基于弹性波的地下管线水平导向钻随钻探测理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平导向钻是当前非开挖市政建设的主要设备之一。由于其施工过程是“不可见”的,必须准确探测施工区附近的地下管线,否则会带来很大的施工风险。本文针对当前地下管线探测方法在规避施工风险方面存在的问题,在国家电网公司重大基础研究项目的资助下,应用弹性波探测原理,开展地下管线水平导向钻随钻探测理论与技术的研究,通过在钻头处安装探测设备,随钻同步探测施工轨迹附近的掩埋管线或障碍物的分布状况,这对促进水平导向钻安全施工和城市地下管线的规范化管理具有重要意义。本文主要研究工作及结论如下:
     1、分析当前城市地下管线探测技术的现状及不足,结合水平导向钻施工工艺和管线探测工艺,应用弹性波探测原理,提出了基于弹性波的水平导向钻随钻探测方案。
     2、根据随钻探测的环境条件和工作特点,建立了随钻探测土介质中有限时长力源边界激发的弹性波圆柱散射模型,并针对其特殊边界条件造成的求解困难,采用波函数展开法和Graf加法定理,分析求解单根管线探测目标弹性波的分布模式和传播规律。研究发现,在径向力源激励和近距离探测条件下,接收信号中纵波和横波并存,信号幅值受土介质与目标管线的阻抗匹配程度、目标管线几何参数等的制约。研究结果为开展随钻弹性波探测提供了理论依据。
     3、针对地下现存管线分布复杂、类型很多,探测系统数学模型难以得到解析解的问题,采用有限元方法建立了地下管线随钻探测系统的有限时长力源激发的弹性波散射数值分析模型。从弹性波传播特性和接收信号特征两个方面对其进行了正演分析,明确了弹性波能量场分布的方向性、复杂管线条件下弹性波的传播特征及接收信号的频谱特性。研究结果对随钻探测系统探测能力分析及探测信号的分析判读具有重要的指导意义。
     4、针对探测波场接收信号易混叠而采用求解系统脉冲响应序列提高判读性所带来的病态特征问题,研究了对病态问题的规整化解决方法—L1模解卷积方法和基于粒子群优化的Bayes解卷积方法,比较了两种方法解算效果以及计算效率,结果表明两种方法宜结合使用,互补地应用于探测系统的在线解算和离线分析。同时,针对随钻探测弹性波圆周扫描探测的特点,提出了时延补偿聚焦成像技术,提高了管线探测系统对探测目标的判读能力。
     5、根据随钻探测工作环境决定的系统结构设计要求,以及系统小型化、实时性的要求,设计和开发了水平导向钻随钻弹性波探测试验系统,并进行了工程试验测试。通过试验,验证了本文提出的理论分析模型、探测信号分析及成像算法的正确性和可行性,同时也表明了所研制的试验系统能有效探测水平导向钻施工路径附近近距离管线以及其它障碍物。
     总之,本文针对水平导向钻规避施工风险的问题,基于弹性波理论,提出了一种新颖的地下管线随钻探测方法。对其探测原理进行了深入分析,归纳总结了随钻探测弹性波传播规律,提出了适用于随钻探测系统的信号解卷积方法和探测波场成像技术,并设计开发了一套水平导向钻随钻探测试验系统。基于弹性波的地下管线水平导向钻随钻探测是一项具有挑战性的值得研究的创新技术,具有重要的技术推广和工程实际应用价值。
Horizontal directional drilling (HDD) is one of the most widely-used trenchless technologies in municipal infrastructure construction. In HDD process, it is of great importance to detect the pipelines buried around the drilling tracks correctly while drilling. Otherwise, the drilling process may suffer very high risk. However, there exist some deficiencies in current underground pipelines detection methods and equipments, and hazard accidents are hardly avoided in HDD construction.
     In this thesis, funded by the Key Development Program for Basic Research of STATE GRID Corporation of China, a novel solution to the online detection while drilling based on elastic wave propagation principles is proposed, and an experimental system is developed and tested. The main work can be summarized as:
     1. The current underground pipelines detection methods and equipments are systematically reviewed. This tells the fact that almost all of these methods and equipments operate on ground surfaces and in the way of offline. Unlike the current systems, a novel online detection solution is firstly outlined based on elastic wave detection principles. The proposed design is desired to combine the detection process and drilling process of HDD together as a whole.
     2. Considering HDD operation modes, constrains and other assumptions, a cylindrical elastic wave scattering model under linear limited width pulse boundary excitation is established. The model is then solved by using the combination of wave function expansion and Graf addition theorem, in order to deal with the complicated boundary conditions. As a typical case, the elastic wave propagation pattern corresponding to a single underground pipeline is thoroughly analyzed. It is shown that, in the situation of radial power excitation for close target detection, the longitudinal waves are the major reflected waves, although there also exist reflected transverse waves and surface waves. The amplitude of received reflected waves is determined by many factors, mainly by the impedance matching between the target pipelines and the soil, and the geometry parameters of the target pipelines. These works provide a basic foundation for online target detection while HDD drilling.
     3. It is hard to get analytical solutions to the reflected waves in the situation that multiple pipelines are distributed complicatedly. To overcome this difficulty, a simulation model based on Finite Element Method (FEM) is established, the wave propagation disciplines and the characteristics of received signals are thoroughly studied using this model. The results provide foundation for detection area ascertaining and received signals interpretation.
     4. In the process of detection while drilling, the overlap of the received reflected signals from complicated objects causes difficulties in signals interpretation. In order to solve this problem, two deconvolution methods, L1 norm deconvolution and Bayes deconvolution based on particle swarm optimization, are investigated. These two deconvolution methods are compared using the indice of the resolution and the time of calculation. The results show that both methods have advantages and disadvantages, the Bayes deconvolution is more suitable for online calculating and the L1 norm deconvolution is more suitable for offline analysis. While the HDD is drilling slowly, the detection system is scanning in circle, this makes it possible to compensate and enhance the target wave image on the ground terminal using the information from multiple cycles, thus, an elastic wave imaging method based on time delay compensation is proposed, and this has improved the resolution of the wave image of the underground targets.
     5. An experimental HDD online detection system is developed. Some demonstration experiments are implemented on HDD testing and training sites, as well as in practical construction projects. The results show that the proposed design and the theoretical analysis are reasonable, the detection and imaging techniques are effective, and the experimental system shows desired performance in detecting underground pipelines closely around the drilling tracks within one meter.
     In summary, the thesis has proposed a novel solution to the online detection while drilling based on elastic wave propagation principles, developed and tested an experimental system. The solution and system developed can reduce the risk for HDD construction process.
引文
[1] Ariaratnam S. T. Survey questionnaire results of the current level of knowledge on trenchless technologies in China[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 802-810.
    [2] Yu H. N., Kim S. S., Hwang I. U., Lee D. G. Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes[J]. Composite Structures, 2008, 86(1): 285-290.
    [3]邹延延.地下管线探测技术综述[J].勘探地球物理进展, 2006.2, 29(1): 14-19.
    [4] Kramer S. R. Introduction to trenchless technology[M]. Kluwer Academic Press, 1992.
    [5]颜纯文,蒋国盛,叶建良.非开挖铺设地下管线工程技术[M].上海:上海科学技术出版社, 2005.
    [6] Hayward P. Trenchless evolution continues[J]. No-Dig International, 2001, (7): 15-19.
    [7]徐涛.水平定向钻进随钻测量方法及定位技术研究[D].长沙:国防科技大学,博士学位论文, 2006.
    [8] Tregoing C. E. Trenchless technology research in the UK water industry[J]. Tunnelling and Underground Space Technology, 1996, 11(S2): 61-66.
    [9] Zaneldin E. K. Trenchless construction: An emerging technology in United Arab Emirates[J]. Tunnelling and Underground Space Technology, 2007, 22(1): 96-105.
    [10]颜纯文, D.Stein.非开挖地下管线施工技术及其应用[M].北京:地震出版社, 1999.
    [11] Ma B. S., Najafi M. Development and applications of trenchless technology in China[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 476-480.
    [12]颜纯文.风景这边独好-2009年非开挖行业调查与回顾[J].非开挖技术, 2010, (1): 1-9.
    [13]马孝春,苏焕忠.我国地下管道非开挖修复技术现状与展望[J].探矿工程(岩土钻掘工程), 2009, 36(增刊): 342-345.
    [14]曹侃.非开挖定向铺管施工技术[J].市政技术, 2010, 28(04): 78-80.
    [15]陈妮.非开挖定向钻技术在城市燃气建设中的应用[J].山西建筑, 2008, (27): 186-187.
    [16]王瑞,王伯雄,康健,张金.水平定向对接穿越及导向技术研究[J].探矿工程(岩土钻掘工程), 2009, 36(09): 69-71.
    [17]施继杨,丁国亮,陈小平.论市政工程中城市管道施工技术[J].价值工程, 2010, 29(14): 69.
    [18] Chapman D. N., Ng P. C. F., Karri R. Research needs for on-line pipeline replacement techniques[J]. Tunnelling and Underground Space Technology, 2007, 22(5-6): 503-514.
    [19] Chapman D. N., Rogers C. D. F., Burd H. J., Norris P. M., Milligan G. W. E. Research needs for new construction using trenchless technologies[J].Tunnelling and Underground Space Technology, 2007, 22(5-6): 491-502.
    [20] Chin W. S., Lee D. G. Development of the trenchless rehabilitation process for underground pipes based on RTM[J]. Composite Structures, 2005, 68(3): 267-283.
    [21] Bearden D. P., Lang G. New pipe thruster technology enhances trenchless technology options[C]. NASTT 2010 Conference, 2010.
    [22]刘兵,尹江健,赵云.非开挖技术及其在反恐怖作战中的可能应用[J].国防科技, 2005, (6): 39-42.
    [23] O'Reilly M., Stovin V. Trenchless construction: risk assessment and management[J]. Tunnelling and Underground Space Technology, 1996, 11(S1): 25-35.
    [24] Syachrani S., Jeong H. S., Rai V., Chae M. J., Iseley T. A risk management approach to safety assessment of trenchless technologies for culvert rehabilitation[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 681-688.
    [25]蔡珍红,杨文柱.地下管线建设应用非开挖技术的风险分析[J].安装, 1999, (03): 41-43.
    [26]沈华,马保松,吴浪辉,肖威.水平定向钻穿越工程的项目风险评价[J].探矿工程(岩土钻掘工程), 2010, 37(03): 62-65.
    [27] Broere W., Chapman D. N., Rogers C. D. F. The research community's approach to buried infrastructure challenges and creating trenchless technology solutions[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 651-651.
    [28]张忠林.“穿地龙”机器人转向机构与位姿检测研究[D].哈尔滨:哈尔滨工程大学,博士学位论文, 2006.
    [29] Jim C. Y. Protection of urban trees from trenching damage in compact city environments[J]. Cities, 2003, 20(2): 87-94.
    [30] Zhao W., Nassar R., Hall D. Design and reliability of pipeline rehabilitation liners[J]. Tunnelling and Underground Space Technology, 2005, 20(2): 203-212.
    [31] Zwierzchowska A. The optimum choice of trenchless pipe laying technologies[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 696-699.
    [32]王驰,刘志锋.非开挖技术在天然气管道铺设中的应用[J].山西建筑, 2010, 36(08): 200-202.
    [33]王欢,王瑞,张淑洁.非开挖管道修复技术及相关建议[J].油气储运, 2008, 229(01): 43-46,63,4.
    [34]张付生.非开挖技术在城市基础设施建设中的应用[J].山西建筑, 2009, 35(35): 128-129.
    [35]赵付安.非开挖顶管施工在管道排水工程中的应用[J].黑龙江交通科技, 2010, 33(03): 6-7.
    [36] Ariaratnam S. T., Chan W., Choi D. Utilization of trenchless construction methods in mainland China to sustain urban infrastructure[J]. Practice Periodical on Structural Design and Construction, 2006, 11(3): 134-141.
    [37] Duan B. T. Trenchless technology in China[J]. Underground Construction, 2002, 57(11): 40-42.
    [38] Kramer S. R., Rodenbaugh T. J., Conroy M. W. The use of trenchless technologies for transmission and distribution projects[C]. Transmission and Distribution Conference, Proceeding of the 1994 IEEE Power Engineering Society, 1994: 302-308.
    [39] Najafi M. Trenchless technology: pipeline and utility design, construction, and renewal[M]. McGraw-Hill Press, 2004.
    [40]高莉,陈建梅.非开挖施工技术的应用[J].科技创新导报, 2009, (06).
    [41]何江.非开挖铺设地下管线技术的发展现状[J].管道技术与设备, 2003, (2): 18-21.
    [42]孙平贺,乌效鸣,马保松.北美非开挖技术发展近况-水平定向钻进应用方面[J].非开挖技术, 2010, (2): 3-6.
    [43]叶建良,蒋国盛,窦斌.非开挖铺设地下管线施工技术与实践[M].武汉:中国地质大学出版社, 2000.
    [44]张志华,张立刚,申金生.对中国非开挖技术现状的一些看法[J].非开挖技术, 2007, (5): 1-2.
    [45] Clarke I.水平定向钻进的最新进展[J].地质装备, 2004, (01).
    [46]谷众源,宋喆.水平定向非开挖地下管线三维探测成像技术的应用[J].上海电力, 2010, (02).
    [47] Lueke J. S., Ariaratnam S. T. Surface heave mechanisms in horizontal directional drilling[J]. Journal of Construction Engineering and Management, 2005, 131(5): 540-547.
    [48] Ariaratnam S. T., Allouche E. N. Suggested practices for installations using horizontal directional drilling[J]. Practice Periodical on Structural Design and Construction, 2000, 5(4): 142-149.
    [49] Willoughby D. A. Horizontal directional drilling: utility and pipeline applications[M]. McGraw-Hill Press, 2005.
    [50] Allouche E. N., Ariaratnam S. T. Horizontal directional drilling: profile of an emerging industry[J]. Journal of Construction Engineering and Management, 2000, 126(1): 68-76.
    [51] Gelinas M., Polak M. A., McKim R. Field tests on HDPE pipes installed using horizontal directional drilling[J]. Journal of Infrastructure Systems, 2000, 6(4): 130-137.
    [52]高明. PE管材在上海应用现状与展望[J].上海建材, 2008, 146(04): 11-12.
    [53]孙跃平.日本的管道非开挖修复技术现状及其评价方法[J].上海水务, 2006, 22(04): 22-23.
    [54]李朝仪,唐学钫,叶文建.水平定向钻进技术在砂卵砾石层中的成功应用[J].天然气工业, 2009, 29(12): 87-89, 148-149.
    [55] Cooper G. A. Directional drilling[J]. Scientific American, 1994, 270(5): 82-87.
    [56] Allouche E. N., Ariaratnam S. T., Biggar K. W. Environmental remediation using horizontal directional drilling: applications and modeling[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 1998, 2(3): 93-99.
    [57] Allouche E. N., Ariaratnam S. T., Biggar K. W. Horizontal sampling: a new direction in site characterization[J]. Tunneling and Underground Space Technology, 1997, 12(S1): 17-25.
    [58] Griffin J. How directional drilling has changed everything[J]. ConstructionEquipment, 2001, 103(3): 84-92.
    [59] Polak M. A., Lasheen A. Mechanical modelling for pipes in horizontal directional drilling[J]. Tunneling and Underground Space Technology, 2001, 16(S1): 47-55.
    [60] Chehab A. G., Moore I. D. Parametric study examining the short and long term response of HDPE pipes when installed by horizontal directional drilling[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 782-794.
    [61] Cholewa J. A., Brachman R. W. I., Moore I. D. Stress-strain measurements for HDPE pipe during and after simulated installation by horizontal directional drilling[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 773-781.
    [62] Allouche E. N., Ariaratnam S. T., Biggar K. W., Mah J. Horizontal sampling: A new direction in site characterization[J]. Tunnelling and Underground Space Technology, 1997, 12(S1): 17-25.
    [63] Royal A. C. D., Riggall T. J., Chapman D. N. Analysis of steering in horizontal directional drilling installations using down-hole motors[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 754-765.
    [64] Baik H. S., Abraham D. M., Gokhale S. A decision support system for horizontal directional drilling[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 99-109.
    [65] Tammi C. E., Desilets A. M., Skonberg E. R., Srivastava V., Evans J. M. A horizontal directional drilling best management practices manual[M]// John W. G. M., Lawrence P. A., Jennifer L. B., Susan M. T., editor. Environment Concerns in Rights-of-Way Management 8th International Symposium. Amsterdam; Elsevier. 2008: 603-612.
    [66]孙国业.地下金属管线探测法的研究与探测器的设计[D].吉林大学,硕士学位论文, 2005.
    [67] Nakauchi T., Arai I., Hayakawa. A small prospecting radar system[C]. International Conference of GPR 2000, 2000: 548-551.
    [68]中内啓.,野津俊.,鈴木盛.,上坂進.,荒井郁.水平ボーリング搭載レーダ用リアルタイム画像処理の開発[J].物理探査, 2005, 58(5): 475-490.
    [69] Nakauchi T., Nakajima H., Lizuka K. Development of the intelligent horizontal directional drilling systems[C]. 22nd International NO-DIG Conference and Exhibition, 2004.
    [70]梁武.智能型水平定向钻进铺管设备[J].建筑机械化, 2004, (08).
    [71] Chen W. F., Liew J. Y. R. The civil engineering handbook[M]. CRC Press, 2002.
    [72]田应中,张正禄,杨旭.地下管线网探测与信息管理[M].北京:测绘出版社, 1997.
    [73]雷林源.城市地下管线探测与测漏[M].北京:冶金工业出版社, 2003: 7-10.
    [74]区福帮.城市地下管线普查技术研究与应用[M].南京:东南大学出版社, 1998: 104-123.
    [75]刘晓东,张虎生,朱伟忠.高密度电法在工程物探中的应用[J].工程勘察, 2001, 1(4): 64-66.
    [76]刘万恩,蔡克俭.利用高密度电法探查城市地下管道[J].物探装备, 2003, 13(4): 260-262.
    [77]余向东.浅谈城市地下管线探测[J].资源环境与工程, 2008, 22(2): 102-104.
    [78]王蔷.电磁场理论基础[M].北京:清华大学出版社, 2001: 45-62.
    [79]贺颢,王振东.工程物探在我国的发展前景[J].水文地质工程地质, 1998, (2): 54-55.
    [80] Pellerin L., Alumbaugh D. L. Tools for electromagnetic investigation of the shallow subsurface[J]. The Leading Edge, 1997, 14(11): 1631-1640.
    [81]李远强.瞬变电磁法在地下金属物体探测中的应用[J].北京地质, 2002, 4(3): 51-52.
    [82]王法刚,叶国弘.频率域电磁法在探测地下管线中的应用[J].岩石力学与工程学报, 2001, 20(51): 1755-1789.
    [83] Rury J. Magnetometer survey[J]. Geophysics, 1998, 35(5): 812-830.
    [84]王惠濂.探地雷达概论[J].地球科学, 1993, (4): 22-24.
    [85] Ni S.-H., Huang Y.-H., Lo K.-F., Lin D.-C. Buried pipe detection by ground penetrating radar using the discrete wavelet transform[J]. Computers and Geotechnics, 2010, 37(4): 440-448.
    [86] Lester J., Bernold L. E. Innovative process to characterize buried utilities using Ground Penetrating Radar[J]. Automation in Construction, 2007, 16(4): 546-555.
    [87]谭承泽,郭昭雍.磁法勘探教程[M].北京:地质出版社, 1985.
    [88]吕帮来,王传雷.磁测在港航工程勘察中的几个实例[J].工程地球物理学报, 2004, (6): 496-498.
    [89]岳亚东. COD法在非金属管线探测中的应用[J].煤炭技术, 2003, 22(7): 72-73.
    [90] Muggleton J. M., Brennan M. J. The design and instrumentation of an experimental rig to investigate acoustic methods for the detection and location of underground piping systems[J]. Applied Acoustics, 2008, 69(11): 1101-1107.
    [91]杨兴其,赵伟,张世明.地震波映像法在援厄下水道改造工程中的应用[J].西部探矿工程, 2000, (5): 67-68.
    [92]骆育.智能电缆路径检测仪的研究和设计[D].西安:西安电子科技大学,硕士学位论文, 2009.
    [93]赖东杰.地下管线探测新技术新方法的应用[J].中国科技财富, 2008, (12): 40-41.
    [94]刘建兵.利用弹性波频率进行地质勘探的思考[J].硅谷, 2009, (18): 111-111.
    [95]应崇福.超声学[M].北京:科学出版社, 1990: 586.
    [96]冯若,姚锦钟,关立勋.超声手册[M].南京:南京大学出版社, 2001.5: 1084.
    [97]应崇福,张守玉,沈建中.超声在固体中的散射[M].北京:国防工业出版社, 1994: 174: 14-15.
    [98]杨桂通.土动力学[M].北京:中国建材工业出版社, 2000.7.
    [99]朱广生,陈传仁,桂志先.勘探地震学教程[M].武汉:武汉大学出版社, 2005.12: 458.
    [100] Zeng Y. Q., Liu Q. H. Acoustic detection of buried objects in 3-D fluid saturated porous media: numerical modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6): 1165-1173.
    [101]李伟华,赵成刚.饱和土半空间中圆柱形孔洞对平面P波的散射[J].岩土力学, 2004.12, 25(12): 1867-1872.
    [102]丁光亚,蔡袁强,徐长节.饱和土中刚性排桩对平面SV波的隔离分析[J].岩土力学, 2009, 30(3): 849-854.
    [103]陆建飞,王建华.饱和土中任意形状孔洞对弹性波的散射[J].力学学报, 2002, 34(6): 904-913.
    [104]胡亚元.饱和多孔微极介质的波动方程及其势函数方程[J].地球物理学报, 2005, 48(5): 1132-1140.
    [105] Liang J., Baa Z., Lee V. W. Diffraction of plane SV waves by a shallow circular-arc canyon in a saturated poroelastic half-space[J]. Soil Dynamics and Earthquake Engineering, 2006, (26): 582-610.
    [106] Biot M. A. Theory of propagation of elastic waves in a fluid-saturated soil[J]. Journal Acoustic Society of America, 1956, (28): 168-191.
    [107]姚海东,刘江平,刘世奇,安鹏. TI介质弹性波场伪谱法数值模拟[J].工程地球物理学报, 2009, (02).
    [108]赵爱华,张美根,丁志峰.横向各向同性介质中地震波走时模拟[J].地球物理学报, 2006, 49(6): 1762-1769.
    [109] Hirose S., Ushida Y. BEM analysis of wave propagation in a water-filled borehole in an anisotropic solid[J]. Tsinghua Science and Technology, 2007, 12(05): 520-526.
    [110]张军舵,乐友喜,王艳香.双相各向同性介质伪谱法地震波场数值模拟[J].石油物探, 2008, (04).
    [111]美国无损检测学会.《美国无损检测手册》超声卷·上册[M].北京:世界图书出版公司, 1996.
    [112] Oelze M. L., W. D. O’Brien J., Darmody R. G. Measurement of attenuation and speed of sound in soils[J]. Soil Science Society of America Journal, 2002, 66: 788-796.
    [113]黎在良,刘殿魁.固体中的波[M].北京:科学出版社, 1995: 432.
    [114]许肖梅.声学基础[M].北京:科学出版社, 2003.
    [115]阿肯巴赫[美],徐植信,洪锦如译.弹性固体中波的传播[M].上海:同济大学出版社, 1992: 423.
    [116] Collar F., Fenning P., Mora C. Application of drillhole vector magnetic measurements to resolve the position of existing underground structures[J]. NDT & E International, 2005, 38(3): 231-236.
    [117]沈建国.应用声学基础:实轴积分法及二维谱技术[M].天津:天津大学出版社, 2004.9: 188.
    [118]鲍亦兴[美],毛昭宙(著),刘殿魁,苏先樾(译).弹性波的衍射与动应力集中[M].北京:科学出版社, 1993.
    [119] Lawrence D. E., Sarabandi K. Elastic wave scattering from a solid circular cylinder embedded in an elastic half-space[C]. 2002 International Geoscience and Remote Sensing Symposium, 2002: 463-465.
    [120]张海澜,王秀明,张碧星.井孔的声场和波[M].北京:科学出版社, 2004:263.
    [121]吴先梅.圆柱表面瑞利波研究[D].上海:同济大学,博士学位论文, 2000.
    [122] Di Q., Zhu L., Wang M. 2-D finite element modeling for seismic wave response in media with sand bodies[J]. Physics of The Earth and Planetary Interiors, 2000, 120(3): 245-254.
    [123] Desceliers C., Soize C., Grimal Q., Haiat G., Naili S. A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation[J]. Wave Motion, 2008, (45): 383-399.
    [124] Ostachowicz W. M. Damage detection of structures using spectral finite element method[J]. Computers & Structures, 2008, 86(3-5): 454-462.
    [125] Schroder C. T., Scott W. R., Jr. Three-dimensional FDTD model to study the elastic-wave interaction with buried land mines[C]. IEEE Proceedings on Geoscience and Remote Sensing Symposium, 2000: 26-28.
    [126] Schroder C. T., Scott W. R., Jr. A finite-difference model to study the elastic-wave interactions with buried land mines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1505-1512.
    [127] Xianyang Z., Carin L. Application of the biorthogonal multiresolution time-domain method to the analysis of elastic-wave interactions with buried targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1502-1511.
    [128] Schroder C. T., Scott W. R., Jr., Larson G. D. Elastic waves interacting with buried land mines: a study using the FDTD method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1405-1415.
    [129] Stacey R. Finite difference modelling of pulse-echo scattering[C]. IEEE Proceedings on Ultrasonics Symposium, 1991: 1319-1322.
    [130] Kudela P., Zak A., Krawczuk M., Ostachowicz W. Modelling of wave propagation in composite plates using the time domain spectral element method[J]. Journal of Sound and Vibration, 2007, 302(4-5): 728-745.
    [131] von Estorff O., Firuziaan M. Coupled BEM/FEM approach for nonlinear soil/structure interaction[J]. Engineering Analysis with Boundary Elements, 2000, 24(10): 715-725.
    [132] Warszawski A., Soares Jr D., Mansur W. J. A FEM-BEM coupling procedure to model the propagation of interacting acoustic-acoustic/acoustic-elastic waves through axisymmetric media[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48): 3828-3835.
    [133]韩开锋,曾新吾.边界元法模拟含随机分布裂纹介质中波的传播[J].岩土工程学报, 2006, 28(07): 922-925.
    [134]符力耘,牟永光.弹性波边界元法正演模拟[J].地球物理学报, 1994, 37(04): 521-529.
    [135] Olofsson T. Semi-sparse deconvolution robust to uncertainties in the impulse responses[J]. Ultrasonics, 2004, 42: 969-975.
    [136] Kays R., Svilainis L. Ultrasonic detection and characterization of delaminations in thin composite plates using signal processing techniques[J]. Ultrasonics, 1997, 35: 367-383.
    [137] Lu X. M., Reid J. M., Wang S. H. A practical application of L1 deconvolution for medical ultrasound[J]. 1991 Ultrasonics Symposium, 1991, 2: 1177-1180.
    [138] Xin J. Q., Bilgutay N. M. Ultrasonic range resolution enhancement using L1 norm deconvolution[C]. 1993 Ultrasonics Symposium, 1993: 711-714.
    [139] Chen C. H., Hsu W. L., Sin S. K. A comparison of wavelet deconvolution techniques for ultrasonic NDT[C]. 1988 International Conference on Acoustics, Speech, and Signal Processing, 1988: 867-870.
    [140] Lu X. M., Reid J. M. L1 norm deconvolution for medical ultrasound using quadrature signals[J]. Ultrasonic Imaging, 1992, 14(2): 203-203.
    [141] O’Brien M. S., Sinclair A. N. Recovery of a sparse spike time series by L1 norm deconvolution[J]. IEEE Transactions on Signal Processing, 1994, 42(12): 3353-3365.
    [142] O’Brien M. S., Sinclair A. N., Kramer S. High resolution deconvolution using Least-absolute-values minimization[J]. 1990 Ultrasonics Symposium, 1991, 2: 1150-1156.
    [143] Langston P. A. Comparison of least-squares method and Bayes' theorem for deconvolution of mixture composition[J]. Chemical Engineering Science, 2002, 57(13): 2371-2379.
    [144] Alliney S., Ruzinsky S. An algorithm for the minimization of mixed L1 and L2 norms with application to Bayesian estimation[J]. IEEE Transactions on Signal Processing, 1994, 42(3): 618-627.
    [145] Fu H., Ng M. K., Nikolova M., Barlow J., Ching W. K. Fast algorithms for l1 norm/mixed l1 and l2 norms for image restoration[J]. Springer Computational Science and Its Applications, 2005, 3483: 843-851.
    [146] Doucet A., Duvaut P. Bayesian estimation of state-space models applied to deconvolution of Bernoulli--Gaussian processes[J]. Signal Processing, 1997, 57(2): 147-161.
    [147] Pillonetto G., Bell B. M. Bayes and empirical Bayes semi-blind deconvolution using eigenfunctions of a prior covariance[J]. Automatica, 2007, 43(10): 1698-1712.
    [148] Titterington D. M., Rossi C. Another look at a Bayesian direct deconvolution method[J]. Signal Processing, 1985, 9(2): 101-106.
    [149] Lavielle M. Bayesian deconvolution of Bernoulli-Gaussian processes[J]. Signal Processing, 1993, 33(1): 67-69.
    [150] Kaaresen K. F. Evaluation and applications of the iterated window maximization method for sparse deconvolution[J]. IEEE Transactions on Signal Processing, 1998, 46(3): 609-624.
    [151] Kaaresen K. F. Deconvolution of sparse spike trains by iterated window maximization[J]. IEEE Transactions on Signal Processing, 1997, 45(5): 1173-1183.
    [152]张德俊.声成像的研究进展及应用前景[J].科技导报, 1994, (9): 15-18.
    [153] Barbieri E., Meo M. Discriminating linear from nonlinear elastic damage using a nonlinear time reversal DORT method[J]. International Journal of Solids and Structures, 2010, 47(20): 2639-2652.
    [154] Flecha I., Palomeras I., Carbonell R., Simancas F., Ayarza P., Matas J., González-Lodeiro F., Pérez-Estaún A. Seismic imaging and modelling of the lithosphere of SW-Iberia[J]. Tectonophysics, 2009, 472(1-4): 148-157.
    [155] Heidari A. H., Guddati M. N. Novel finite-element-based subsurface imaging algorithms[J]. Finite Elements in Analysis and Design, 2007, 43(5): 411-422.
    [156] Keitmann-Curdes O., Hansen C., Knoll P., Meier H., Ermert H. A novelapproach for ultrasonic imaging of sheet contours for hydroforming[J]. Acoustical Imaging, 2004: 17-25.
    [157]骆英,王自平,顾建祖.混凝土损伤识别中的叠加偏移成像技术[J].无损检测, 2008, 30(12): 881-884,888.
    [158]吴世林,肖书安.隧道地震成像理论与应用案例[J].山东大学学报(工学版), 2009, 39(05): 96-100.
    [159] Langenberg K. J., Mayer K., Marklein R. Nondestructive testing of concrete with electromagnetic and elastic waves: Modeling and imaging[J]. Cement and Concrete Composites, 2006, 28(4): 370-383.
    [160] Liu P. L., Tsai C. D., Wu T. T. Imaging of surface-breaking concrete cracks using transient elastic waves[J]. NDT & E International, 1996, 29(5): 323-331.
    [161] Munson D. C., Jr., Visentin R. L. A signal processing view of strip-mapping synthetic aperture radar[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12): 2131-2147.
    [162] Shilo D., Zolotoyabko E. Visualization of surface acoustic wave scattering by dislocations[J]. Ultrasonics, 2002, 40(1-8): 921-925.
    [163] Shlivinski A., Langenberg K. J. Defect imaging with elastic waves in inhomogeneous-anisotropic materials with composite geometries[J]. Ultrasonics, 2007, 46(1): 89-104.
    [164]郭见乐,罗焕宏,杨丽.弹性波相屏传播算子大角度相位校正成像方法[J].物探与化探, 2009, 33(03): 304-308.
    [165] Cadalli N. Signal processing issues in reflection tomography[D]. Illinois: University of Illinois at Urbana-Champaign, PhD thesis, 2001.
    [166]陈文华,彭书生.最短走时路径搜索新方法在弹性波层析成像解译中的应用[J].工程地球物理学报, 2009, 6(S1): 17-20.
    [167]邓业灿,李毅臻,严大千,李向民.旧桥基础桩弹性波层析成像检测方法技术[J].物探与化探, 2010, 34(03): 407-409.
    [168] Neitzel E. B. Seismic reflection records obtained by dropping a weigh[J]. Geophysics, 1958, 23(1): 58-80.
    [169]孙鹞鸿,左功宁.用于井间地震的传输式电火花震源[J].石油物探, 2001, 40(3): 57-60.
    [170]杨勤勇,徐丽萍.地震勘探技术新进展[J].勘探地球物理学进展, 2002, 25(1): 5-10.
    [171] Goupillaud P. L. Signal design in the "VIBROSEIS" technique[J]. Geophysics, 1976, 41(6): 1291-1304.
    [172] Szilard J.,陈积懋,余南廷译.超声检测新技术[M].北京:科学出版社, 1991: 629.
    [173] Mohamed B. E., Gilbert R., Gerard M. Dynamic modelling of giant magnetostriction inTerfenol-D rods by the finite element method[J]. IEEE Transactions on Magnetics, 1995, 31(3): 1821-1824.
    [174]邬义杰.超磁致伸缩材料发展及其应用现状研究[J].机电工程, 2004, 21(4): 55-59.
    [175]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社, 2005.
    [176] Jonathan M. Subsurface acoustic imaging in a highly attenuating material[D]. Urbana: University of Illinois at Urbana-Champaign, master, 2002.
    [177] Donskoy D., Ekimov A., Sedunov N., Tsionskiy M. Nonlinear seismo-acoustic land mine detection and discrimination[J]. The Journal of the Acoustical Society of America, 2002, 111(6): 2705-2714.
    [178] Xiang N., Sabatier J. M. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling[J]. The Journal of the Acoustical Society of America, 2003, 113(3): 1333-1341.
    [179] Cribbs R. W., Wu C. C., Niessen D. G. System and method for guiden boring obstacle detection[P]. United States: US 6679120B1. 2002-2004.1.
    [180]马兴瑞,陶良,黄文虎.弹性波反演方法及其应用[M].北京:科学出版社, 1998.11: 405.
    [181]骆文海.土中应力波及其量测[M].北京:中国铁道出版社, 1985.7: 269.
    [182]吴世明,陈龙珠.岩土工程波动勘测技术[M].北京:水利电力出版社, 1992: 200.
    [183]沈珠江.理论土力学[M].北京:中国水利水电出版社, 2000.5.
    [184] Davis C. A., Lee V. W., Bardet J. P. Transverse response of underground cavities to incident SV waves[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(3): 383-410.
    [185]徐平,周新民,夏唐代.非连续弹性圆柱实心桩屏障对弹性波的隔离[J].振动工程学报, 2007.8, 20(4): 388-395.
    [186] Lu J. F., Hanyga A. Dynamic interaction between multiple cracks and a circular hole swept by SH waves[J]. International Journal of Solids and Structures, 2004, (41): 6725-6744.
    [187] Fang X. Q., Hu C., Du S. Y. Dynamic stress of a circular cavity buried in a semi-infinite functionally graded piezoelectric material subjected to shear waves[J]. Journal of Applied Mechanics, 2007, 74(9): 916-922.
    [188]李艳恒.地下洞室群对地面运动的影响—SH波入射[D].天津:天津大学,硕士学位论文, 2004.
    [189]潘正华,叶初阳.深埋管线的几种探测技术与规程精度探讨[J].城市勘测, 2009, (2): 134-137.
    [190]奚定平.贝塞尔函数[M].北京:高等教育出版社, 1998.5: 222: 123-124.
    [191] Lee V. W., Karl J. Difraction of SV waves by underground, circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering, 1992, 11: 445-456.
    [192] Lee V. W., Karl J. On deformation near a circular underground cavity subjected to incident plane P waves[J]. European Journal of Earthquake Engineering, 1993, (1): 29-36.
    [193]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [194]李树榜,李书光,刘学锋.固体中圆柱形孔脉冲超声波散射的有限元模拟[J].声学技术, 2007, 26(3): 417-421.
    [195]张明,王润秋.有限元解三维弹性波方程的并行算法[J].计算数学, 1995, (2): 127-135.
    [196] Frehner M., Schmalholz S. M., Saenger E. H., Steeb H. Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1-4): 112-121.
    [197] Sun X., Witzel E. A., Bian H., Kang S. 3-D finite element simulation forultrasonic propagation in tooth[J]. Journal of Dentistry, 2008, 36(7): 546-553.
    [198]张剑锋,刘铁林.三维非均匀介质中弹性波传播的数值模拟[J].固体力学学报, 2001, 22(04): 356-360.
    [199] Akbarov S. D., Yildiz A., Er?z M. FEM modelling of the time-harmonic dynamical stress field problem for a pre-stressed plate-strip resting on a rigid foundation[J]. Applied Mathematical Modelling, 2011, 35(2): 952-964.
    [200]马宏伟,吴斌.弹性动力学及其数值方法[M].北京:中国建材工业出版社, 2000.
    [201]张汝清,吕恩琳,蹇开林.现代计算力学[M].重庆:重庆大学出版社, 2004.
    [202] Warszawski A., Soares D. J., Mansur W. J. A FEM-BEM coupling procedure to model the propagation of interacting acoustic-acoustic/acoustic-elastic waves through axisymmetric media[J]. Comput. Methods Appl. Mech. Engrg., 2008, 197: 3828-3835.
    [203] Dai Y., Xu B. Q., Luo Y., Li H., Xu G. D. Finite element modeling of the interaction of laser-generated ultrasound with a surface-breaking notch in an elastic plate[J]. Optics & Laser Technology, 2010, 42(4): 693-697.
    [204]冯英杰,杨长春,吴萍.地震波有限差分模拟综述[J].地球物理学进展, 2007, (02).
    [205] Semblat J. F., Gandomzadeh A., Lenti L. A simple numerical absorbing layer method in elastodynamics[J]. Comptes Rendus Mecanique, 2009, 57(3): 183-191.
    [206]淡丹辉,孙利民.结构动力有限元分析的阻尼建模及评价[J].振动与冲击, 2007, 26(2): 121-124.
    [207]熊章强,张大洲,秦臻,周文斌.瑞雷波数值模拟中的边界条件及模拟实例分析[J].中南大学学报(自然科学版), 2008, 39(4): 824-830.
    [208]连红运,杨盛用,熊宝库.超声波在固体中沿圆柱形空腔散射的可视化研究[J].信阳师范学院学报:自然科学版, 2008, 21(1): 136-140.
    [209]邹谋炎.反卷积和信号复原[M].北京:国防工业出版社, 2001.3.
    [210] Chen C. H., Hsu W. L., Sin S. K. A comparison of wavelet deconvolution techniques for ultrasonic NDT[J]. IEEE Transactions on Signal Processing, 1998, (9): 867-870.
    [211]《现代数学手册》编纂委员会.现代数学手册?经济数学卷[M].武汉:华中科技大学出版社, 2001.1.
    [212] Li L., Speed T. P. Deconvolution of sparse positive spikes: is it ill-posed?[J]. CiteSeer.IST, Technical Report No. 586, 2000.
    [213] Doucet A., Duvaut P. Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes[J]. Signal Processing, 1997, (57): 147-161.
    [214] Jensen J. A., Leeman S. Nonparametric estimation of ultrasound pulses[J]. IEEE Transactions on Biomedical Engineering, 1994, 41(10): 929-936.
    [215] Kennedy J., Eberhart R. C. A new optimizer using particle swarm theory[C]. Sixth International Symposium on Micro Machine and Human Science, 1995: 39-43.
    [216] Kennedy J., Eberhart R. C. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, 1995: 1942-1948.
    [217] Yang X., Yuan J., Yuan J., Mao H. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation, 2007, (189): 1205-1213.
    [218] Omran M. G. H., Salman A., Engelbrecht A. P. Dynamic clustering using particle swarm optimization with application in image segmentation[J]. Pattern Analysis and Applications, 2006, 8(4): 332-344.
    [219] Thomas M., Misra S. K., Kambhamettu C., Kirby J. T. Dynamic open contours using particle swarm optimization with application to fluid interface extraction[J]. Lecture Notes in Computer Science, 2006, 3851: 643-652.
    [220] Zhang L. P., Yu H. J., Chen D. Z., Hu S. X. Analysis and improvement of particle swarm optimization algorithm[C]. Information Control, 2004: 513-517.
    [221]杨成林.瑞雷波勘探[M].北京:地质出版社, 1993: 212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700