disease with variable human population, J. Math. Biol.,1999,38:220-234.
    86 C. Castillo-Chavez, B. Song, Dynamical models of tubercolosis and their applications, Math. Biosci. Eng.,2004,1:361-384.
    87 J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurca-tions of vector fields, Springer Berlin,1983.
    88 M.Y. Li, J.S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal.,1996,27: 1070-1087.
    89 D. Tudor, A deterministic model for herpes infections in human and animal popula-tions, SIAM Review,1990,32:136-139.
    90 H.N. Moreira, Y. Wang, Global stability in an SIRI, Soc. Industrial Appl. Math.,1997, 39:496-502.
    91 A. Korobeinikov, P.K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol.,2005,22:113-128.
    92 Z. Feng, H.R. Thieme, Endemic models with arbitrarily distributed periods of infection Ⅰ:fundamental properties of the model, SIAM J. Appl. Math.,2000,61:803-833.
    93 A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemi-ological models with non-linear transmission, Bull. Math. Biol.,2006,68:615-626.
    94 O. Diallo, Y. Kone, Melnikov analysis of chaos in a general epidemiological model, Nonlinear Analysis: Real World Applications,2007,8(1):20-26.
    95 S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear inci-dence rate. J. Diff. Equa.,2003,188:135-163.
    96 Y. Jin, W. Wang. S. Xiao, A SIRS model with a nonlinear incidence, Chaos. Solitons & Fractals,2007,34:1482-1487.
    97 Z. Yuan, L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Analysis: Real World Applications.2010.11(2): 995-1004.
    98 M. Alexander, S. Moghadas, Periodicity in an epidemic model with a generalized nonlinear incidence, Math. Biosci,2004,189:75-96.
    99 J. Li, Y. Zhou, J. Wu, Z. Ma, Complex dynamics of a simple epidemic model with a nonlinear incidence, Discrete Continuous Dyna. Sys.,2007,8:161-173.
    100 P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold en-demic equilibria for compartmental models of disease transmission, Math. Biosci, 2002,180:29-48.
    101 S. Iwami, Y. Takeuchi, A. Korobeinikov, X. Liu, Prevention of avian influenza epi-demic: what policy should we choose? J. Theoretical Biology,2008,252:732-741.
    102 S. Iwami, Y. Takeuchi, X. Liu, Avian-human influenza epidemic model, Math. Biosci, 2007,207: 1-25.
    103 D.M. Rao, A. Chernyakhovsky, V. Rao, Modelling and analysis global epidemiology of avian influenza, Environmental Modelling and Software,2009,24:124-134.
    104 X. Zhang, X. Liu, Backward bifurcation of an epidemic model with saturated treat-ment function, J. Math. Anal. Appl,2008,348:433-443.
    105 V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci,1978,42:43-61.
    106 W. Wang, Backward bifurcation of an epidemic model treatment, Math. Biosci., 2006,201:58-71.
    107 W. Wang, S. Ruan, Bifurcations in an epidemic model with constant removal rate of the infectives, J. Math. Anal, & Appl.,2004,291:775-793.
    108 K. Wang. W. Wang. X. Liu, Viral infection model with periodic lytic immune re-sponse, Chaos Solitons & Fractals,2006,28:90-99.
    109 F. Happensteadt, An age-structure epidemic model, J. Franklin. Inst,1994,197: 325-333.
    110 X. Li, G. Gupur, G. Zhu, Analysis for an age-structured SEIR epidemic model with vaccination, Inter. J. Diff. Equ. Appl,2003,7:47-67.
    111 X. Li, G. Gupur, Global stability of an age-structure SIRS epidemic model with vaccination, Discrete & Continuous Dynamical System-series,2004,4:643-652.
    112 L. Allen, Some discrete-time SI, SIR and SIS epidemic models, Math. Biosci,1994, 124:83-105.
    113 C. Castillo-Chavez, Y. Dispersal, Disease and life-history evolution, Math. Biosci, 2001,173:35-53.
    114 D. Daley, J. Gani, Epidemic modelling, Cambridge University Press,1999.
    115 Z. Feng, H. Thieme, Recurrent outbreaks of childhood diseases revisited:the impact of isolation, Math. Biosci.,1995,128:93-130.
    116 L. Wu, Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases, J. Differ. Equ.,2000,168: 150-167.
    117 D. Gerberry, F. Milner, An SEIQR model for childhood diseases, J. Math. Biol, 2009,59:535-561.
    118 H. Herbert, Z. Ma, S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci.,2002,180:141-160.
    119 X. Li. G. Geni, G. Zhu, Existence and uniqueness of endemic state for the age-structured SEIR. epidemic model, Acta. Math. Appl. Sinica.,2002,18:441-454.
    120 G. Gripenberg, S. Londen,O. Staffans, Volterra Integral and Functional Equation. Cambridge,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700