浅海矢量声场及其信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声物理、信号处理和海洋环境的紧密结合是声纳技术发展的必然趋势。浅海低频声纳是近代声纳发展的方向,水声探测的频段越来越低,矢量传感器的作用得到重视。在此背景下,本文对浅海矢量声场及其信号处理作了研究。全文的主要研究内容有以下5项,前2项为垂直声强信息的研究,后3项为水平声强信息的研究:
     (1)探讨了Pekeris波导中声压场和质点振速场的联合描述,尤其关注垂直声强流的分析。研究表明,由于各阶简正波的干涉作用,水平和垂直声强流均既有有功分量,亦有无功分量。低频声场的垂直声强流的无功分量虽不参与声能的输运,当单个声矢量传感器适当放置后却可用以判断声源的特定深度。这对于矢量信号处理是有意义的。给出了声压和质点振速联合互谱处理进行目标深度判别的算法。
     (2)进一步地研究了更为广泛的浅海波导中的垂直声强流。结果表明,所提出的利用垂直声强流无功分量判断目标的特定深度这一原理对不同浅海环境是可以适用的。近似的理论分析为传感器布放深度提供了指导,指出了所研究条件下垂直声强流的有功分量的符号分布与传感器布放深度无关。
     应用矢量声场的互易原理对不同浅海环境的矢量声场主要是垂直声强流无功分量进行了计算。在近距离处声场表现出近场特性,稍远距离处垂直声强流的符号即表现出规律性;海洋声速剖面对所提出原理的适用性影响不大;在规定作用距离后,海底吸收存在时对原理的应用不构成障碍,在一定程度上反倒有利;不同频率的声场的干涉图案有细微差别,但是传感器的布放位置可以是固定的,换言之,单个矢量传感器即可工作于较宽的频段。导出了传感器布放深度公式。这些结论以及所提出的原理是有条件的:波导中只存在2阶波导简正波。这在甚低频才可以做到,而近代声纳的工作频段的发展趋势正是如此。
     (3)针对矢量阵高分辨算法的运算量大的特点,尝试将声压阵中行之有效的减小计算量的方法推广到矢量阵中。
     提出了广义转换矩阵,使得矢量酉MUSIC算法得以成立。由于该算法利用了观测数据的复共轭数据,使得特征分解可以在实数域进行,不但减小了运算量而且提高了方位估计性能。将传播算子算法推广到宽带矢量阵处理中,由于不需要进行自相关矩阵的特征分解,该算法运算快速。仿真和实验数据处理表明所提出的算法是有效的。
     (4)声矢量传感器能够同时拾取空间同一点的声压振速信息,可以进行声场声强测量。据此提出了阵列声强器的概念。即当声矢量传感器成阵时,在波束域进行声强处理,以获得目标的方位信息。当空间高度欠采样时,矢量阵将产生栅瓣模糊,利用阵列声强器获得的方位信息可以抑制稀疏阵的栅瓣模糊,使得矢量阵在不增加阵元个数的前提下增大了阵列孔径,从而提高了方位分辨力。对阵列声强器去模糊性能进行了理论分析,仿真结果表明了所提算法的有效性。
     (5)对声压和振速信息进行联合处理的思想在目标方位估计中已有成熟应用,在时频参数估计中进行联合处理尚不多见,本文提出了以声压振速互协方差矩阵为基础的ESPRIT频率估计算法,在不损失估计性能的前提下,计算量减小为现有算法的1/27。给出了所用模型的克拉美劳下限。仿真结果表明所提算法是有效的。
One of the inevitable tendencies of sonar technology is physics of underwater acoustics, signal processing and ocean environment being combined tightly. The direction of modern sonar's development is low frequency and working in shallow water. With respect to lower and lower frequencies, more attentions are paid to acoustic vector sensor. Under this context, the dissertation studies acoustic vector field and its signal processing. The main contributions are as follows, the first two sections of which concern vertical acoustic intensity, the last three sections of which concern horizontal acoustic intensity:
     (1) The combined descriptions of the pressure field and particle velocity field in Pekeris waveguide, especially the vertical acoustic intensity flux are proposed in this paper. The results of the study show that both the horizontal and the vertical acoustic intensity flux have active and reactive component because of the interference between the normal modes. When an acoustic vector sensor is placed appropriately, the reactive component of the vertical acoustic intensity flux in low frequency acoustic field can be used to tell the source's specified depth, although it can't transport energy. Then the reactive component of the vertical acoustic intensity flux is of importance for vector signal processing. The pressure and particle velocity cross spectra signal processing algorithm is proposed to distinguish the targets.
     (2) The further study on vertical acoustic intensity flux in broad sense shallow water waveguide is proposed. The results show that the theory of using reactive component of vertical acoustic intensity flux to tell the source's specified depth is valid for varies shallow water environment. Approximate theory analysis provides instruction to the placement of vector sensor, and points out that the polarity distribution of active component of vertical acoustic intensity flux is independent of the vector sensor's depth.
     Reciprocal relationship is applied to compute the acoustic vector field especially the reactive component of vertical acoustic intensity flux in shallow water. The acoustic field shows characteristics of near field in the near range, and the polarity of reactive component of vertical acoustic intensity flux varies regularly in the far range; the sound speed profile affects the method proposed here slightly; the attenuation of the bottom doesn't effect the method, on the contrary, it is in favor of the method; the interference patterns are different slightly for different frequencies, but the depth of the sensor can be fitted, in other words, one single vector sensor can work in a wide band. The formula of placing depth is proposed. All this conclusions is under the conditions that there are only two trapped normal modes. The condition can be fulfilled only at low frequencies, and the frequency band used by modern sonar is heading this direction.
     (3) There are much more output channels when the acoustic vector sensor is formed into arrays, which make the computation intense. A few computational efficient algorithms are proposed to apply to acoustic vector sensor array.
     A generalized transform matrix is constructed, and then the unitary MUSIC algorithm is adapted to acoustic vector sensors array. The observation data are incorporated with their conjugate, and then the covariance matrix can be decomposed in real-valued space. Hence, the proposed algorithm has features of lower computational complexity and better performance. The propagator method without eigen decomposition is applied to wideband coherent sources. The simulations and lake trial data processing show that the new algorithms are valid.
     (4) The array intensity estimator was proposed on the basis that acoustic vector sensors measure the pressure and particle velocity information of one spatial point simultaneously. After extracting the available spatial spectrum in the beamspace, one can process the acoustic intensity information to get the DOA of the target. When the spatial sampling law can't be fulfilled, the spatial spectrum will lead to cyclically ambiguous DOA estimates. Using the array intensity estimator can solve the ambiguity problem of a sparse acoustic vector sensor array, thus the aperture of the array can be extended without increase the number of the element and then offers enhanced spatial resolution. The performance of the array intensity estimator was analyzed. The simulation experiments show that the algorithm is valid.
     (5) Estimating the direction of arriving using the pressure and velocity combined processing are well documented in the literature, few attentions have been put into the time and frequency estimates with the combined processing idea. A new ESPRIT algorithm for frequency estimating is proposed based on the pressure and velocity cross covariance matrix, which can reduce the computational burden to 1/27 of the previous algorithm. The Cramer-Rao lower bound is developed for the data model. The simulation shows the validity of the new algorithm.
引文
[1]B G Katsnelson, V G Petnikov. Shallow water acoustics. Springer Praxis publishing,2002
    [2]John R Benedict. The unraveling and revitalization of U.S. Navy antisubmarine warfare. Naval War College Review,2005
    [3]Dajun Tang, James N Moum. Shallow Water'06:a Joint acoustic Propagation/Nolinear internal Wave Physics experiment. Oceanography, 2007,20(4):156—167P
    [4]C H Harrison. Formulas for ambient noise level and coherence. J. Acoust. Soc. Am.,1996,99(4):2055-2066P
    [5]W A Kuperman, F Inegenito. Spatial correlation of surface generated noise in a stratified ocean. J. Acoust. Soc. Am.,1980,67(6):1988-1996P
    [6]惠俊英,孙国仓,赵安邦.Pekeris波导中简正波声强流及其互谱信号处理.声学学报,2008,33(4):300-304页
    [7]B A Cray. Directional point receivers:the sound and the theory. Oceans 2002,2002,3:29-31P
    [8]王德俊.矢量声场与矢量信号处理理论研究.哈尔滨工程大学博士学位论文,2004
    [9]刘爽.零阶及一二阶组合水听器的设计.哈尔滨工程大学硕士学位论文,2008
    [10]V A Shchurov. Vector acoustics of the ocean. vladivostok:Dalhauka, 2006
    [11]F J Fashy. Sound intensity. Second edition. E&FN SPON,1995.
    [12]C B Leslie. Hydrophone for measuring particle velocity. J. Acoust. Soc. Am.,1956,28(4):711-715P
    [13]www.sparton.com
    [14]时胜国.矢量水听器及其在平台上的应用研究.哈尔滨工程大学博士学位论文,2007
    [15]郭龙祥.主动式系统中的矢量传感器信号处理方法研究.哈尔滨工程大学博士学位论文,2006
    [16]Underwater Acoustics, Signal Processing in Acoustics, and ECUA: Acoustic Vector Fields and Sensor Processing Ⅱ. J. Acoust. Soc. Am., 2008,123(5):3438P
    [17]G D'Spain, W S Hodgkiss. The simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting Swallow floats. IEEE J.Ocean Eng,1991,16(2):195-207P
    [18]张仁和.水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势.应用声学,2006,25(6):325—327页
    [19]李春旭.声压、振速联合信息处理.哈尔滨工程大学工学博士学位论文,2000
    [20]陈亚林,杨博,马远良.复杂边界条件下矢量传感器的指向性分析及实验研究.声学技术,2006,25(4):381-386页
    [21]姚直象.单矢量传感器及矢量阵信号处理研究.哈尔滨工程大学博士学位论文,2006
    [22]C H Harrison. Formulas for ambient noise level and coherence. J. Acoust. Soc. Am.,1996,99(4):2055-2066P
    [23]W A Kuperman, F Inegenito. Spatial correlation of surface generated noise in a stratified ocean. J. Acoust. Soc. Am.,1980,67(6):1988-1996P
    [24]G M Wenz. Acoustic ambient noise in the ocean:Spectra and sources. J. Acoust. Soc. Am.,1962,34(12):1936-1956P
    [25]M Hawkes, A Nehorai. Acoustic vector-sensor Correlations in Ambient Noise. IEEE. Journal of Oceanic Engineering,2001,26(3):337-347P
    [26]孙贵青.矢量水听器检测技术研究.哈尔滨工程大学博士学位论文,2001
    [27]孟洪.矢量水听器及联合信号处理研究.哈尔滨工程大学硕士学位论文,2002
    [28]孙岩松.各向异性噪声场对矢量水听器检测性能影响的研究.哈尔滨工程大学硕士学位论文,2002
    [29]彭汉书.浅海矢量声场特性及应用研究.中国科学院声学研究所博士学位论文,2007
    [30]鄢锦,罗显志,侯朝焕.海洋环境噪声场中声压和质点振速的空间相干.声学学报,2006,31(4):310-315页
    [31]V A Shchurov, G F Ivanova, et al. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band. Chinese Journal of Acoustics,2007,26(2):102-110P
    [32]R Finger, L Abbagnaro. Measurements of low-velocity flow noise on pressure and pressure gradient hydrophones. J. Acoust. Soc. Am., 1979,65(6):1407-1412P
    [33]B D Keller. Gradient hydrophone flow noise. J. Acoust. Soc. Am., 1977,62(1):205-208P
    [34]陈新华.矢量传感器阵列信号处理.哈尔滨工程大学博士学位论文,2004
    [35]杨秀庭,孙贵青,李敏,李启虎.矢量拖曳式线列阵声呐流噪声影响初探.声学技术,2007,26(5):775-780页
    [36]R J Urick.水声原理.哈尔滨船舶工程学院出版社,1990
    [37]C L Pekeris. Theory of propagation of explosive sound in shallow water. Geol. Soc. Am. Mem.,1948,27:1-117P
    [38]L M Brekhovskikh. Waves in layered media. New York:Academic,1960
    [39]I Tolstay, C S Clay. Ocean acoustics. New York:McGraw-Hill Book Company,1966.
    [40]汪德昭,尚尔昌.水声学.科学出版社,1981
    [41]C A Boyles. Acoustic waveguides. John Wiley &Sons Inc,1984
    [42]杨士莪.水声传播原理.哈尔滨工程大学出版社,1994
    [43]P C Etter. Underwater acoustic modeling and simulation. Spon Press, 2003.
    [44]F B Jensen, W A Kuperman, et al. Computational Ocean Acoustics. Springer-Verlag,2000
    [45]惠俊英,刘宏,余华兵等.声压振速联合信息处理及其物理基础初探.
    声学学报,2000,25(4):303-307页
    [46]O E Gulin, Desen Yang. On the certain semi-analytical models of low-frequency acoustic fields in terms of Scalar-vector description. Chinese Journal of Acoustics,2004,23(1):58-70P
    [47]I O Yaroshchuk, et al. Statistical Modeling of characteristics of scalar-vector sound fields generated in layerly inhomogeneous shallow sea with fluctuations. Proc. of the 3rd IWAET, Harbin,2002:439P
    [48]A S Lyashkov, A N Shvyrev, I O Yaroshchunk. About statistical estimation of signals and noise of the sea on the basis of them simulation model. ISAET 2005,Harbin:286-289P
    [49]周士弘.分层介质波导中的声矢量场传播.哈尔滨工程大学学报,2005,25(3):342-348页
    [50]王德俊,惠俊英等.Pekeris波导中侧面波矢量场.哈尔滨工程大学学报,2006,27(2):252-257页
    [51]王德俊,惠俊英,杨春,蔡平.Pekeris波导中近程声场数值算法.哈尔滨工程大学学报,2005,25(1):38-42页
    [52]杨娟,惠俊英等.低频矢量声场建模及其应用研究.声学技术,2006,25(1):16-21页
    [53]江磊,惠俊英等.干涉谱法测量水下竖直运动目标轨迹.海洋工程,2006,24(4):38-42页
    [54]N K Naluai, G C Lauchle. Bi-static sonar applications of intensity processing. J. Acoust. Soc. Am.,2007,121(4):1909-1915P
    [55]B R Rapids, G C Lauchle. Vector intensity field scattered by a rigid prolate spheroid. J. Acoust. Soc. Am.,2006,120(1):38-48P
    [56]V A Akulichev, S I.Kamenev. et al. A study of angular structure of acoustic field in a shallow sea with the use of a combined receiver. ISAET 2005:Harbin:257P
    [57]杨娟.水下动目标被动跟踪关键技术研究.哈尔滨工程大学博士学位论文,2007
    [58]Y V Petukhov. Fundamental Directions of Investigations of Interference Phenomena Observed in the Propagation of Broadband Acoustic Signals in Oceanic Waveguides (Review of Publications of Russian Scientists). Ocean Acoustic Interference Phenomena and Signal Processing, edited by W A Kuperman, G L D'Spain. American Institute of Physics,2002
    [59]李鹏,王宁,高大治.海洋声信道R-ω平面“纹理”特征与形成机理.中国海洋大学学报,2006,36(Sup):201-204页
    [60]J E Quijano, L M Zurk. Demonstration of the invariance principle for active sonar. J. Acoust. Soc. Am.,2008,123(3):1329-1337P
    [61]H Tao, J L Krolik. Waveguide invariant focusing for broadband beamforming in an oceanic waveguide. J. Acoust. Soc. Am.,2008,123(3): 1338-1346P
    [62]M Hawkes. Issues in acoustic vector sensor processing:[Dissertation]. Yale University,2000
    [63]K T Wong. Novel techniques of polarization diversity & extended aperture spatial diversity for sensor-array direction fingding in radar, sonar,& wireless communications:[Dissertation]. Purdue University, 1996
    [64]孙贵青,李启虎.声矢量传感器信号处理.声学学报,2004,29(6):491-498页
    [65]J L Brown, R O Rowlands. Design of directional arrays. J. Acoust. Soc. Am.,1959,31:1638-1643P
    [66]M Hawkes, A Nehorai. Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Trans. Signal Processing,1998,46(9):2291-2304P
    [67]G L D'Spain, J C Luby, G R Wilson et al. Vector sensors and vector sensor line arrays:Comments on optimal array gain and detection. J. Acoust. Soc. Am.,2006,120(1):171-185P
    [68]冯海泓,梁国龙,惠俊英.目标方位的声压、振速联合估计.声学学报,2000,25(6):516-520页
    [69]郑兆宁,向大威.水声信号被动检测与参数估计理论.科学出版社,
    1983
    [70]姚直象,惠俊英.基于单矢量水听器四种方位估计方法.海洋工程,2006,24(1):122-128页
    [71]王逸林,蔡平,许丹丹.应用希尔伯特黄变换的单矢量传感器多目标分辨研究.声学技术,2006,25(4):376-380页
    [72]A Nehorai, E Paldi. Acoustic vector sensor array processing. IEEE Trans Signal Processing,1994,42(9):2481-2491P
    [73]桑恩方,乔刚.基于声矢量传感器的水声通信技术研究.声学学报,2006,31(1):61-67页
    [74]孙国仓,惠俊英,郭龙祥.声压振速联合频率估计.计算机工程与应用,2008,44(10):154-156页
    [75]Harry L Van Trees.最优阵列处理技术.汤俊译.清华大学出版社,2008
    [76]Harry L Van Trees. Optimum array processing. John Wiley & Sons Inc., 2002
    [77]陈新华,蔡平,惠俊英.声矢量阵指向性.声学学报,2003,28(2):141-144页
    [78]杜选民,朱代柱,赵荣荣,姚蓝.拖线阵左右舷分辨技术的理论分析与实验研究.声学学报,2000,25(5):395-402页
    [79]何心怡,蒋兴舟,李启虎,张春华.拖线阵的阵型畸变与左右舷分辨.声学学报,2004,29(5):409-413页
    [80]李启虎.双线列阵左右舷目标分辨性能的初步分析.声学学报,2006,31(5):385-388页
    [81]L C Godara. A robust adaptive array processor. IEEE Trans. Signal Processing,1987,34(7):721-730P
    [82]惠俊英,李春旭,梁国龙,刘宏.声压和振速联合信号处理抗相干干扰.声学学报,2000,25(5):389-394页
    [83]H Wang, M Kaveh. Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wide-Band Sources. IEEE Trans. ASSP,1985,33(4):823-831P
    [84]陈华伟,赵俊渭.声矢量传感器阵宽带相干信号子空间最优波束形成. 声学学报,2005,30(1):76-82页
    [85]G C Sun, J Y Hui, Y Chen. Fast algorithm of direction of arrival based on vector sensor array for wideband sources. Journal of Marine Science and Application,2008,7(3):195-199P
    [86]孙国仓,惠俊英,蔡平.基于声矢量传感器阵的酉MUSIC算法.计算机工程与应用,2007,43(18):24-26页
    [87]孙国仓,惠俊英,郭龙祥,蔡平.阵列声强器及其应用.系统仿真学报,2008,20(6):1551-1558页
    [88]W伊文.分层介质中的弹性波.刘光鼎译.科学出版社,1966
    [89]马大猷.现代声学理论基础.科学出版社,2004
    [90]何祚镛,赵玉芳.声学理论基础.国防工业出版社,1981
    [91]杨坤德.水声信号的匹配场处理技术研究.西北工业大学博士学位论文,2003
    [92]D E Weston. A Moire fringe analog of sound propagation in shallow water. J. Acoust. Soc. Am.,1960,32:647-654P
    [93]D M F Chapman, P D Ward, D D Ellis. The effective depth of a Pekeris ocean waveguide, including shear wave effects. J. Acoust. Soc. Am., 1989,85:648-653P
    [94]M J Buchingham, E M Giddens. On the acoustic field in a Pekeris waveguide with attenuation in the bottom half-space. J. Acoust. Soc. Am., 2006,119(1):123-142P
    [95]G L D'Spain et al. Initial analysis of the data from the vertical DIFAR array. Ocean'92,1992:346-351P
    [96]吕钱浩,杨士莪.矢量传感器阵列高分辨率方位估计技术研究.哈尔滨工程大学学报,2004,25(4):440-445页
    [97]周浩,顾晓东,蒋兴舟.基于MUSIC算法的矢量阵波达方向估计.微计算机信息,2007,23(2-3):212-213,266页
    [98]K T Wong, M D Zoltowski. Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Trans. ASSP,2000(48):671-681P
    [99]M D Zoltowski, K T Wong. Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse Uniform cartesian array grid. IEEE Trans Signal Processing,2000,48(8):2205-2210P
    [100]王永良,陈辉等.空间谱估计理论与算法.清华大学出版社,2004
    [101]K C Huarng, C C Yeh. A unitary transformation method for angle of arrival estimation. IEEE Trans. ASSP,1991,39(4):975-977P
    [102]M D Zoltowski, G M Kautz, S D Silverstein. Beamspace root MUSIC. IEEE Trans. Signal Processing,1993,41(1):344-364P
    [103]A Nehorai, M Hawkes. Performance bounds for estimating vector systems. IEEE Trans. Signal Process,2000,48(6):1737-1749P
    [104]K T Wong, M D Zoltowski. Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE J. Ocean. Eng.,2000,25(2):262-273P
    [105]P Stoica, R Moses. Introduction to Spectral Analysis. Upper Saddle River, NJ:Printice-Hall,1997:155-165P
    [106]H W Chen, J W Zhao. Wideband MVDR beamforming for acoustic vector sensor linear array. IEE Proc.-Radar Sonar Navig.,2004,151(3): 158-162P
    [107]P Tichavsky, K T Wong, M D Zoltowski. Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone. IEEE Trans. SP,2001,49(11):2498-2510P
    [108]乔刚,张揽月.基于矢量传感器的高分辨频率估计算法研究.哈尔滨工程大学学报,2007,28(3):296-300页
    [109]P Stoica, R L Moses, B Friedlander et al. Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurment. IEEE Trans. ASSP,1989,37(3):378-392P
    [110]S Marcos. The propagator method for source bearing estimation. Signal processing,1995,42:121-138P
    [111]J Krolik, D Swingler. The performance of minimax spatial resampling filters for focusing wide-band arrays. IEEE Trans. SP,1991,39(8): 1899-1903P
    [112]V A Shchurov. Noise immunity of a combined hydroacoustic receiver. Acoustical Physics,2002,48(1):98-106P
    [113]孙贵青,李启虎.声矢量传感器研究进展.声学学报,2004,29(6):481-491页
    [114]R Roy, T Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust Speech Signal Processing, 1989,37(7):984-995P
    [115]徐海东.基于声矢量阵的高分辨方位估计技术研究.哈尔滨工程大学博士学位论文,2004
    [116]K Kim. Development of an accelerometer-based underwater acoustic intensity sensor. J. Acoust. Soc. Am.,2004,116(6):3384-3392P
    [117]刘仕民,姜文军.复声强技术及其应用.汽车工程,1995,17(5):274-281页
    [118]徐海东,梁国龙.声矢量阵波束域宽带聚焦MUSIC算法.哈尔滨工程大学学报,2005,26(3):349-354页
    [119]张揽月,杨德森.基于ESPRIT算法的L型矢量阵源方位估计.哈尔滨工程大学学报,2005,26(3):340-343页
    [120]孙贵青,杨德森等.基于矢量水听器的最大似然比检测和最大似然方位估计.声学学报,2003,28(1):66-72页
    [121]惠俊英.水下声信道.国防工业出版社,1992
    [122]G L Boyer. Instrumentation for measuring underwater acoustic intensity. J. Acoust. Soc. Am.,1960,32:1519P
    [123]G L D'Spain, W S Hodgriss, G L Edmonds. Energetics of the deep ocean's infrasonic sound field. J. Acoust. Soc. Am.,1991,89(3): 1134-1158P
    [124]孙国仓,惠俊英,徐海东,郭龙祥.基于解析振速的ESPRIT算法.系统仿真学报,2008,20(13):3363-3370页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700