多振源激励下铁路枢纽站房结构振动响应分析与实测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济水平的快速提高,近十几年内我国建设了一大批现代化大型铁路枢纽车站。为实现铁路、地铁、轻轨以及公交等多种交通方式“零距离或短距离换乘”,多层立体式站房结构体系被广泛采用,导致人行、列车行驶和设备运行等多种振源激励同时作用在站房结构上,将对结构的正常使用功能产生较大的不利影响。因此,系统研究多振源激励下铁路枢纽站房结构的振动响应,对今后站房类结构的设计和振动控制具有十分重要的理论和实际意义。
     本文以京沪线铁路枢纽车站天津西站站房结构为研究对象,对人行和列车行驶随机激励模型及应用、多振源激励的组合以及多振源激励下结构振动响应分析方法进行了系统研究,主要完成了以下五方面的工作:
     (1)为准确描述行人间人行激励的差异性和单人激励各相似周期的差异性,基于Zivanovic模型提取人行激励时程标准周期曲线,通过非线性最小二乘拟合,并考虑单人激励各周期、幅值和冲量的随机特性,提出了改进的人行随机激励模型;与已有常用人行激励模型比较表明,改进模型能更有效地模拟人行激励的时域、频域特性,与实测时程更加吻合;以天津西站站房结构为研究对象,将人体等效为双自由度质量弹簧阻尼系统,建立人—结构耦合动力平衡方程,采用逐步积分法数值模拟得到人行随机激励下的结构振动响应,结果表明采用改进的人行随机激励模型分析得到的结构振动响应频域分布更宽,且激励的高频成分对结构振动有一定贡献,与实测结果更为吻合;考虑人—结构耦合作用,将减小结构振动响应,但影响较小。
     (2)根据车辆随机振动理论,考虑完整的轨道不平顺功率谱和轮对间轨道输入相关性,模拟得到列车各轮对轨道不平顺位移时程,采用MATLAB软件编写程序得到二系悬挂十自由度列车系统分析模型的状态控制方程,求解得到作用在各轮对的列车行驶随机激励时程;通过与已有实测数据和模拟时程对比,验证了所得激励时程在时域、频域的合理性;对列车行驶随机激励下的天津西站站房结构振动响应进行数值模拟和实测分析,结果表明在所提出的列车行驶随机激励模型作用下,站房结构振动响应的时域、频域特性与实测结果吻合较好,候车厅层振动卓越频率位于人体对竖向振动的最敏感频率范围,应注意对人体舒适度的影响。
     (3)分析研究了铁路枢纽站房结构多振源激励的组合问题,以人行和列车行驶随机激励为例,考虑到站旅客数量概率分布模型、列车满载情况以及列车行驶速度的变化,采用概率法和Monte-Carlo模拟方法得到结构设计基准期内车站人行随机激励幅值和列车行驶随机激励幅值的概率分布;根据组合激励幅值的概率特点,以2参数极值I型描述人行激励和列车行驶激励组合幅值随机变量的概率分布,确定了具有95%保证率的激励组合系数;K-S假设检验表明所提出的极值I型概率分布估计与Monte-Carlo模拟方法得到的经验概率分布结果吻合良好。
     (4)通过分析人行、列车行驶和设备运行三振源单独激励下站房结构振动响应的时域、频域特性和频带交叠情况,提出了一种基于均方根加速度RMS、考虑加权功率相干叠加的多振源激励下站房结构振动响应分析方法,并对该方法的合理性和适用性进行了论证;分别采用直接叠加法和所提出的加权功率相干叠加方法进行三振源共同激励下站房结构振动响应分析,结果表明考虑加权功率相干叠加的结构振动响应均方根加速度RMS区间可以很好地包络直接叠加得到的振动响应均方根加速度RMS值;分别采用直接叠加法和考虑频域交叠的加权功率相干叠加方法对随机激励作用下结构的振动响应进行时域、频域分析,得到了三振源单独激励下站房结构振动响应之间的相干叠加效应对站房结构振动总响应的影响规律。
     (5)通过人行、列车行驶和设备运行激励下下天津西站站房结构振动响应实测,得到站房轨道层及候车厅层测点的振动加速度时程,从频谱分析和RMS评价两方面分析研究了人行、列车行驶和设备运行三振源单独激励下站房结构振动响应之间的相干叠加效应对多振源激励下结构振动总响应的影响规律,并与数值模拟结果进行对比验证,结果表明加权功率相干叠加方法能很好地给出多振源激励下结构振动响应的RMS区间,且随着与振源距离的增加,包络效果更好。
With the rapid development of economy, in the past decade, a large number ofmodern railway hub stations have been built in our country. In order to realize“zero-distance or short-distance transfer” among railway, subway, light railway andbus, spatial multiple-layer structural systems are widely adopted in practice. Therefore,the structural systems have been excited simultaneously by multiple-sourceexcitations including human walking, train moving and equipment operating. Thiswill significantly affect the service and performance of the station buildings.Therefore, it is of theoretical and practical significance to study the dynamicalresponses of railway hub station buildings under multiple-source excitations in thedesign and vibration control.
     Focusing on the Tianjin West Railway Station building, this dissertationsystematically studies the random excitation models of human walking and trainmoving and their applications, the combination problem of multiple-sourceexcitations and the analytical approach on the dynamical responses of railway hubstation buildings under multiple-source excitations. The main research work includesthe following assignments:
     (1) An improved stochastic walking excitation model considering variations ofperiods, amplitudes and impulses is proposed to accurately describe the individualdifference of walking excitation among pedestrians and the similar cycle difference ofa single walking time histories. The normalized cycle curve of walking excitation isextracted based on Zivanovic model and optimized using non-linear least-squarecurve fit method. The improved model is verified superior to conventional models forsimulating both the time and frequency characteristics of walking excitations, andagrees well with the real measured time histories. Focusing on the Tianjin WestRailway Station building, human body is equivalent to be a mass-spring-dampermodel with two degrees of freedom. The human-structure coupled dynamic equationsare established using the improved model, and the pedestrian-induced structuralvibration responses are simulated by direct integration method. The results indicatethat, by employing the improved model, the frequency distribution of the structuralresponses is wilder and the high frequency excitation components obtained throughthe model has non-negligible effect on the structural responses, which agrees well with the measured data. In addition, the coupled effect between human and structurereduces the structural responses, but with little impact.
     (2) A ten-degree secondary suspension train model is established in term of thetheory of vehicle random vibration. The intact track irregularities and correlationamong wheels on rails are considered, and the displacement time histories of eachwheel set on rail are simulated. The MATLAB program is implemented to obtain thestate governing equation of the ten-degree secondary suspension train model. Thetrain random excitation time histories are finally obtained from the state equations.The effectiveness of the train model is verified in both time and frequency domain bycomparing with measured data and several other train moving models. The dynamicalresponses of the Tianjin West Railway Station building under train moving randomexcitation are simulated and measured. The results indicate that the time andfrequency characteristics of simulated dynamical responses agree well with theexperimental data. The predominant frequency of the waiting hall is at the mostsensitive frequency band of human body during vertical vibration, and the humancomfort should be considered.
     (3) The combination problem of multiple-source excitations acting on railwayhub station buildings is investigated by considering stochastic walking excitation andtrain moving random excitation. Probabilistic method and Monte-Carlo simulation areadopted to obtain the probability distributions of the extreme value of the two kinds ofexcitations during structural design duration. The study considers the probabilitycharacteristic of combined excitations and introduces The Extreme I Distribution withtwo parameters to describe the probabilistic properties of the extreme value of thecombined excitations. The combination coefficients are determined, which have aguarantee rate of95%. The K-S test shows that the probability characteristics of thecombined excitations are well evaluated by the Extreme I Distribution compared withthe empirical distribution given by Monte-Carlo simulation.
     (4) Considering the frequency overlap among structural responses under eachexcitation including human walking, train moving and equipment operating, aweighted power coherent superposition method, which is based on Root Mean Square(RMS) of acceleration, is proposed for the dynamical responses of station buildingsunder multiple-source excitations. The rationality and applicability of the weightedpower coherent superposition method are also discussed. The proposed method anddirect superposition method are both adopted in the dynamical analysis of the station buildings simultaneously excited by the three excitation sources. The results indicatethat the RMS interval of structural responses calculated by the proposed method canproperly envelope the RMS value of acceleration by the direct superposition method.The direct superposition method and the proposed method are also used to analyze thedynamical responses of the station buildings excited by random vibrations both intime domain and in frequency domain. The overall responses of the station buildingare obtained in terms of the interacting superposition effects on the station buildingdue to the individual excitation.
     (5) The acceleration time histories of measure points on the waiting hall andplatform layer are obtained through the measuring experiments on the Tianjin WestRailway Station under multiple-source excitations. Spectral analysis and RMSevaluation are both introduced to analyze the effects of power coherent superpositionto the overall dynamical responses with respect to human walking, train moving andequipment operating. The measured data is also compared with the numerical ones.The results show that the RMS interval of structural responses is well calculated bythe weighted power coherent superposition method. The agreement will be betterwhen the distance to excitation sources increases.
引文
[1]李昊,简方梁.人群行走荷载作用下的人致结构振动[J].华南理工大学学报(自然科学版),2010,38(4):125-130.
    [2] Xia H, Cao Y M, De Roeck G, et al. Environmental problems of vibrationsinduced by railway traffic [J]. Frontiers of Architecture and Civil Engineering inChina,2007,1(2):142-152.
    [3]日本噪声控制学会.地域的环境振动[M].东京:技报堂出版株式会社,2001.
    [4]丁阳,沈斌.长期设备振动对已建钢结构厂房承载力影响的分析[J].建筑结构,2007,26(8):68-71.
    [5]夏禾.交通环境振动工程[M].北京:科学出版社,2010.
    [6] Harper F C, Warlow W J, et al. The forces applied to the floor by the foot inwalking [M]. National Building Studies, Research Paper32, Department ofScientific and Industrial Research, Building Research Station, London, UK,1961.
    [7] Harper F C. The mechanics of walking [J]. Research Applied in Industry,1962,15(1):23-28.
    [8] Andriacchi T P, Ogle J A, Galante J O. Walking speed as a basis for normal andabnormal gait measurement [J]. Journal of Biomechanics,1977,10(4):261-268.
    [9] Ebrahimpour A, Hamam A, Sack R L, et al. Measuring and modeling dynamicloads imposed by moving crowds [J]. Journal of Structural Engineering, ASCE,1996,122(12):1468-1474.
    [10] Dallard P, Fltzpatrick A J, Flint A, et al. The London millennium footbridge [J].Structural Engineering,2001,79(22):17-33.
    [11] Nakamura S I. Model for lateral excitation of footbridges by synchronouswalking [J]. Journal of Structural Engineering,2004,130(1):32-37.
    [12] Nakamura S I, Kawasaki T, Katsuura H, Yokoyama K. Experimental studies onlateral forces induced by pedestrians [J]. Journal of Constructional SteelResearch,2008,64(2):247-252.
    [13] Kerr S, Bishop N. Human induced loading on flexible staircases [J]. EngineeringStructures,2001,23(1):37-45.
    [14] Matsumoto Y, Nishioka T. A study on design of pedestrian over-bridges [J].Transcations of JSCE,1972,4:50-51.
    [15] Pachhi A, Ji T. Frequency and velocity of people walking [J]. The StructureEngineer,2005,83(3):36-40.
    [16]孙利民,闫兴非.人行桥人行激励振动及设计方法[J].同济大学学报(自然科学版),2004,32(8):996-999.
    [17]陈政清,华旭刚.人行桥的振动与动力设计[M].北京:人民交通出版社,2009.
    [18] BS5400. Steel, concrete and composite bridges: specification for loads, Part2(BD37/01, Appendix B)[S]. British Standards Association, London, UK,2001.
    [19] CSA2000. Canadian highway bridge design code (CAN/CSA-S6-00)[S].Canadian Standards Association, Toronto, Ont, Canada,2000.
    [20] EN03. Design of Footbridges Guideline [S]. Germany,2008.
    [21] Allen D E, Murray T M. Design criterion for vibrations due to walking [J]. AISCEngineering Journal,1993,30(4):117-129.
    [22] Wyatt T A. Design guide on the vibration of floors [M]. Steel ConstructionInstitute, Ascot, Berkshire, UK,1989.
    [23] Young P. Improved floor vibration prediction methodologies [R]. Proc., ARUPVibration Seminar,2001.
    [24] Zivanovic S, Pavic A, Reynolds P. Vibration serviceability of footbridges underhuman-induced excitation a literature review [J]. Journal of Sound and Vibration,2005,279(1):1-74.
    [25]郑凯锋.独特的伦敦千年桥及其加固方案和全桥结构仿真分析研究[J].国外桥梁,2001,(1):1-5.
    [26] Woumuth B, Surtees J. Crowd-related failure of bridges. Civil Engineering [J],Proceeding of ICE,2003,156(3):116-123.
    [27]李国豪.桁梁扭转理论—桁架桥的扭转、稳定和振动[M].北京:人民交通出版社,1975.
    [28] Nakamula S, Kawasakib T. Lateral vibration of footbridges by synchronouswalking [J]. Journal of Constructional Steel Research,2006,62(11):1148-1160.
    [29] Pimentel R L, Pavic A, Waldron P. Evaluation of design requirements forfootbridges excited by vertical forces from walking [J]. Canadian Journal of CivilEngineering,2001,28(5):769-777.
    [30] Racic V, Brownjohn J M W. Stochastic model of near-periodic vertical loads dueto hmans walking [J]. Advanced Engineering Information,2011,25(2):259-275.
    [31] Brownjohn J M W, Pavic A, Omenzetter P. A spectral density approach formodeling continuous vertical forces on pedestrian structures due to walking [J].Canadian Journal of Civil Engineering,2004,31(1):65-77.
    [32] Zivanovic S, Pavic A, Reynolds P. Human-structure dynamic interaction infootbridges [J]. Bridge Engineering,2005,158(4):165-177.
    [33] Racic V. Experimental measurements and mathematical modeling ofnear-periodic human-induced force signals [D]. University of Sheffield, UK,2009.
    [34] Zivanovic S, Pavic A, Reynolds P. Probability-based prediction of multi-modevibration response to walking [J]. Engineering Structures,2007,29(6):942-954.
    [35] Kerr S C. Human induced loading on staircases [D]. Department of MechanicalEngineering, University of London, UK,1998.
    [36] Racic V, Pavic A, Brownjohn J M W. Experimental identification and analyticalmodeling of human walking forces: literature review [J]. Journal of Sound andVibration,2009,326(1):1-49.
    [37] Pimentel R L, Pavic A, Waldron P. Evaluation of design requirements forfootbridges excited by vertical forces from walking [J]. Canadian Journal of CivilEngineering,2001,28(5):769-777.
    [38] Bachmann H. Vibration problem in structures-practical guidelines [M].Birkhauser Verlag GmbH,2011.
    [39] Dallard P, Fitzpatrick T, Flint A, et al. London Millennium Bridge:Pedestrian-induced lateral vibration [J]. Journal of Bridge Engineering,2001,6(6):412-417.
    [40] Dallard P. Pedestrian excitation on the London millennium footbridge [C].Metropolis and Beyond,2005,1409-1421.
    [41] Fitzpatrick T, Dallard P, Bourva S L. Linking London: The millennium bridge
    [M]. Royal Academy of Engineering, UK,2001.
    [42] Blekherman A N. Swaying of pedestrian bridges [J]. Journal of BridgeEngineering,2005,10(2):142-150.
    [43]李泉,樊建生,聂鑫.人行荷载作用下大跨楼盖多模态振动控制方法研究[J].建筑结构学报,2010,31(9):42-49.
    [44]李昊,简方梁.人群行走荷载作用下的人致结构振动[J].华南理工大学学报(自然科学版).2010,38(4):125-130.
    [45]孙利民,闫兴非.人行桥人行激励振动及设计方法[J].同济大学学报(自然科学版),2004,32(8):996-999.
    [46]袁旭斌.人行桥人致振动特性研究[D].上海:同济大学,2006.
    [47] Nakamaura S, Kawasaki T. Lateral vibration of footbridge by synchronouswalking [J]. Journal of Constructional Steel Research,2006,62(11):1148-1160.
    [48] Robert T M. Lateral pedestrian excitation of footbridge [J]. Journal of BridgeEngineering, ASCE,2005,10(1):107-112.
    [49] Newland D E. Pedestrian excitation of bridges [J]. Mechanical EngineeringScience,2004,218(5):477-492.
    [50]何浩翔,闫维明,张爱林.人行激励下梁板结构与人体耦合作用研究[J].振动与冲击,2008,27(10):130-133.
    [51]陈建英,方之楚.人—结构相互作用动力学建模研究[J].振动与冲击,2007,26(6):10-13.
    [52] Matsumoto Y, Griffin M J. Mathematical models for the apparent masses ofstanding subjects exposed to vertical whole-body vibration [J]. Journal of Soundand Vibration,2003,260(3):431-451.
    [53] Reiher H, Meister F J. The sensitiveness of human body to vibration [J].Forchung (VDI-BERLIN),1931:381-386.
    [54] BS5400. Steel, Concrete and Composite Bridges-Part2: Specification for Loads;Appendix C: Vibration serviceability requirements for foot and cycle trackbridges [S]. British Standards Association, UK,1978.
    [55] Blanchard J, Davies B L, Smith J W. Design criteria and analysis for dynamicsloading of footbridges. In: Proceedings of the DOE and DOT TRRL Symposiumon Dynamic Behaviour of Bridges [M]. Crowthorne, UK,1977.
    [56] ISO2631-2. Evaluation of human exposure to whole-body vibration-Part2:continuous and shock-induced vibration in buildings [S]. InternationalStandardization Organization, Geneva, Switzerland,1989.
    [57] BS EN1990-2002: Eurocode. Basis of structural design [S]. British StandardInstitution, UK,2002.
    [58]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(2):21-28.
    [59]潘昌实,李德武,谢正光.北京地铁列车振动对环境影响的探讨[J].振动与冲击,1995,14(4):29-34.
    [60]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [61] Garg V K著,沈利人译.铁道车辆系统动力学[M].成都:西南交通大学出版社,1998.
    [62]张定贤.机车车辆轨道系统动力学[M].北京:中国铁道出版社,1996.
    [63]曹雪琴.列车通过时桥梁结构竖向振动分析[J].上海铁道学院学报,1981,2(3):1-15.
    [64]曹雪琴,陈晓.轮轨蛇形引起桥梁横向振动随机分析[J].铁道学报,1986,8(1):89-97.
    [65]夏禾,张楠.车辆与结构动力相互作用[M].北京:科学出版社,2010.
    [66] Diana G, Cheli F. Dynamic interaction of railway systems with large bridges [J].Vehicle System Dynamics,1989,18(1):71-106.
    [67] Green M F, Cebon D. Dynamic response of highway bridges to heavy vehiclesloads: theory and experimental validation [J]. Journal of Sound and Vibration,1994,170(1):51-78.
    [68] Green M F, Cebon D, David J C. Effects of vehicle suspension design ondynamics of highway bridges [J]. Journal of Structural Engineering, ASCE,1995,121(2):272-282.
    [69] Yang Y B, Lin B H. Vehicle-bridge interaction analysis by dynamic condensationmethod [J]. Journal of Structural Engineering, ASCE,1995,121(11):1636-1643.
    [70] Yang Y B, Liao S S, Lin B H. Impact formulas for vehicle moving over simpleand continuous beams [J]. Journal of Structural Engineering, ASCE,1995,121(11):1644-1650.
    [71] Bogaert V. Dynamic response of trains crossing large span double-rack bridges[J]. Journal of Constructional Steel Research,1993,24(1):57-74.
    [72] Olsson M. Finite element model coordinate analysis of structures subjected tomoving loads [J]. Journal of Sound and Vibration,1985,99(1):1-12.
    [73]聂志红,阮波,李亮.秦沈客运专线路垫段机床结构动态测试分析[J].振动与冲击,2005,24(2):30-32.
    [74] Chu K H, Garg V K, Dhar C L. Railway-bridge impact: simplified train andbridge model [J]. Journal of the Structural Division, ASCE,1979,105(9):1823-1844.
    [75] Chu K H, Garg V K, Wiriyachai A. Dynamic interaction of railway train andbridges [J]. Vehicle System Dynamics,1980,9(4):207-236.
    [76] Wiriyachai A, Chu K H, Garg V K. Bridge impact due to wheel and trackirregularities [J]. Journal of Engineering Mechanics Division,1982,108(4):648-666.
    [77] Chu K H, Garg V K, Wang T L. Impact in railway pre-stressed concrete bridges[J]. Journal of Structural Engineering,1986,112(5):1036-1051.
    [78]阿部英彦,谷口纪久.钢铁道设计标准的改订[A].日本土木学会论文报告集
    [C].日本:日本土木学会,1984,(4):27-37.
    [79]张立军,何辉.车辆随机振动[M].沈阳:东北大学出版社,2007.
    [80]张立军,何辉.车辆行驶动力学理论及应用[M].北京:国防工业出版社,2011.
    [81]夏禾,张宏杰,曹艳梅,等.车桥耦合系统在随机激励下的动力分析及其应用[J].工程力学,2003,20(3):142-149.
    [82]张湘伟.一维Filtered Poission Process路面模型及其数值模拟方法[J].重庆大学学报(自然科学版),1998,11(1):106-112.
    [83]张湘伟.二维泊松过程的数值模拟及其在道路模型中的应用[J].重庆大学学报(自然科学版),1994,17(4):12-15.
    [84]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J].农业机械学报,2004,35(2):9-12.
    [85]高农,刘明思.不平整路面下汽车随机振动的计算机模拟[J].哈尔滨师范大学自然科学学报,1997,13(5):101-104.
    [86]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142.
    [87] Bata M. Effects on buildings of vibrations caused by traffic [J]. Building Science,1971,6(4):221-246.
    [88] Dawn T M. Ground vibration from passing trains [J]. Journal of Sound Vibration,1979,66(2):355-362.
    [89] Yoshioka O. Some considerations on generating mechanism of vibration due torunning trains [J]. Butsuri-Tanko [Geophysical Exploration],1976,29(2):23-33.
    [90] Yoshioka O. Basic characteristics of Shinkansen-induced ground vibration and itsreduction measures [C]. Proceedings of International Workshop WAVE2000,Bochum,2000,219-240.
    [91] Takemiya H, Kojima M.2.5-D FEM simulation for vibration prediction andmitigation of track and ground interaction under high-speed trains [A]. Proc.ISEV2003[C]. Beijing: China Communications Press,2003,130-138.
    [92] BS7385-1/ISO4866. Evaluation and measurement for vibration inbuildings-Part1: Guide for measurement of vibrations and evaluation of theireffects on buildings [S]. British Standards Institution, UK,1990.
    [93] Krylov V V. Spectra of low-frequency ground vibrations generated by high-speedtrains on layered ground [J]. Journal of Low Frequency Noise, Vibration andActive Control,1997,6(4):251-262.
    [94] Volberg G. Propagation of ground vibrations near railway tracks [J]. Journal ofSound and Vibration,1983,87(2):371-376.
    [95]孙家麒.振动公害浅谈[J].环境保护,1979,(5):25-27.
    [96]茅玉泉.交通运输车辆引起的地面振动特性和衰减[J].建筑结构学报,1987,(1):12-19.
    [97]马筠.我国铁路环境振动现状及传播规律[J].中国环境科学,1987,7(5):4-7.
    [98]张玉娥,白宝鸿,潘昌实.地铁列车振动对周围环境影响评估[J].噪声与振动控制,1997,18(4):37-40.
    [99]张玉娥,白宝鸿.地铁列车振动对隧道结构激振荷载的模拟[J].振动与冲击.2000,19(3):68-76.
    [100]张玉娥,白宝鸿,张昀清.埋深对地铁区间隧道列车振动响应的影响[J].振动与冲击,2006,25(3):58-60.
    [101]楼梦麟,李守继.地铁引起建筑物振动评价研究[J].振动与冲击,2007,26(8):68-71.
    [102]周云,王柏生.行驶列车引起的周边建筑物振动分析[J].振动与冲击,2006,25(1):36-41.
    [103] Xia H, Cao YM, Zhang N. Numerical analysis of vibration effects of metrotrains on surrounding environment [J]. International Journal of StructuralStability and Dynamics,2007,7(1):154-166.
    [104] Chen Y M, Wang C J, Ji M X, et al. Train-induced ground vibration anddeformation [J]. Environmental Vibration: Prediction, Monitoring andEvaluation,2003:158-174.
    [105]北京南站站厅结构多震源振动测试—技术报告[R].天津:天津大学建筑工程学院,2009.
    [106]周道成,段忠东,欧进萍.荷载平稳二项随机过程简化组合方法[J].哈尔滨工业大学学报,2009,41(6):6-10.
    [107] Wen Y K. Statistical combination of extreme loads [J]. Journal of the StructuralDivision, ASCE,1977,103(5):1078-1093.
    [108] Wen Y K. Structural load modeling and combination for performance and safetyevaluation [M]. Elsevier Science, New York,1990.
    [109] Larrabee R D, Cornell C A. Combination of various load processes [J]. Journalof the Structural Division, ASCE,1981,107(1):223-239.
    [110] Ferry Borges J, Castenheta M. Structure safety [M]. LNEC, Lisbon, Portugal,1971.
    [111] Turkstra C J, Madesen H O. Load combination in codified structural design [J].Journal of the Structural Division, ASCE,1980,106(12):2527-2543.
    [112]贡金鑫,赵国藩.持久性可变荷载与临时性可变荷载组合的解析解及简化计算[J].工程力学,2001,18(6):11-17.
    [113] Yasuhiro M, Takahiro K, Kazuko M. Probabilistic models of combinations ofstochastic loads for limit state design [J]. Structural Safety,2003,25(1):69-97.
    [114]周道成,段忠东,欧进萍.建筑结构相关荷载组合的平稳二项随机过程方法[J].工程力学,2007,24(4):97-103.
    [115]刘启刚,朱克非,杜旭升.大型客运站最高聚集人数仿真计算方法研究[J].铁道学报,2011,33(8):1-6.
    [116]何宇强,毛保华,陈绍宽,等.铁路客运站旅客最高聚集人数计算方法研究[J].铁道学报,2006,28(1):6-11.
    [117]段忠东,周道成.极值概率分布参数估计方法的比较研究[J].哈尔滨工业大学学报,2004,36(12):1605-1609.
    [118]段忠东,欧进萍,周道成.极值风速的最优概率模型[J].土木工程学报,2002,35(5):11-16.
    [119]陈明,王斌,曹为午.水下复杂壳体结构在多振源激励下的振动与声辐射特性研究[J].声学学报,2009,34(6):498-505.
    [120]蒋通,程昌熟.用薄层法分析高架轨道交通引发的环境振动[J].振动工程学报,2007,20(6):623-628.
    [121]蒋通.环境振动实测和分析中考虑多振源影响的振级评价方法[J].城市轨道交通研究,2010,13(5):26-29.
    [122] Zivanovic S. Probability-based estimation of vibration response of footbridges.In: Probability-based estimation of vibration for pedestrian structured due towalking [D]. Department of Civil&Structural Engineering, University ofSheffield, UK,2006.
    [123] Kovacs-Vajna Z M. A fingerprint verification system based on triangularmatching and dynamic time warping [J]. IEEE Transactions of Pattern Analysisand Machine Intelligence,2000,22(11):1266-1276.
    [124] Tomasi G, Bergand F V D, Andersson C. Correlation optimized warping anddynamic time warping as preprocessing methods for chromatographic data [J].Journal of Chemometrics,2004,18(5):231-241.
    [125] Aach J, Church G M. Aligning gene expression time series with time warpingalgorithms [J]. Bioinformatics,2001,17(6):495-508.
    [126]陈鑫,李爱群,张志强,等.随机人群荷载下大型火车站房大跨楼盖减振设计与分析[J].东南大学学报(自然科学版),2010,40(3):544-545.
    [127]简方梁,吴定俊,李奇.上海虹桥车站人行走廊人致振动分析[J].振动与冲击,2010,29(8):136-140.
    [128]张立军,何辉.车辆行驶动力学理论及应用[M].北京:国防工业出版社,2011.
    [129] Xia H, Xu Y L, et al. Dynamic interaction of long suspension bridges withrunning trains [J]. Sound&Vibration,2000,237(2):263-280.
    [130]王逢朝,夏禾,吴萱.列车振动对环境及建筑物的影响分析[J].北方交通大学学报,1999,23(4):13-17.
    [131]曹艳梅,夏禾.运行列车对高层建筑结构的振动影响[J].工程力学,2006,23(3):162-167.
    [132]冯军和,闫维明.列车随机激振荷载的数值模拟[J].振动与冲击,2008,27(2):49-52.
    [133] GB/T1344.1-2007.机械振动与冲击人体暴露于全身振动的评价第一部分:一般要求[S].北京:中国标准出版社,2007.
    [134] ISO2631/1-1997. Mechanical vibration and shock-evaluation of humanexposure to whole body vibration-Part1: General requirements [S].International Organization for Standardization, Geneva, Switzerland,1997.
    [135]王甦男.旅客运输[M].北京:中国铁道出版社,1998.
    [136] GB1070-88.城市区域环境振动标准[S].北京:中国标准出版社,1988.
    [137]廖顺庠.人行天桥的设计与施工[M].上海:同济大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700