宽带阵列信号波达方向估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理是信号处理中的一个重要研究分支,在雷达、声呐、无线通信和地震学等诸多领域得到了广泛的应用。随着现代科学技术的发展,宽带信号在阵列信号处理系统中的应用越来越普遍。迄今为止,已经有许多研究学者对宽带信号的波达方向(DOA: direction of arrival)估计进行了研究,并且取得了非常显著的研究成果。由于宽带信号具有较大的信号带宽和较复杂的信号波形,仍然有必要对宽带信号的DOA估计作进一步的研究。本论文的重点是利用均匀线性阵列研究宽带信号的DOA估计技术,本论文的基础是宽带阵列信号的数学模型和矩阵分析理论。本论文的主要研究工作可以概述如下:
     首先,在非相干信号子空间算法的基础上,我们提出了一种扩展的投影子空间正交性测试(ETOPS: extended test of orthogonality of projected subspaces)算法。通过使用更多参考频率点的信息,ETOPS算法克服了TOPS算法中最佳参考频率点难以选择的问题,并且与任意选择参考频率点的TOPS算法相比,ETOPS算法具有更好的估计性能。
     其次,在频域子空间正交性测试(TOFS: test of orthogonality of frequency subspaces)算法的基础上,利用空间差分技术和空间平滑技术,我们提出了一种宽带不相关信号和宽带相干信号DOA估计算法。该算法先利用TOFS算法对宽带不相关信号的DOA进行估计;然后对各个频率点的空间差分矩阵的特征值矩阵取绝对值操作来构造新矩阵,并通过空间平滑技术对相干信号进行解相干处理,最后利用TOFS算法估计出宽带相干信号的DOA。该算法对宽带不相关信号和宽带相干信号的DOA估计是分开进行的,因此该算法能够应用在阵元个数小于信号个数的场合。
     再次,当阵列噪声是相关色噪声时,现有的大部分宽带信号DOA估计算法的估计性能会急剧恶化或者失效。基于矩阵变换技术和聚焦技术,我们提出了两种色噪声背景下的宽带相干信号DOA估计算法,其中色噪声的协方差矩阵具有Toeplitz结构。首先利用空间差分技术去除具有Toeplitz型协方差矩阵的相关噪声的影响,之后两种算法采用不同的方法来估计宽带相干信号的DOA。第一种算法先对各个频率点的空间差分矩阵的特征值矩阵取绝对值操作来构造新矩阵,然后利用旋转不变子空间算法中的聚焦准则进行聚焦操作,最后对聚焦平滑后的矩阵利用多重信号分类(MUSIC: multiple signal classification)算法估计出宽带相干信号的DOA;第二种算法先对各个频率点的空间差分矩阵取平方操作来构造新矩阵,然后进行聚焦操作,最后对聚焦平滑后的矩阵利用传播算法估计出宽带相干信号的DOA。虽然两种算法的估计性能大致相同,但是第二种算法的计算量要远小于第一种算法,因此第二种算法是一种更加高效的色噪声背景下的宽带相干信号DOA估计算法。
     最后,基于一致聚焦的思想和双边相关变换的聚焦准则,我们提出了一种宽带信号DOA估计算法。通过一致聚焦矩阵的构造,该算法克服了双边相关变换算法中需要对方位角度进行预估计的缺点,并且是一种低复杂度的宽带信号DOA估计算法。
Array signal processing is an important research branch of the signal processing, and has been widely applied in many fields, such as radar, sonar, wireless communications and seismology. With the development of the modern science and technology, wideband signals have been used more and more commonly. To this day, there are many researchers have studied the direction-of-arrival (DOA) estimation for wideband signals, and have made many significant research results. Because broadband signals possess large signal bandwidth and more complex waveform, it is still necessary to further study the DOA estimation for wideband signals. The main objective of this thesis is to study the DOA estimation technology for wideband signals by using uniform linear array, and the mathematic model of wideband array signals and the theory of matrix analysis are the underlying basis. The main contributions of the thesis are listed as follows:
     Firstly, we propose an extended test of orthogonality of projected subspaces algorithm (ETOPS) based on the incoherent signal subspace method (ISSM). By using more information from several reference frequencies, ETOPS overcomes the problem existed in TOPS that it is difficult to choose the optimal frequency, and its performance outperforms that of TOPS with arbitrarily chosen reference frequency.
     Secondly, based on the test of orthogonality of frequency subspaces algorithm (TOFS), we propose a new DOA estimation method for wideband uncorrelated and coherent signals by using the spatial differencing technique and the spatial smoothing technique. The method obtains the DOA estimates of wideband uncorrelated signals by using TOFS directly. Then, at each frequency bin, a new matrix is constructed by performing the absolute operation on the eigen-value matrix of the spatial difference matrix. Afterwards, the coherency of coherent signals is removed with the help of the spatial smoothing technique and the DOAs of coherent signals are estimated by applying TOFS accordingly. Because the uncorrelated and coherent signals are resolved separately, the method is suitable to the scenario that the number of array elements is larger than that of signals.
     Thirdly, the performance of most of the existing wideband DOA estimation methods degrades severely when the array noise is correlated. Based on the matrix transformation technology and focusing technology, two DOA estimation algorithms for wideband coherent signals are proposed in the presence of unknown correlated noise, whose covariance matrix is of Toeplitz structure. By using spatial differencing technique, the effect of correlated noise with Toeplitz-structure covariance matrix is removed. Afterwards, the two methods make use of different ways to estimate the DOAs of wideband coherent signals. In the first algorithm, by taking the absolute value of eigenvalue matrix of the spatial difference matrix at each frequency bin, a new matrix is constructed accordingly. Then, the focusing operation is performed with the exploitation of the focusing rule in rotation signal subspace method. Finally, the DOAs of wideband coherent signals can be estimated by applying MUSIC (multiple signal classification) on the newly coherently averaged covariance matrix. In the second algorithm, by performing the squaring operation on the spatial difference matrix at each frequency bin, a new matrix is construted. Then, the focusing operation is performed accordingly. Finally, the DOAs of wideband coherent signals can be obtained by exploiting the propagator method to the newly coherently averaged covariance matrix. Although the estimation performance of the two algorithms is almost same, the computational burden of the second one is far less than that of the first one. Therefore, the second one is a more effective DOA estimation method for wideband coherent signals in the presence of unknown correlated noise with Toeplitz -structure covariance matrix.
     Finally, based on the idea of consistent focusing and the focusing rule of two sided transformation (TCT), we propose a wideband DOA estimation method. By constructing the consistent focusing matrix, the method overcomes the disadvantage that the initial DOAs should be pre-estimated in TCT and it is a low-complexity DOA estimation method for wideband signals.
引文
[1]王永良等.空间谱估计理论与算法.清华大学出版社, 2004.
    [2] J. H. Justice, N. L. Owsley, J. L. Yen, A. C. Kak. Array Signal Processing. Prentice-Hall, 1985.
    [3] S. U. Pillai, C. S. Burrus. Array Signal Processing. Springer-Verlag, 1989.
    [4] S. Haykin, J. P. Reilly, V. Kezys, E. Vertatschitsch. Some aspects of array signal processing. IEE Proceedings-F Radar and Signal Processing, 139(1): 1-26, 1992.
    [5] D. H. Johnson, D. E. Dudgeon. Array Signal Processing: Concepts and Techniques. Prentice-Hall, 1993.
    [6] H. Krim, M. Viberg. Sensor Array Signal Processing: Two Decades Later. Technical report CTH-TE-28, Chalmers University of Technology, 1995.
    [7] H. Krim, M. Viberg. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 13(4): 67-94, 1996.
    [8] P. S. Naidu. Sensor Array Signal Processing. CRC Press, 2001.
    [9] L. Harry, T. Van. Optimum Array Processing. Wiley, New York, 2002.
    [10] J. Li, P. Stoica. Robust Adaptive Beamforming. Wiley, New York, 2006.
    [11] J. Benesty, J. Chen, Y. Huang. Microphone Array Signal Processing. Springer-Verlag, 2008.
    [12] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagagation, 34(3): 243-258, 1986.
    [13] R. Roy, T. Kaiiath. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(7): 984-995, 1989.
    [14] R. Roy, A. Paulraj, T. Kaiiath. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 34(10): 1340-1342, 1986.
    [15] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(5): 720-741, 1989.
    [16] B. D. Rao, K. V. S. Hari. Performance analysis of Root-MUSIC. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(12): 1939-1949, 1989.
    [17] A. J. Weiss, M. Gavish. Direction finding using ESPRIT with interpolated arrays. IEEE Transactions on Signal Processing, 39(6): 1473-1478, 1991.
    [18] H. Krim, P. Forster, J. G. Proakis. Operator approach to performance analysis ofRoot-MUSIC and root min-norm. IEEE Transactions on Signal Processing, 33(6): 450-451, 1992.
    [19] M. D. Zoltowski, G. M. Kautz, S. D. Silverstein. Beamspace Root-MUSIC. IEEE Transactions on Signal Processing, 41(1): 344-364, 1993.
    [20] Q. T. Zhang. Probability of resolution of the MUSIC algorithm. IEEE Transactions on Signal Processing, 43(4): 978-987, 1995.
    [21] D. Kundu. Modified MUSIC algorithm for estimating DOA of signals. Signal Processing, 48(1): 85-90, 1996.
    [22] Q. S. Ren, A. J. Willis. Fast root MUSIC algorithm. Electronics Letters, 40(7): 1687-1696, 1997.
    [23] T. H. Liu and J. M. Mendel. Azimuth and elevation direction finding using arbitrary array geometries. IEEE Transactions on Signal Processing, 46(7): 2061-2065, 1998.
    [24] M. L. McCloud, L. L. Scharf. A new subspace identification algorithm for high resolution DOA estimation. IEEE Transactions on Antennas and Propagation, 50(10): 1382-1390, 2002.
    [25] N. Tayem, H. M. Kwon. Conjugate ESPRIT. IEEE Transactions on Antennas and Propagation, 52(10): 2618-2624, 2004.
    [26] F. Gao, A. Nallanathan, Y. Wang. Improved MUSIC under the coexistence of both circular and noncircular sources. IEEE Transactions on Antennas and Propagation, 56(7): 3033-3038, 2008.
    [27] T. J. Shan, M. Wax, T. Kailath. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech and Signal Processing, 33(4): 806-811, 1985.
    [28] S. U. Pillai, B. H. Kwon. Forward/Backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(1): 8-15, 1989.
    [29] W. Du, R. L. Kirlin. Improved spatial smoothing techniques for DOA estimation of coherent signals. IEEE Transactions on Signal Processing, 39(5): 1208-1210, 1991.
    [30] J. Li. Improved angular resolution for spatial smoothing techniques. IEEE Transactions on Signal Processing, 40(12): 3078-3081, 1992.
    [31] M.Viberg, B. Ottersten, T. Kailath. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Transactions on Signal Processing, 39(11): 2436-2449, 1991.
    [32] K. C. Tan, G.-L. Oh. Estimating directions-of-arrival of coherent signals in unknowncorrelated noise via spatial smoothing. IEEE Transactions on Signal Processing, 45(4): 1087-1091, 1997.
    [33] F. M. Han, X. D. Zhang. An ESPRIT-like algorithm for coherent DOA estimation. IEEE Antennas and Wireless Propagation Letters, 4: 443-446, 2005.
    [34] X. Xu, Z. F. Ye, Y. F. Zhang, C. Q. Chang. A deflation approach to direction of arrival estimation for symmetric uniform linear array. IEEE Antennas and Wireless Propagation Letters, 5(1): 443-446, 2006.
    [35] Z. F. Ye, X. Xu. DOA estimation by exploiting the symmetric configuration of uniform linear array. IEEE Transactions on Antennas and Propagation, 55(12): 3716-3720, 2007.
    [36] D. Garmatyuk, R. Narayanan, ECCM capabilities of an ultrawide-band bandlimited random noise imaging radar. IEEE Transactions on Aerospace and Electronic systems, 38(4): 1243–1255, 2002.
    [37] S. Ohmori, Y. Yamao, N. Nakajima. The future generations of mobile communications based on broadband access technologies. IEEE Communications Magazine, 38(12): 134-142, 2000.
    [38] K. Steiglitz, L.Mcbride. A technique for the identification of linear systems. IEEE Transactions on Automatic Control, 10(4): 461-464, 1965.
    [39] Y. Bresler, A. Macovski. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 34(5): 1081-1089, 1986.
    [40] P. Stoica, K. C. Sharman. Novel eigenanalysis method for direction estimation. IEE Proceedings F Radar and Signal Processing, 137(1): 19-26, 1990.
    [41] M. P. Clark, L. L. Scharf. Two dimensional modal analysis based on maximum likelihood. IEEE Transactions on Signal Processing, 42(6): 1443-1451, 1994.
    [42] M. Agrawal, S. Prasad. DOA estimation of wideband sources using a harmonic source model and uniform linear array. IEEE Transactions on Signal Processing, 47(3): 619-629, 1999.
    [43] A. B. Gershman, M. pesavento, M. G. Amin. Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays. IEEE Transactions on Signal Processing, 49(12): 2924-2934, 2001.
    [44] M. A. Doron, A. J. Weiss, H. Messer. Maximum-likelihood direction finding of wide-band sources. IEEE Transactions on Signal Processing, 41(1): 411-414, 1993.
    [45] S. M. Kay, V. Nagesh, J. Slisbury. Broadband detection based on two-dimensional mixed autoregressive model. IEEE Transactions on Signal Processing, 41(7): 2413-2428, 1993.
    [46] P. M. Schul, H. Messer. Optimal and sub-optimal broadband source location estimation. IEEE Transactions on Signal Processing, 41(9): 2752-2763, 1993.
    [47] N. Cadalli, O. Arikan. Wideband maximum likelihood direction and signal parameter estimation by using the tree-structured EM algorithm. IEEE Transactions on Signal Processing, 47(1): 201-206, 1999.
    [48] W. Ng, J. P. Reilly, T. Kirubarajan, J. R. Larocque. Wideband array signal processing using MCMC methods. IEEE Transactions on Signal Processing, 53(2): 411-426, 2005.
    [49] G. Su, M. Morf. The signal subspace approach for multiple wide-band emitter location. IEEE Transactions on Acoustics, Speech and Signal Processing, 31(6): 1502-1522, 1983.
    [50] M. Wax, T. Shan, T. Kailath. Spatio-temporal spectral analysis by eigenstructure methods. IEEE Transactions on Acoustics, Speech and Signal Processing, 32(8): 817-827, 1984.
    [51] M. Allam, A. Moghaddamjoo. Two-dimensional DFT projection for wideband direction-of-arrival estimation. IEEE Transactions on Signal Processing, 43(7): 1728-1732, 1995.
    [52] H. Wang, M. Kaveh. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Transactions on Acoustics, Speech and Signal Processing, 33(4): 823-831, 1985.
    [53] H. Wang, M. Kaveh. On the performance of signal-subspace processing, part II: coherent wide-band systems. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(11): 1583-1591, 1987.
    [54] H. Hung, M. Kaveh. Focussing matrices for coherent signal-subspace processing. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(8): 1272-1281, 1988.
    [55] H. Hung, M. Kaveh. Coherent wide-band ESPRIT method for directions-of-arrival estimation of multiple wide-band sources. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(2): 354-356, 1990.
    [56] M. Doron, A. Weiss. On focusing matrices for wideband array processing. IEEE Transactions on Signal Processing, 40(6): 1295-1302, 1992.
    [57] H. S. Hung, C. Y. Mao. Robust coherent signal-subspace processing for directions-of-arrival of wideband sources. IEE Proceedings-F Radar, Sonar Navigation, 141(5): 256-262, 1994.
    [58] S. Valaee, P. Kabal. Wideband array processing using a two-sided correlation transformation. IEEE Transactions on Signal Processing, 43(1): 160-172, 1995.
    [59] S. Valaee, P. Kabal. The optimal focusing subspace for coherent signal subspace processing. IEEE Transactions on Signal Processing, 44(3): 752-756, 1996.
    [60] S. Valaee, B. Champagne, P. Kabal. Localization of wideband signals using least-squaresand total least-squares approaches. IEEE Transactions on Signal Processing, 47(5): 1213-1222, 1999.
    [61] T. S. Lee. Efficient wideband source localization using beamforming invariance technique. IEEE Transactions on Signal Processing, 42(6): 1376-1387, 1994.
    [62] A. El-Keyi, T. Kirubarajan. Adaptive beamspace focusing for direction of arrival estimation of wideband signals. Signal Processing, 88: 2063-2077, 2008.
    [63] J. Krolik, D. Swingler. Focused wide-band array processing by spatial resampling. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(2): 356-360, 1990.
    [64] B. Friedlander, A. J. Weiss. Direction finding for wide-band signals using an interpolated array. IEEE Transactions on Signal Processing, 41(4): 1618-1634, 1993.
    [65] M. A. Doron, E. Doron, A. J. Weiss. Coherent wide-band processing for arbitrary array geometry. IEEE Transactions on Signal Processing, 41(1): 414-417, 1993.
    [66]雷中定,黄绣坤,张树京.宽带波达方向估计新方法及性能分析.电子学报, 26(3): 58-61, 1998.
    [67] T. Do-Hong, P. Russer. Wideband direction-of-arrival estimation in the presence of array imperfection and mutual coupling. in Proceedings of XII International Symposium on Theory Electrical Engineering, ISTET’03, July 6-9, Warsaw, Portland, 6: 25-28, 2003.
    [68] T. Do-Hong, P. Russer. An analysis of Wideband direction-of-arrival estimation for closely-spaced sources in the presence of array model errors. IEEE Microwave and wireless components letters, 13(8): 314-316, 2003.
    [69] K. M. Pasala, E. M. Friel. Mutual coupling effects and their reduction in wideband direction of arrival estimation. IEEE Transactions on Aerospace and Electronic systems, 30(4): 1116-1122, 1994.
    [70] G. H. Xu, T. Kailath. Direction-of-arrival estimation via exploitation of cyclostationarity-a combination of temporal and spatial processing. IEEE Transactions on Signal Processing, 40(7): 1775-1786, 1992.
    [71] G. Gelli, L. Izzo. Cyclostationarity-based coherent methods for wideband-signal source location. IEEE Transactions on Signal Processing, 51(10): 2471-2482, 2003.
    [72] E. D. D. Claudio, R. Parisi. WAVES: Weighted averaged of sinal subspaces for robust wideband direction finding. IEEE Transactions on Signal Processing, 49(10): 2179-2191, 2001.
    [73] K. M. Buckley, L. J. Griffiths. Broad-band signal subspace spatial-spectrum (BASS-ALE) estimation. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(7): 953-964, 1988.
    [74] Y. Grenier. Wideband source location through frequency-dependent modeling. IEEE Transactions on Signal Processing, 42(5): 1087-1096, 1994.
    [75]冯西安,黄建国.基于频域模型的宽带信号子空间谱估计方法.电子学报, 32(6), 965-967, 2004.
    [76] J. Krolik, D. Swingler. Multiple broad-band source location using steered covariance matrices. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(10): 1481-1494, 1989.
    [77] Y. S. Yoon, L. M. Kaplan, H. McClellan. TOPS: New DOA estimator for wideband signals. IEEE Transactions on Signal Processing, 54(6): 1977-1989, 2006.
    [78] H. Q. Yu, Z. T. Huang, J. Liu, Y. Y. Zhou. TOFS: a new DOA estimator for wideband sources. Journal of Astronautics, 28(5): 1304-1313, 2007.
    [79] K. Kumar, R. Rajagopal, P. Rao. Wide-band DOA estimation in the presence of correlated noise. Signal Processing, 52(1): 23-34, 1996.
    [80]李平安,许家栋,佟明安.未知噪声中相关宽带源的方向估计.电子科学学刊, 21(1): 136-140, 1999.
    [81] P. Palanisamy, N. Kalyanasundaram, A. Raghunandan. A new DOA estimation algorithm for wideband signals in the presence of unknown spatially correlated noise. Signal Processing, 89(10): 1921-1931, 2009.
    [82] S. H. Nawab, F. U. Dowla, R. T. Lacoss. Direction determination of wideband signals. IEEE Transactions on Acoustics, Speech and Signal Processing, 33(4): 1114-1122, 1985.
    [83] T. Do-Hong, P. Russer. Signal processing for wideband smart antenna array applications. IEEE Microwave Magazine, 3: 57-67, 2004.
    [84] W. L. Hsue, C. C. Yeh. Wideband forward-backward beamforming and its efficient computation methods. Signal Processing, 44: 285-297, 1995.
    [85] D. B. Ward, Z. Ding, R. A. Kennedy. Broadband DOA estimation using frequency invariant beamforming. IEEE Transactions on Signal Processing, 46(5): 1463–1469, 1998.
    [86] A. Bassias, M. Kaveh. Coherent signal-subspace processing in a sector. IEEE Transactions Systems Man Cybernet, 21(5): 1088-1100, 1991.
    [87] M. A. Doron, A. Nevet. Robust wavefield interpolation for adaptive wideband beamforming. Signal Processing, 88: 1579-1594, 2008.
    [88] E. D. D. Claudio. Asymptotically perfect wideband focusing of multiring circular arrays. IEEE Transactions on Signal Processing, 53(10): 3661-3673, 2005.
    [89] H. W. Chen, J. W. Zhao. Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources. Signal Processing, 85: 837-847, 2005.
    [90] L. Wang, J. H. Yin, T. Q. Chen. New direction of arrival estimation method for wideband coherent signals. Journal of Systems Engineering and Electronics, 19(3): 473-478, 2008.
    [91] F. Sellone. Robust auto-focusing wideband DOA estimation. Signal Processing, 86: 17-37, 2006.
    [92] D. V. Sidorovich, A. B. Gershman. Two-dimensinal wideband interpolated root-MUSIC applied to measured seismic data. IEEE Transactions on Signal Processing, 46(8): 2263-2267, 1998.
    [93] E. D. D. Claudio, R. Parisi. Robust ML wideband beamforming in reverberant fields. IEEE Transactions on Signal Processing, 51(2): 338-349, 2003.
    [94]陈洪光,余圣发,沈振康.基于一致聚焦的宽带信号波达方向估计.通信学报, 27(1): 64-68, 2006.
    [95] M. Zatman. Properties and applications of wideband Cramer-Rao Bound. IEEE Proceedings, 41-44, 1988.
    [96]张贤达.矩阵分析与应用.清华大学出版社, 2005.
    [97] G. H. Golub, C. F. V. Loan. Matrix Computation. Johns Hopkins University Press, Baltimore, MD, 1996.
    [98] R. A. Horn, C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
    [99] G. Rohan, A. P. Dimitris, J. M. Michael. Subspace direction finding with an auxiliary vector basis. IEEE Transactions on Signal Processing, 55(2): 758-763, 2007.
    [100] M. Wax. T. Kailath. Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech and Signal Processing, 33(2): 387-392, 1985.
    [101] M. Wax. I. Ziskind. Detection of the number of coherent signals by the MDL principle. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(8): 1190-1196, 1989.
    [102] Z. Zhu, S. Haykin, X. Huang. Estimating the number of signals using reference noise samples. IEEE Transactions on Aerospace and Electronic Systems, 27(3): 575-579, 1991.
    [103] J. H. Cozzens, M. J. Sousa. Source enumeration in a correlated signal environment. IEEE Transactions on Signal Processing, 42(2): 304-317, 1994.
    [104] Q. Wu, K. M. Wong. Determination of the number of signals in unknown noise environments-PARADE. IEEE Transactions on Signal Processing, 43(1): 362-365, 1995.
    [105] J. F. Gu, P. Wei, H. M. Tai. Detection of the number of sources at low signal-to-noise ratio. IET Signal Processing, 1(1): 2-8, 2007.
    [106] J. M. Xin, N. N. Zheng, A. Sano. Simple and efficient nonparametric method for estimating the number of signals without eigendecomposition. IEEE Transactions on Signal Processing, 55(4): 1405-1420, 2007.
    [107] J. Capon. High-resolution frequency-wavenumber spectrum analysis. IEEE Proceedings, 57(8): 1408-1418, 1969.
    [108] P. Stoica, J. Li, Z. Wang. On robust capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 39(3): 1702-1715, 2003.
    [109] C. Y. Qi, Y. L. Wang, Y. S. Zhang, Y. Han. Spatial difference smoothing for DOA estimation of coherent signals. IEEE Signal Processing Letters, 12(11): 800-802, 2005.
    [110] Z. Ye, Y. Zhang, X. Xu, C. Liu. Direction of arrival estimation for uncorrelated and coherent signals with uniform linear array. IET Radar, Sonar and Navigation, 3(2): 144-154, 2009.
    [111] A. Paulraj, T. Kailath. Eigenstructure methods for direction of arrival estimation in the presence of unknown noise fields. IEEE Transactions on Acoustics, Speech and Signal Processing, 34(1): 13-20, 1986.
    [112] J. P. L. Cadre. Parametric methods for spatial signal processing in the presence of unknown colored noise fields. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(7): 965-983, 1989.
    [113] K. Wong, J. Reilly, S. Qiao. Estimation of the directions of arrival of signals in unknown correlated noise, part I: the MAP approach and its implementation. IEEE Transactions on Signal Processing, 40(8): 2007-2017, 1992.
    [114] B. Goransson, B. Ottersten. Direction estimation in partially unknown noise fields. IEEE Transactions on Signal Processing, 47(9): 2375-2385, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700