自适应网格细化算法模拟地震波传播
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数值方法求解波动方程一直都是地球物理学界和计算数学界重要的研究课题。数值方法模拟地震波传播现象,可以为天然地震预测和地震波勘探提供理论依据。现有的数值方法使用非常细化的网格,可以得到很好的地震波传播模拟效果,但是采用非常细化的网格计算时,必然会增加计算时间和计算存储量。研究高效的数值方法模拟地震波传播现象,成为求解地震波动方程的关键问题。
     由于地下介质分布比较复杂,介质之间存在着波速变化,给地震波传播模拟造成了很大困难。高分辨率有限体积法可以得到波在不连续介质中传播的高分辨率的数值解,本文使用高分辨率有限体积法求解声波方程和弹性波方程,构造了波传播的算子,并对波传播算子进行修正限制;数值算例表明:该方法不但可以得到高分辨率的波场快照,而且有效地控制了数值振荡。通过数值解和精确解比较、频散分析,证明了高分辨率有限体积法模拟震波传播的有效性。
     为了提高地震波传播模拟的计算效率,本文提出了使用自适应网格细化算法结合高分辨率有限体积法求解地震声波和弹性波方程。首先,使用高分辨率有限体积法得到基网格上的数值解,接着,对数值解进行截断误差估计,根据预先设定的阈值,确定需要进行网格细化的区域,将得到的细化网格嵌套在基网格上。自适应网格细化算法自动生成层层嵌套的细化网格,时间步长与空间步长同时细化,采用树状数据结构存储网格点。本文分别使用自适应网格和非自适应网格求解地震声波和弹性波方程,并对计算时间和计算存储量进行比较,结果表明自适应网格细化算法的高效性。
     提升算法得到的第二代小波变换相对于小波变换运算速度更快,并且保持了多尺度分解的特性。本文利用第二代小波的快速变换和多尺度分解性质,构造了多尺度层层嵌套的自适应网格求解二维声波方程,网格点的空间导数使用有限差分法得到,并给出了声波数值传播的波场快照、计算精度的分析和计算效率的比较。数值实验结果,说明了基于第二代小波的自适应网格求解声波方程的可行性。
Numerical method solving wave equation has been always an important research topic in the fields of geophysics and computiaonal mathematics. Numerical modeling of seismic wave propagation phenomena can provide a theoretical basis for earthquake prediction and seismic exploration. Existing numerical methods modeling of wave propagtion can gain good numerical solution using the fine mesh, but the computional time and computional storage will be increased. It has been the key to solving seismic wave equation that using high efficient numerical method modeling of seismic wave propagation phenomena.
     It is difficult for numerical modeling of seismic wave propagtion, because the subsurface media has complex distribution and wave volocity changing between discontinuous media. High resolution numerical solution can be obtained wave propagation in discontinuous media using high resolution finite volume method. In the thesis, high resolution finite volume method has been used to solve acoustic and elastic wave equations. The wave propagation operator is constructed, and it is implemented by wave correction limited. Numerical examples show that the numerical method can not only obtain high resolution snapshots of wave field, but also effectively control of numerical oscillations. The comparison of numerical solutions and exact solutions is given, and dispersion analysis is obtained. It is proved that the numerical method is effective for solving seismic wave equations.
     In order to improve the computational efficiency for modeling of seismic wave propagation, a combination of adaptive mesh refinement and high resolution finite volume algorithm is presented for solving seismic acoustic and elastic wave equations. The numerical solutions are obtained using high resolution finite volume method on the coarse mesh, then the local truncation error is gained by the error estimation procedure. If the truncation error is greater than a given threshold value, the local rectangular region is refined. The fine mesh will be nested in the coarse mesh. Adaptive mesh refinement algorithm can automatic generated of nested-type of adaptive mesh, and the time step with space step is refined. The grid pionts are stored by a tree data structure. Using adaptive mesh and non-adaptive solve of seismic acoustic and elastic equations, the computational time and compuation storage will be compared, the results indicated that adaptive mesh refinement algorithm is high efficient.
     Second generation wavelet transform is obtained by lifting scheme, its compational speed is faster than wavelet transform, and it maintains the characteristic of multi-level decomposition. In the thesis, second generation wavelet is used to construct nested-type adaptive mesh solving of two-dimensional acoustic wave equation, and the spatial derivatives of grid points are obtained by finite difference method. The snapshots of wave field are obtained by numerical modeling of acoustic wave propagation. Compuational accuracy analysis and the comparesion of computational efficiency are given. The applicability of adaptive mesh based on second generation wavelet solving wave equation is proved by numerical experiment results.
引文
[1] Alterman Z, Karal F C. Propagation of elastic waves in layered media by finite difference methods. Bull. Seism. Soc. Am., 1968, 58(1):367-398
    [2] Alford R M, Kelly K R, Boore D M. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 1974, 39(6):834~842
    [3] Kelly K R, Ward R W, Treitel S, Alford R M. Synthetic seismograms: a finite-difference approach. Geophysics, 1976, 41(1):2-27
    [4] Virieux J, Madariaga R. Dynamic faulting studied by a finite difference method. Bull. Seism. Soc. Am., 1982, 72(2):345-369
    [5] Krankel A, Clayton R W. A finite-difference simulation of wave propagation in two-dimensional random media. Bull. Seism. Soc. Am., 1984, 74(6):2167-2186
    [6] Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 1984, 49(5):533-549
    [7] Vidale J E, Clayton R W. A stable free-surface boundary condition for two-dimensional elastic finite-difference wave simulation. Geophysics, 1986, 51(12):2247-2249
    [8] Vidale J. Finite-difference calculation of travel times. Bull. Seism. Soc. Am., 1988, 78(6):2062-2076
    [9] Levander A R. Fourth-order finite-difference P-SV seismograms. Geophysics, 1988, 53(11):1425-1436
    [10] Long L T, Liow J S. A transparent boundary for finite-difference wave simulation. Geophysics, 1990, 55(2):201-208
    [11] Zingg Z W, Lomax H, Jurgens H. High-accuracy finite-difference schemes for linear wave propagation. SIAM J. Sci. Comput., 1996, 17(2):328-346
    [12] Jo C H, Shin C, Suh J H. An optimal 9-piont, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics, 1996, 61(2):529-537
    [13] Igel H, Mora P, Riollet. Anisotropic wave propagation through finite-difference grids. Geophysics, 1995, 60(4):1203-1216
    [14] Dai N, Vafidis A, Kanasewich E R. Wave propagation in heterogeneous, porous media, A velocity-stress, finite-difference method. Geophysics, 1995, 60(2):327-340
    [15] Bohlen T. Parallel 3-D viscoelastic finite difference seismic modeling. Comput. Geosci., 2002, 28:887-899
    [16] Yang D, Lu M, Wu R, Peng J. An optimal nearly analytic discrete method for 2D acoustic and elastic wave equations. Bull. Seism. Soc. Am., 2004, 94(5):1982-1991
    [17] Yang D, Peng J, Lu M, Terlaky T. Optimal nearly analytic discrete approximation to the scalar wave equation. Bull. Seism. Soc. Am., 2006, 96(3):1114-1130
    [18] Levander A R. Fourth-order finite-difference P-SV seismograms. Geophysics, 1988, 53(11):1425-1436
    [19] Moczo P, Kristek J, Halada L. 3D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion. Bull. Seism. Soc. Am., 2000, 90(3):587-603
    [20]董良国,马在田,曹景中等.一阶弹性波方程交错网格高阶差分解法.地球物理学报, 2000, 43(3):411-419
    [21] Moczo P, Kristek J, Vavrycuk V, Halada L. 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seism. Soc. Am., 2002, 92(8):3042-3066
    [22] Kristek J, Moczo P. Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D four-order staggered-grid finite-difference modeling. Bull. Seism. Soc. Am., 2003, 93(5):2273-2280
    [23] Hustedt B, Operto S, Virieux J. Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modeling. Geophys. J. Int., 2004, 157:1269-1296
    [24] Bohlen T, Saenger E H. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophysics, 2006, 71(4):109-115
    [25] Kosloff D. A Fourier method solution for the time dependent Schrodinger equation as a tool in molecular dynamics. J. Comput. Phys., 1983, 52:35-53
    [26] Furumura T, Takenaka H. A wraparound elimination technique for the pseudospectral wave synthesis using an antiperiodic extension of the wavefield. Geophysics,1995, 60(1):302-307
    [27] Fornberg B. The pseudospectral method: Accurate representation of interfaces in elastic wave calculations. Geophysics, 1998, 53(5):625-637
    [28]张文生,何樵登.二维横向各向同性介质的伪谱法正演模拟.石油地球物理勘探, 1998, 33(3):310-319
    [29] Huang S H, Forsyth D W. Modelling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multidomain pseudo-spectral method. Geophys. J. Int., 1998, 113:726-740
    [30] Fornberg B, Driscoll T A. A fast spectral algorithm for nonlinear wave equations with linear dispersion. J. Comput. Phys., 1999, 155:456-467
    [31] Wang Y, Takenaka H. A multidomain approach of the Fourier pseudospectral method using discontinuous grid for elastic wave modeling. Earth Planets Space, 2001, 53:149-158
    [32] Carcione J M, Kosloff D, Behle A, Seriani G. A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media. Geophysics, 1992, 57(12):1593-1607
    [33] Igel H. Wave propagation in three-dimensional spherical sections by the Chebyshev sperctal method. Geophys. J. Int., 1999, 136:559-566
    [34]杜启振.各向异性黏弹性介质伪谱法波场模拟.物理学报, 2004, 53(12):4428- 4434
    [35] Faccioli E, Maggio F, Paolucci R, Quarteroni A. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J. Seismol. 1997, 1:237-251
    [36] Komatitsch D, Vilotte J P. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seism. Soc. Am., 1998, 88(2):368-392
    [37] Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int., 1999,139:806-822
    [38] Komatitsch D, Barnes C, Tromp J. Wave propagation near a fluid-solid interface: A spectral-element approach. Geophysics, 2000, 65(2):623-631
    [39] Komatitsch D, Barnes C, Tromp J. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 2000, 65(4):1251-1260
    [40] Lee S J, Chen H W, Liu Q, et al. Three-Dimensional simulations of seismic-wave propagation in the Taipei Basin with realistic topography based upon the spectral-element method. Bull. Seism. Soc. Am., 2008, 98(1):253-264
    [41] Becache E, Joly P, Tsogka C. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J. Numer. Anal., 2000, 37(4):1053-1084
    [42] Easwaran V, Lauriks W, Coyette J P. Displacement-based finite element method for guided wave paopagation problems: Application to poroelastic media. J. Acoust. Soc. Am., 1996, 100(5):2989-3002
    [43]周辉,徐世浙,刘斌,何樵登.各向异性介质中波动方程有限元模拟及其稳定性.地球物理学报, 1997, 40(6):833-841
    [44] Kay I, Krebes E S. Applying finite element analysis to the memory variable formulation of wave propagation in anelastic media. Geophysics, 1999, 64(1):300-307
    [45] Zhang J, Verschuur D J. Elastic wave propagation in heterogeneous anisotropic media using the lumped finite-element method. Geophysics, 2002, 67(2):625-638
    [46]杜启振,杨慧珠.方位各向异性黏弹性介质波场有限元模拟.物理学报, 2003, 52 (8):2010-2014
    [47] Chakraborty A, Gopalakrishnan S, A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids. Struct., 2003, 40:2421-2448
    [48] Babuska I, Rheinboldt W C. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal., 1978, 15(4):736-754
    [49] Berger M J. Adaptive mesh refinement for hyperbolic partial differential equations. [Ph.D. Thesis]. CA: Stanford University, 1982
    [50] Bolstad J H. An adaptive finite difference method for hyperbolic systems in one space dimension. [Ph.D Thesis]. CA: Stanford University,1982
    [51] Berger M J, Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 1984,53:484-512
    [52] Sweldens W. The Lifting Scheme: A new philosophy in biorthogonal wavelet constructions. In: Wavelet Applications in Signal and Image Processing III, SPIE, 1995,68-79
    [53] Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. ,1996, 3(2): 186-200
    [54] Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 1998, 29(2): 511-546
    [55] Daubechies I,Sweldens W. Factoring Wavelet Transforms into Lifting Steps. J. Fourier Anal. Appl., 1998,4(3), 247-269
    [56] Vasilyev O V, Bowman C. Second-Generation Wavelet Collocation Method for the Solution of Partial Differential Equations. J. Comput. Phys., 2000, 165:660-693
    [57] Berger M J, Jameson A. Automatic adaptive grid refinement for the Euler equations. AIAA J., 1985, 23:561-568
    [58] Berger M J. Data structures for adaptive grid generation. SIAM J. Sci. Stat. Comput., 1986, 7 (3): 904-916
    [59] Berger M J, Colella P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 1989, 82:64-84
    [60] Berger M J, Rigoutsos I. An algorithm for point Clustering and Grid Generation. IEEE. T. Syst. Man. Cy., 21 (1991) 1278-1286
    [61] Trangenstein J A. Adaptive mesh refinement for wave propagation in nonlinear solids. SIAM J. Sci. Comput., 1995, 16(4): 819-839
    [62] Hornung R D, Trangenstein J A. Adaptive mesh refinement and multilevel iteration for flow in porous media. J. Comput. Phys., 1997, 136: 522-545
    [63] Berger M J, LeVeque R J. Adaptive mesh refinement using wave-propagation algorithms for hyperbolic system. SIAM J. Numer. Anal., 1998, 35(6):2298-2316
    [64] Grauer R, Marliani C, Germaschewski K. Adaptive mesh refinement for singular solutions of the incompressible Euler equations. Phys. Rev. Lett., 1998 80(19): 4177-4180
    [65] Roma A M, Peskin C S, Berger M J. An adaptive version of the immersed boundary method. J. Comput. Phys., 1999, 153:509-534
    [66] Aftosmis M J, Berger M J. Multilevel error estimation and adaptive h-refinement for Cartesian meshes with embedded boundaries. AIAA Paper 2002-0863, January 2002
    [67] Howell H L, Greenough J A. Radiation diffusion for multi-fluild Eulerian hydrodynamics with adaptive mesh refinement. J. Comput. Phys., 2003, 184:53-78
    [68] Pretorius F, Choptuik M W. Adaptive mesh refinement for coupled elliptic-hyperbolic systems. J. Comput. Phys., 2006, 218:246-274
    [69] Vasilyev O V, Kevlahan N K-R. Hybird wavelet collocation-Brinkman penalization method for complex geometry flows. Int. J. Numer. Meth. Fluids, 2002, 40:531-538
    [70] Fujii M, Hoefer W J R. Interpolating wavelet collocation method of time dependent Maxwell , s equations: characterization of electrically large optical waveguide discontinuities. J. Comput. Phys., 2003, 186:666-689
    [71] Vasilyev O V. Solving multi-dimensional evolution problems with localized structures using second generation wavelets. Int. J. Comput. Fluid D., 2003, 17(2):151-168
    [72] Vasilyev O V, Gerya T V, Yuen D A. The application of multidimensional wavelet to unveiling multi-phase diagrams and in situ physical properties of rocks. Earth. Planet. Sc. Lett., 2004, 223:49-64
    [73] Alam J M, Kevlahan N K-R, Vasilyev O V. Simultaneous space-time adaptive solution of nonlinear parabolic differential equations. J. Comput. Phys., 2006, 214:829-857
    [74] Wang Y B, Yang H Z. Second generation wavelet based on adaptive solution of wave equation. Int. J. Nonlinear Sci. Numer. Simul., 2006, 4:435-438
    [75] Mehra M, Kevlahan N K-R. An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. J. Comput. Phys., 2008, 227:5610-5632
    [76] Trangenstein J A. Adaptive mesh refinement for wave propagation in nonlinear solids. SIAM J. Sci. Comput., 1995, 16(4):819-839
    [77] Qian J, Symes W W. An adaptive-difference method for traveltimes and amplitudes. Geophysics, 2002, 67(1):167-176
    [78] Choi D, Brown J D, Imbiriba B, et al. Interface conditions for wave propagation through mesh refinement boundaries. J. Comput. Phys., 2004, 193:398-425
    [79]宓铁良,孙兵兵,杨慧珠.基于第二代小波自适应网格的声波方程波传模拟.地球物理学报, 2009,52(11):2862-2869
    [80] Mi T, Ma J, Chauris H, Yang H. Multilevel adaptive mesh refinement modeling for wave propagation in layer media. J. Seism. Explor., 2010, 19:121-139
    [81] LeVeque R J, Shyue K M. Two-dimensional front tracking based on high resolution wave propagation methods. J. Comput. Phys., 1996, 123:354-368
    [82] Zhang C, LeVeque R J. The immersed interface method for acoustic wave equations with discontinuous coefficients. Wave Motion, 1997, 25:237-263
    [83] LeVeque R J. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 1997, 131:327-353
    [84] LeVeque R J. Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys., 1998, 146:346-365
    [85] Trangenstein J A. A second-order Godunov algorithm for two-dimensional solid mechanics. Comput. Mech., 1994, 13:343-359
    [86] Dormy E, Tarantola A. Numerical simulation of elastic wave propagation using a finite volume method. J. Geophys. Res., 1995, 100( B2): 2123–2133
    [87] Fogarty T R, LeVeque R J. High-resolution finite-volume methods for acoustic waves in periodic and random media. J. Acoust. Soc. Am., 1999, 106(1):17-28
    [88] LeVeque R J, Yong D H. Solitay waves in layered nonlinear media. SIAM J. Appl. Math., 2003, 63(5):1539-1560
    [89] Tadi M. Finite volume method for 2D elastic wave propagation. Bull. Seism. Soc. Am., 2004, 94(4):1500-1509
    [90]宓铁良.高分辨率有限体积法模拟二维声波波传.地球物理学进展(接收)
    [91] Dumbser M, Kaser M. An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes II: the three-dimensional isotropic case. Geophys. J. Int., 2006, 167:319-336
    [92] Dumbser M, Kaser M. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys., 2007, 221:693-723
    [93] Davis S F, Flaherty J E. An adaptive finite element method for initial-boundary value problems for partial differential equations. SIAM J. Sci. Stat. Comput., 1982, 3(1):6-27
    [94] Kohn S R, Baden S B. Parallel software abstractions for structured adaptive mesh methods, J. Parallel Distr. Com., 2001, 61:713-736
    [95] Debreu L, Vouland C, Blayo E. AGRF: Adaptive grid refinement in Fortran. Comput. Geosci-UK., 2008, 34:8-13
    [96] Parashar M, Browne J C. On partitioning dynamic adaptive grid hierarchies. IEEE Proceedings of the 29th Annual Hawaii International Conference on System Sciences, 1996, 604-613
    [97] Sinha S, Parsshar M. Adaptive system sensitive partitioning of AMR applications on heterogeneous clusters. Cluster Computing, 2002, 5:343-352
    [98] Li X, Parashar M. Hierarchical partitioning techniques for structured adaptive mesh refinement applications. The Journal of Supercomputing, 2004, 28:265-278
    [99] Virieux J. SH-wave propagation in heterogeneous meida: velocity-stress finite-difference method. Geophysics, 1984, 49:1933-1957
    [100] LeVeque R J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002
    [101] Fogarty T. Finite volume methods for acoustics and elastic-plasticity with damage in a heterogeneous medium: [Ph.D. Thesis]. Washington: UW, 2001
    [102] Langseth J O, LeVeque R J. A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys., 2000, 165:126-166
    [103] Bale D S, LeVeque R J, Mitran S, Rossmanith J A. A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci, Comput., 2002, 24(3): 955-978
    [104]陆基梦.地震勘探原理.东营:石油大学出版社, 2001
    [105] Zhang C. Immersed interface methods for hyperbolic systems of partial differential equations with discontinuous coefficients: [Ph.D. Thesis]. Washington: UW, 1996
    [106] Virieux J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 51(4):889-901
    [107] Lombard B, Piraux J, Gelis C, et al. Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves. Geophys. J. Int., 172(1):252-261,2008
    [108] de Hoop A T. A modification of Carginard’s method for solving seismic pulse problems. Appl. Sci. Res., 1960, 8(B): 349-356
    [109] Bamberger A, Chavent G, Lailly P, Etude de shemas numeriques pour les equations de 1’elstodynamique lineaire: Rapport de recherche 41, INRIA, France, 1980
    [110]王一博.基于小波变换和第二代小波变换方法求解地震波动方程[博士学位论文].北京:清华大学, 2006
    [111] He Y, Chen J, Xiang J, et al. Adaptive multiresolution finite element method on second generation wavelets. . Elem. Anal. Des., 2007, 43:566-579
    [112] Vasilyev O V, Kevlahan N K-R, An adaptive multilevel wavelet collocation method for elliptic problems. J. Comput. Phys., 2005, 206:412-431
    [113] Kevlahan N K-R, Vasilyev O V, An adaptive wavelet collocation method for fluid- structure interaction at high Reynolds numbers. SIAM J. Sci., Comput. 2005, 26(6): 1984-1915
    [114] Mehra M, Kevlahan N K-R. An adaptive multilevel wavelet solver for elliptic equations on an optimal sphere geodesic grid. SIAM J. Sci., Comput. 2008, 30(6):3073-3086
    [115] Mehra M, Kevlahan N K-R. An adaptive multilevel wavelet method for the solution of partial differential equations on sphere. J. Comput. Phys., 2008, 227:5610-5632
    [116] Yang D, Teng J, Zhang Z, et al. A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bull. Seism. Soc. Am., 2003, 93(2):882-890

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700