用酵母双杂交系统筛选IBDV弱毒株VP2蛋白CEF受体的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传染性法氏囊病(IBD)是由传染性法氏囊病病毒(IBDV)引起的急性接触性传染病,是危害世界养禽业的主要传染病之一。IBDV主要侵害雏鸡的中枢免疫器官一法氏囊,导致免疫抑制。1957年本病首次在美国的特拉华州的甘布罗镇(Gumboro)的肉鸡群中发生,20世纪80年代美国又发现了变异株,欧洲国家首先报道有超强毒株(vvIBDV)出现,90年代初vvIBDV传至中国及亚洲其它国家和地区。IBD给养鸡业带来了巨大的经济损失。IBDV的分子生物学研究始于70年代,人们研究发现各IBDV毒株之间的基因变异主要集中在A节段的VP2区域,VP2是血清型特异性抗原,既是IBDV的主要结构蛋白,又是病毒的主要宿主保护性抗原,与病毒中和抗体的诱导、抗原和毒力的变异、细胞凋亡等有关。随着对IBDV的深入研究,人们愈加认识到研究病毒感染机制等基础领域的重要性,其中病毒受体的研究占据着举足轻重的地位,在很多领域都展开广泛研究,尤其人医方面研究更为深入。目前关于IBDV受体蛋白研究的报道很少,虽然有一些相关报道,但仍处于研究病毒自身蛋白与蛋白之间作用的水平,有关病毒蛋白与宿主受体蛋白相互作用的研究还没有报到。
     酵母双杂交系统是研究蛋白质间相互作用的一种有效方法。该系统能迅速、灵敏地在真核细胞体内检测蛋白生理状态下的互作,并可快速获得目的蛋白的编码基因,近几年来已在很多领域得到应用。本研究利用酵母双杂交系统从CEF cDNA文库中筛选与IBDV弱毒VP2蛋白相互作用的受体蛋白编码基因,并对获得受体蛋白进行初步研究,为研究该病毒的致病机制,防制传染性法氏囊病奠定理论基础。
     本课题主要研究内容包括以下几方面:
     1.鸡胚成纤维细胞CDNA表达文库的构建
     利用gateway技术构建鸡胚成纤维细胞(CEF)文库,以5′端生物素标记的Oligo (dT) primer为引物反转录后连接Adapter,层析柱纯化,通过BP重组反应构建cDNA入门文库,其平均滴度为1.1×10~6cfu/mL,文库总容量为1.2×107cfu,平均插入片段为2243bp,重组率为100%。通过LR重组反应将入门文库转换为表达文库,经测定平均滴度为5×105cfu/mL,文库总容量为5.5×10~6cfu,平均插入片段为2411bp,重组率为100%。结果表明,所构建的文库具有较高的重组率和较大的库容量,可作为较高质量的文库来研究IBDV的相关基因,为筛选IBDV在CEF中的细胞受体,研究细胞嗜性提供基础平台。
     2.IBDV弱毒VP2诱饵载体构建及其自激活作用的检测
     通过BP和LR两个反应将IBDV Gt株VP2基因克隆到pDEST-32载体上构建诱饵载体,通过酶切和PCR鉴定,并测序正确后,用醋酸锂法转化酵母菌MaV203,在三缺陷板(SC-Trp-Leu-His)上观察其生长情况。结果确定了3AT使用浓度,且证明了诱饵载体本身无自激活活性,为下一步筛选文库提供正确的诱饵载体。
     3.从CEF文库筛选与IBDV Gt VP2蛋白相互作用受体蛋白及相互作用的验证
     用构建的诱饵质粒筛选CEF CDNA文库,采用顺序转化的方法,先将Bait质粒转入酵母MaV203中,挑取阳性克隆做酵母感受态细胞,然后再将文库质粒转入含Bait质粒酵母感受态细胞,通过X-gal实验和三种缺陷型培养基筛选,找出19个阳性克隆,提取质粒,测序并比对,结果获得大小两段序列(与原鸡序列相似度为99.9%),分别为800bp和350bp。最后将两段序列构建成Prey质粒,用同筛库的方法反过来验证与Gt VP2的互作,结果证实了二者的相互作用。
     4.IBDV VP2蛋白CEF受体的初步研究
     突变掉CR2_(11)中间所含终止密码子,将其分别克隆到原核载体pET32a和真核表达载体pCAGGS上。经Amp~+筛选、PCR、酶切和序列分析鉴定表明,插入的位置、大小和读码框均正确。获得重组质粒命名为pET32a-CR2_(11)和pCAGGS-CR2_(11)。将pET32a-CR2_(11)转化宿主菌BL21(DE3),在IPTG诱导下成功表达了约31kDa的融合蛋白;将构建的pCAGGS-CR2_(11)转染IBDV非允许细胞PK15,做间接免疫荧光实验,结果检测到较强的绿色荧光,说明二者在活体内存在相互作用。
Infectious bursal disease virus(IBDV),the causative agent of infectious bursal disease(IBD),causes immunosuppression in young chicken by destroying the precursors of B lymphocytes in the bursal of Fabricius. In 1957, the disease first broke out in broilers in Gumboro, Telahua state, America. In the 1980s, the variation strain of IBDV was first appeared in America. Acute IBD caused by very virulent infectious bursal disease virus (vvIBDV) was first reported in Europe lately 1980s. The acute disease was then transmitted into China in the early 1990s, and rapidly spreaded all over Asia and other major parts of the world. The IBDV had caused the significant economic losses in poultry industry for a long time. Through research, people have confirmed that VP2 play a critical role at the induction of NA, mutation of antigen, apoptosis of cell et al., However, there is no reports about receptor protein of IBDV up to now.
     The development of the yeast two-hybrid system provided a genetic means to identify proteins that physically interact in vivo.The goal of the system is to isolate a protein or proteins that interact with a "bait" protein, this bait protein can be almost any protein from any organism. Over the past ten years, this system and its variants have been extremely useful for detecting and analyzing protein-protein interactions in many fields. One purpose of the research is screening the interactive coding gene with IBDV Gt VP2 from CEF cDNA library by the yeast two-hybrid system. Addition, we take a preliminary research for discoverable gene, all those can as a substantial foundation for us to research pathogenic mechanism of IBDV and prevention of IBD.
     The following are the main contents of this reseach:
     1. Construction of chicken embryo fibroblasts cDNA expression library by gateway technology. The mRNA was extracted from chicken embryonic fibroblast. Moreover, single-strand cDNA and double-strand cDNA were synthesized by using biotin-conjugated Oligo (dT) primer in turn. The double-strand cDNA was ligated Adapter and then purified by the cDNA Size Fractionation Columns. After BP recombination reaction, an cDNA entry library was constructed with a titer of 1×10~6cfu/mL, total clones of 1.2×107 cfu and an average insertion size of about 2243bp. After LR recombination reaction, the cDNA entry library was transformed into expression library which took on a titer of 5×105cfu/mL, total clones of 5.5×10~6 cfu and an average insertion size of about 2411bp. The results indicate that the constructed cDNA expression library performs a remarkable high value in both recombination rate and library coverage. As a result, the cDNA expression library, with its good quality, may facilitate to identify the receptors associated with the resistance against IBDV in chicken embryonic fibroblast and to cast new light on the mechanism of cellular tropism. Moreover, it may also provide data of chicken embryonic fibroblast in transcription level and may be helpful to study its biological functions.
     2. Through BP and LR reaction, the fragments of infectious bursal disease virus (IBDV) Gt VP2 was cloned into pDEST-32 vector by Gateway technology, after confirmation with restriction enzyme digestion, PCR and sequence analysis, the plasmids were transformed into the yeast cell MaV203 with ployethylene glycol/lithiuma acetate method, then the growths of transformation were observed on the SC-Trp-Leu-His selective plate, to detect the self-activation of bait vectors. At last, determination 3AT density and verification the bait vector neither the ability of outonomous reporter gene activation, nor toxicity to the yeast host-cells.
     3. Transform bait plasmid into yeast competent cell, then to select the positive clone as the yeast competent cell for CEF library plasmid. Through X-gal test and three selective medium, we found 19 postive clones, extraction the plasmid and sequence. In the result, we obtain two gene segments (similar Gallus gallus gene as 99.9%), they are 800bp and 350bp respectively. Continue, construction prey plasmid with two gene segments, to test the interaction between two segments with Gt VP2 again.
     4. Delete the termination codon by PCR technology, then little segment (CR2_(11)) was cloned into expressing vector pET32a and vector pCAGGS, the recombinants were transformed into E.coli DH5α. The recombinant plasmid was identified by restriction enzyme digestion, PCR and sequence analysis and named pET32a-CR2_(11) and pCAGGS-CR2_(11). The recombinant plasmid (pET32a-CR2_(11)) was transformed into E.coli BL21(DE3) and induced by IPTG. SDS-PAGE results indicated that the fusion protein was about 31kDa. The pCAGGS -CR2_(11) was transfected into PK15 cell, IFA showed that there are strong green fluorescence on the cell hole (PK15), It proved the interactive role between Gt VP2 and CR2_(11) in vivo.
引文
毕英佐.1985.广东地区鸡传染性法氏囊病的研究.华南农业大学报,1:46~59
    高宁,胡宝成.2006.酵母双杂交系统的发展及其衍生系统的比较.生物技术通讯,3(7):421~425
    李凌云,刘鑫.2002.麻疹病毒绒猴细胞受体基因的克隆及功能鉴定.科学通报, 47(16):1217~1225
    陆承平.1996.最新脊椎动物病毒分类简介.中国兽医学报,16(1):94~100
    王玉娥,杨汉春.2004.酵母双杂交技术在病毒学研究中的应用.中国兽医学报,24(3): 307~310
    于幼平.1993.鸡传染性法氏囊病的诊断与防制.北京农业大学出版社
    张佩景,李慧艳. 2005.酵母双杂交技术研究与人孕酮受体B相互作用的蛋白质.生物技术通讯,16(6):1009~0002
    张伟,刘新平,张景,等.2002.乙型肝炎病毒前S区不同片段在酵母双杂交系统中的表达及对报告基因激活作用的检测.第四军医大学学报,23(6):509~513
    周蛟,刘福致,陈丽勇,等.1982.北京地区鸡传染性法氏囊病病原分离.中国兽医杂志, 7:25~26
    Alest L V, Barr M, Marcus S, et al. 1993. Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci UAS, 90: 6213~6217
    Ana On?a, Daniel Luque, Fernando Abaitua. 2004. The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3. Virology, 16: 135~142
    Aronheim A, Zandi E, Hennemann H, et al. 1997. Mol Cell Biol, 17: 3094~3102
    Azad A A, Fahey K J, Barrett S A, et al. 1986. Expression in Escherichia coli of cDNA fragments encoding the gene for the host protective antigen of infectious bursal disease virus. Virology, 149 (2): 190~198
    Bayliss C D, Spies U, Shaw K, et al. 1990. A comparison of the sequences of segment A of four infectious bursal disease virus strains and identification of a variable region in VP2. J Gen Virol, 71: 1303~1312
    Boot H J, Agnes H M, Arjan J W. 2000. Rescue of very virulent and mosaic infectious bursal disease virus from cloned cDNA: VP2 is not the sole determinant of the very virulent phenotype. J Virol, 74: 6701~6711
    Bottcher B, Kiselev N A, Stel’Mashchuk V Y, et al. 1997. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol, 71: 325~330
    Bracken C P, Whitelaw M L, Peet D J, et al. 2005. Activity of hypoxia-inducible factor alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem, 280 (14):14240~14251
    Brandt M, Yao K, Liu M H, et al. 2001. Molecular determinants of virulence, cell tropism and pathogenic phenotype of infectious bursal disease virus. J Virol, 75: 11974~11982
    Brown M D, Green P, Skinner M A. 1994. VP2 sequences of recent European very virulent isolates of infectious bursal disease virus are closely related to catch other but are distinct from those of classical strains. J Gen Virul, 75: 675~680
    Bushman W, Thompson J, Vargas L, et al. 1985. Control of directionality in Lambda site specific recombination. Science, 230 (28): 906~911
    Bolivar F, Backman K. 1979. Plasmids of Escherichia coli as cloning vectors. Methods Enzymol, 68: 245~267
    Carninci P, Shibata Y, Hayatsu N, et al. 2000. Normalization and subtraction of cap-trapper-select cDNA to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res, 10 (10): 1617~1630
    Caston J R, Martinez-Torrecuadrada J L, Maraver A, et al. 2001. C-terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol, 75: 10815~10828
    Chang M C. 1952. Experimental studies of mammalian fertilization. Exp Zool, 121: 351~381
    Clepet C, Le Clainche I, Caboche M. 2004. Improved full-length cDNA production based on RNA taging by T4 DNA ligase. Nucleic Acids Res, 32(1):176~179
    Coulibaly F, Chevalier C, Gutsche I, et al. 2005. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell, 120: 761~762
    Cui X, Nagesha H S, Holmes I H. 2003a. Mapping of conformational epitopes on capsid protein VP2 of infectious bursal disease virus by fd-tet phage display. J Virol Methods, 114(1): 109~112
    Cui X, Nagesha H S, Holmes I H. 2003b. Mutations in the nucleolar localization signals in 2 Diamond–Blackfan anemia patients: potential insights into pathophysiology. Blood, 101: 5039~5045
    Eterradossi N, Gauthier C. 1997. Extensive antigenic changes in an typical isolate of very virulent infectious bursal disease virus and experimental clinical control of this virus with an antigenically classical live vaccine. Avian Pathol, Aug, 33(4): 423~431
    Fernandez-Arias A, Rodriguez J F. 1997. The major antigenic protein of infectious bursal disease virus,VP2, is an apoptotic inducer. J Virol, 71: 8014~8018
    Fields S and Song O. 1989. A novel genetic system to detect protein-protein interactions. Nature, 340: 245~246
    Finley R L, Brent R. 2003. The yeast two-hybrid system. Ed. PL.Bartel, S. Fields, Oxford univ. Press pp197~214
    Fromont-Racine M, Rain J C, Legrain P. 1997. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens.Nat Genet, 16 (1): 277~282
    Garabet G Toby, Erica A. Golemis. 2001. Using the yeast interaction trap and other two-hybrid based approaches to study protein-protein interactions. Methods, 24 (3): 201~203
    Garriga D, Querol-Aud J, Abaitua F, et al. 2006. The 2, 6-angstrom structure of infectious bursal disease virus-derived T1 particles reveals new stabilizing elements of the virus capsid. J Virol, 80:6895~6905
    Gietz R D, Woods R A. 2002. Screening for protein-protein interactions in the yeast two-hybrid system. Methods Mol Biol, 185: 471~486
    Gilmore P M, McCabe N, Quinn J E, et al.2004. BRCA1 interacts with and is required for paclitax induced activation of mitogen-activated protein kinase. Cancer Res, 2004, 64(12):4148~4154
    Gonzalez D, Rodriguez J F, Abaitua F. 2005. Intracellular interference of infectious bursal disease virus. J Virol, 79(22): 14437~14441
    H Gazda, J M Lipton, T N Willing, et al. 2001. Evidence for linkage of familial Diamond–Blackfan anemia to chromosome 8p23.3-p22 and for non-19q non-8p disease. Blood, 97: 2145~2150
    Hitchner S B. 1970. Infectivity of infectious bursal disease virus for embryonating eggs. Poult Sci, 49(2): 511~516
    Hong S, Choi G, Park S, et al. 2001. Type D retrovirus Gag polyprotein interacts with the cytosolic chaperonin TRiC. J Virol, 75(6): 2526~2534
    Hudson P J, McKem N M, Power B E, et al. 1986. Genomic structure of the large RNA segment of infectious bursal disease virus. Nucleic Acid Research, 14: 5001~5002
    Kasten M M, Ayer D E, Stillman D J. 1996. SIN3-dependent transcriptional repression by interaction with the Madl DNA-binding protein. Mol Cell Biol, 16: 4215~4221
    Keegan L, Gill G, Ptashne M. 1986. Separation of DNA bind from the transcription-activating function of eukaryotic regulatory protein. Science, 231(4): 699~739
    Kelemen M K, Forgach J, Ivan V, et al. 2000. Pathological and immunological study of an in ovo complex vaccine against infactious bursal disease. Acta Vet Hung, 48(4): 443~454
    Kibenge F S B, Dhillon A S, Russell R G. 1988. Biochemistry and immunology of infectious bursal disease virus. J Gen Virol, 69: 1757~1775
    Kibenge F S, Qian B, Cleghom J R. 1997. Infectious bursal disease virus polyprotein processing does not involve cellular proteases. Arch Virol, 142(12): 2401~2419
    Kiston J, RavenT, Yingping J, et al. 1996. A death-domain-containing receptor that mediates apoptosis. Nature, 384: 372~375
    L Da Costa, G Tchernia, P Gascard, et al. 2003. Nucleolar localization of RPS19 protein in normal cells and mislocalization due to receptor. Methods, 93: 12817~12821
    Lee C C, Ko T P, Chou C C, et al. 2006. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6 A? resolution: Implications in virion assembly and immunogenicity. J Struct Biol, 155(1): 74~86
    Li J J, Herskowitz I. 1993. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science, 262: 1870~1873
    Licitra E J, Liu J. 1996. A three-hybrid system for detecting small ligand-protein receptor interaction. Proc Natl Acid Sci, USA, 93: 12817~12821
    Lim B L, Cao Y C, Yu T, et al. 1999. Adaptaion of very virulent infectious bursal disease virus to chicken embryonic fibroblasts by site-directed mutagenesis of residues 279 and 284 of viral coat protein VP2. J Virol, 73: 2854~2862
    Liu J D, Wilson T F, Milbrandt J, et al. 1993. Identifying DNA-binding sites and analyzing DNA-binding domains using a yeast selection system. Methods, 5: 125~137
    Lombardo E, Maraver A, Caston J R, et al. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus forms complexes with the capsid protein VP3, leading to efficient ncapsidation into virus-like particles. J Virol, 73(8): 6973~6983
    Lopez C D, Martinovsky G, Naumovski L. 2002. Inhibition of cell death by ribosomal protein L35a. Cancer Lett, 180: 195~202
    Luban J, Goff S P. 1995. The yeast two-hybrid system for studying: protein-protein interaction. CurrOpinion Biotechnol, 6: 59~64
    Luque D, Saugar I, Rodriguez J F, et al. 2007. Infectious bursal disease virus capsid assembly and maturation by structural rearrangements of a transient molecular switch. J Virol, 73(3): 1727~1733
    Ma J, PtashneM. 1987. A new class of yeast transcriptional activators. Cell, 51: 113~119
    Mahardika G N K, Becht H. 1995. Mapping of cross-reacting and serotype-specific epitopes on the VP3 structural protein of the infectious bursal disease virus (IBDV). Arch Virol, 140: 765~774
    McFerran J B, McNulty M S, McKillop E R, et al. 1980. Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks: demonstration of a second serotype. Avian Pathol, 9: 395~404
    Melegari M, Scaglioni P P, Wands J R. 1998. Cloning and characterization of a novel hepatitis B virus x binding protein that inhibit s viral replication. J Virol, 72 (3): 1737~1743
    Mirriam G J Tacken, Peter J M Rottier, Arno L J. 2000. Gielkens capsid protein VP3 interacts with the RNA-dependent RNA polymerase VP1. General Virology, 81: 209~218
    Mohsin M A, Morris S J, Smith H, Sweet C. et al. 2002. Correlation between levels of apoptosis, levels of infection and haemagglutinin receptor binding interaction of various subtypes of influenza virus: does the viral neuraminidase have a role in these associations. Virus Res, 85: 123~131
    Muller H, Nitschke R. 1987. The two segments of the infectious bursal disease virus genome are circularized by a 90,000-Da protein. Virology, 159: 174~177
    Mundt E, Vakharia V N. 1996. Synthetic transcripts of double-stranded Birnavirus genome are infectious. Proc Natl Acad Sci USA, 93(20): 11131~11136
    Mundt E, Beyer J, Muller H. 1995. Identification of a novel viral protein in infectious bursal disease virus-infected cells. J Gen Virol, 76: 437~443
    Mundt E, Kollner B, Kretzschmar D. 1997. VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J Virol, 71: 5647~5651
    Oppling V, Muller H, Brecht H. 1991. The structural polypeptide VP3 of infectious bursal disease virus carries group- and serotype-specific epitopes. J Gen Virol, 72: 2275~2278
    Osborne M A, Dalton S, Kochan J P. 1995. The yeast tri-hybrid system-genetic detection of trans-phosphorylated ITAM-SH2-interaction. Biotechnology, 13 (13): 1474~1478
    Pitcovski J, Levi B Z, Maray T, et al. 1999. Failure of viral protein 3 of infectious bursal disease virus produced in prokaryotic and eukaryotic expression systems to protect chickens against the disease. Avian Diseases, 43: 8~15
    Poon E, Howman E V, Newey S E, et al. 2002. Association of syncoilin and desmin: linking inter mediate filament proteins to the dystrophin-associated protein complex. J Biol Chem, 277 (5): 3433~3439
    Putz U, Skehel P, Kuhl D. 1996. A tri-hybrid system for the analysis and detection of RNA-protein interactions. Nucleic Acids Res, 24 (23): 4838~4840
    Rain J C, Selig L, De-Reuse H, et al. 2001. The protein-protein interaction map of Helicobacter pylori. Nature, 409: 211~215
    Sambrook J, Russell D W. 2001. Molecular Cloning:A Laboratory Manual. New York: Cold Spring Harbour Laboratory Press, 11857~11889
    Vakharia V N, Snyder D B, He J, et al. 1994. Active and passive protection against variant and classic infectious bursal disease virus strains induced by baculovirus-expressed structural proteins. Vaccinne, 12(5): 452~456
    Van Loon A A, De Haas N, Zeyda I, et al. 2002, Alteration of amino acids in VP2 of very virulent infectious bursal disease virus results in tissue culture adaptation and attenuation in chick-ens. J Gen Virol, 83: 121~129
    Vidal M, Braun P, Chen E, et al. 1996. Genetic character rization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci USA, 93: 10321~10326
    Vojtek A B, Hollenberg S M, Cooper J A. 1993. Mammalian ras Interacts directly with these rine threonine kinaseraf. Cell, 74: 205~230
    White M A. 1996. The yeast two-hybrid system: forward and reverse. Proc Natl Acad Sci USA, 93: 10001~10003
    Wool I G. 1996. Extraribosomal functions of ribosomal proteins.Trends Biochem Sci, 21:164~165
    Yamaguchi T, Iwata K, Kobayashi M, et al. 1996. Epitope mapping of capsid proteins VP2 and VP3 of IBDV. Arch Virol, 141: 1493~1507
    Yang F, He Z M, Zhan X, et al. 2004. Construction and identification of directional cDNA library from Chinese giant salamander Andrias avidianus liver. ActaZool Sin, 50 (3): 475~478
    Yang M, Wu Z, Fields S. 1995. Protein-peptide interactions analyzed with the yeast two-hybrid system. Nucleic Acids Res, 23: 1152~1156
    Yao K, Goodwin M A, Vakharia V N. 1998. Generation of a mutant infectious bursal disease virus that does not cause bursal lesions. J Virol, 72: 2647~2654
    Yao K, Vakharia V N. 2001. Induction of apoptosis in vitro by the 17kDa nonstructural protein of infectious bursal disease virus possible role in viral pathogenesis. Virology, 285: 50~58
    Zhang J, Lautar S. 1996. A yeast three-hybrid method to clone ternary protein complex components. Anal Biochem, 242: 68~72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700