微通道蒸发器的优化设计及流量分配特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微通道蒸发器以其造价低、重量轻、结构紧凑、换热效果好等诸多优点,在民用和军用制冷领域均有广阔的应用前景。微通道蒸发器的特点是制冷剂同时流入平行排列的多根扁管,也叫平行流蒸发器,涉及到各扁管内的流量分配均匀性问题。目前微通道蒸发器内制冷剂的流量分配研究需要深入,蒸发器的内部结构设计还需进一步优化。基于上述问题,本文对微通道蒸发器进行了流动、换热性能的研究和结构优化设计工作。
     采用数值模拟方法,基于连续介质假设,研究了微通道的换热机理,对已有的试验方法进行了分析,对实验结果进行了修正,证明了微通道内的换热规律与常规通道内是一致的。
     采用数值模拟方法,针对24通道两流程的微通道蒸发器内的流量分配问题,对分流板进行了结构优化,提出了12孔分流板的结构,找出了分流板的最佳开孔面积。对27通道两流程的微通道蒸发器的分流板进行了结构优化,提出了新的分流板结构,找出了最佳开孔面积。
     针对24通道两流程的微通道蒸发器,建立了分流板的流量分配试验系统,以水为工质,研究了不同结构的分流板的流量分配均匀性。结果表明:12孔分流板的流量分配均匀性和稳定性均是最好的,流量分配的均匀性随着雷诺数增大而略有提高。
     采用试验方法,对比研究了入口分流板的结构对蒸发器的流动和换热性能的影响。试验结果表明:分流板的开孔数量和位置对蒸发器的流动和换热性能影响很大。分流板上的总开孔面积一定时,开孔数量和位置的变化对蒸发器的内部阻力系数没有明显影响。证明了蒸发器采用12孔分流板时流动和换热性能优于其它分流板结构。
     对24通道的微通道蒸发器内部结构进行了优化,并以R134a为工质,进行性能对比试验,以期通过改变制冷剂的流向和流动阻力来提高蒸发器的性能。试验结果表明:在保证制冷剂的流量分配均匀性不降低的前提下,增大流通面积可以减小蒸发器内的流动阻力,提高制冷能力。
     以水为工质,保持分流板的结构不变,试验研究了12孔分流板在不同开孔面积时的流量分配特性,得出如下结论:分流板的开孔面积存在一个最佳值,为150.7mm2,此时的流量分配稳定性最好,几乎不受入口雷诺数变化的影响,安装12孔分流板后的流量分配均匀度比无分流板时提高一倍以上。
     试验研究了分流板的开孔面积变化对微通道蒸发器性能的影响,得出如下结论:随着开孔面积的增加,蒸发器的内部阻力系数减小,但制冷量是先增加后减少。当分流板的开孔面积为150.7mm2时,蒸发器的内部流动阻力系数和流量分配均匀性达到最佳匹配,制冷量最大。
Micro-channel evaporator with parallel flow with its low cost, light weight, compact structure,good performance of heat transfer and many other advantages, had a very broad applicationprospected in the field of civil and military refrigeration. The characteristic of the micro-channelevaporator was that refrigerant flow arranged in many parallel flat tubes, also called parallel flow typeevaporator, and related to the flow distribution. The flow of the micro-channel evaporator withparallel flow and heat transfer performance of work needed to be further improved. Based on theabove issues, flow and heat transfer performance of micro-channel evaporator was studied andstructure optimization work was done.
     Based on the hypothesis of continuum, the mechanism of micro-channel heat exchanger wasdiscussed. Using numerical simulation method, combined with the existing experimental setup anddata, the influence of wall thickness on the micro-channel heat transfer was studied. The heat transferlaw in the micro-channel was proved to be the same as the conventional channel.
     The numerical simulation method was used to study the structure of deflectors and flowdistribution in micro-channel evaporator with24flat tubes: a deflector structure with12holes wasdevised; the flow distribution uniformity and pressure drop rule of a variety with structures and openarea of deflectors in different position were studied, and the optimum opening area of deflectors werefounded. The micro-channel evaporator with27flat tubes also was studied by the same method.
     The next experiments were processed on the micro-channel evaporator with24flat tubes. Inorder to verify the structure and clarify the flow distribution law of deflector, flow distribution testplatform was built; as water as the working fluid, flow distribution characteristics of deflectors wasstudied. The results show that the flow distribution uniformity and stability of the deflector with12holes are always the best, and as the entrance Reynolds number increased, the flow distributionuniformity is improved slightly. The deflector with reasonable structure can improve the fluid flowdistribution uniformity in micro-channel evaporator.
     Effects of deflectors with different structures on the flow and heat transfer performances of theevaporator were experimental investigated and compared. The results show that the structure ofdeflector affects the flow and heat transfer performances of the evaporator remarkably. With the sameopen area in the deflector, the number and location of holes in deflectors produce no evident effect onthe resistance coefficient of the evaporator. The performance of deflector with12holes is proved to bethe best.
     Structure optimized design and performance tests of micro-channel evaporator were done: in the condition of flow distribution of refrigerant being not decreased, the increase of circulation area candecrease the pressure drop and improve cooling capacity.
     Flow distribution characteristics of the three deflectors with same structure but different openingarea (45.6mm2,150.7mm2,339mm2) were experimentally studied with water as the working fluid.The results show that the flow distribution stability of deflector with the opening area of150.7mm2isthe best. Compared with the condition of without deflector, the flow distribution uniformity of thedeflector with12holes is improved more than doubled.
     Then effects of the deflector opening area on the performance of evaporator were investigatedwith above three deflectors. R134a was the working fluid. The results show that with the samedeflector structure, increasing the open area of holes in the deflector can reduce the resistancecoefficient of the evaporator, but the cooling capacity of evaporator is first increased and thendecreased. There is an optimum open area of holes in deflector of the micro-channel evaporator, withwhich the negative impact of pressure drop and mal-distribution of refrigerant on the cooling capacityof evaporator is the minimum, so the cooling capacity can get to the maximum. For the evaporator, theoptimum open area of holes in the first deflector is about150.7mm2.
引文
[1]丁汉新,王利,任能.微通道换热器及其在制冷空调行业的应用前景.制冷与空调,2011,11(4):111~115.
    [2] K Andrew.Micro-channel heat exchanger. IEA heat pump centre Newsletter,2007,25(3):15~17.
    [3]王荣汉,蔡亮,蔡华林,等.扁管分配布置方式对平流式冷凝器换热性能影响,建筑热能通风空调,2010,29(2):37~40.
    [4]彭明,张雪平.不同流程布置的平流式冷凝器试验研究.空调与制冷,2008,22(2):1~5.
    [5] Sa Y C, Jang D Y, Ko Oh S K.Flow maldistribution of flat tube evaporator. The4internationalSymposium on HVAC. Beijing,2003.
    [6] Vishwomath Subramaniam.Design of air-cooled microchannel condensers for real-distributed airflow conditions. Georgia institute of technology,2004.
    [7] C B Sobhan,S V Garimella.A comparative analysis of studies on heat transfer and fluid flow inmicrochannles.Microscale Thermophys Engineering,2001,5:293~311.
    [8] K Man Hoe,B W Clark.Air-side performanee of brazed aluminum heat exchangers underdehumidifying conditions.International Journal of Refrigeration,2002,25(7):924~934.
    [9] A M Jacobi, Y Park.High performance heat exchangers for a conditioning and refrigerationapplications(Non-circular tubes). University of Illinois at Urbana Champaign,2005, ATRI-21CR/605-20021-01.
    [10] Sankar P, Lorenzo C, Daniel Fisher. Comparison of frost and defrost performance betweenmicrochannel coll and fin-and-tube coil for heat pump system. International Journal of AirConditioning and Refrigeration,2011,19(4):14~17.
    [11] Peng X F, G P Peterson. Frictional flow characteristics of water flowing through rectangularmicrochannels. Journal of Experimental Heat Transfer,1995,7(4):249~264.
    [12] Peng X F, G P Peterson, Wang B X. Heat transfer characteristics of water flowing throughmicrochannels. Journal of Experimental Heat Transfer,1995,7(4):265~283.
    [13] M E Steinke, S G Kandlikar. An experimental investigation of flow boiling characteristics ofwater in parallel micro-channels. Journal of Heat Transfer,2004,126(4):518~526.
    [14]周子成.微通道换热器及其应用实例.家电科技,2009,1,51~52.
    [15]苏尚美,张亚男,成方圆,等.微通道换热器的特性分析及其应用前景.区域供热,2007,5:34~38.
    [16] Kandlikar S G, Grande W J. Evolution of micro-channel flow passages—thermohydraulicperformance and fabrication technology. Heat Transfer Engineering,2003,24(1):3~17.
    [17]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998,170.
    [18]杨世铭,陶文铨.传热学.北京:高等教育出版社,2006,252.
    [19] Peter A. Kew, Keith Cornwell. Correlations for the prediction of boiling heat transfer insmall-diameter channels. Applied Thermal Engineering,1997,17(8-10),705~715.
    [20] Li Wei, Wu Zan. A gereral criterion for evaporative heat transfer in micro/mini-channelsInternational Journal of Heat and Mass Transfer.2010,53(9-10):1967~1976.
    [21]云和明.细通道单向流动和传热特性的研究.[博士学位论文],济南,山东大学,2007.
    [22]刘江涛.微通道内单相和相变传热机理与界面特性.[博士学位论文],北京,清华大学,2008.
    [23]甘云华.硅基微通道内流动与传热的可视化测量及其规律的研究.[博士学位论文],合肥,中国科学技术大学,2006.
    [24]齐守良.微通道中液氮和换热特性研究.[博士学位论文],上海,上海交通大学,2007.
    [25]董涛.微管道换热器内微流体的流动与换热.[博士学位论文],南京,南京理工大学,2003.
    [26]林建忠,阮晓东,陈邦国,等.流体力学.北京,清华大学出版社,2005,3~4.
    [27]彭明,张雪平.平流式冷凝器模拟计算及试验研究.制冷与空调.2008,22(2):6~11.
    [28]龚堰钰,张兴群,郑维智,等.汽车空调平行流式冷凝器热力性能计算机辅助分析.北京工商大学学报,2006,24(6):22~25.
    [29] T M Adams, S I Abdel Khalik, S M Jeter, et al. An experimental investigation of single-phaseforced convection in microchannels. International Journal of Heat and Mass Transfer,1998,41(6–7):851~857.
    [30] N Caney, P Marty, J Bigot. Friction losses and heat transfer of single-phase flow in amini-channel. Applied Thermal Engineering,2007,27(10):1715~1721.
    [31] Gao Puzhen, Stephane Le Person, Michel Favre Marinet. Scale effects on hydrodynamics andheat transfer in two-dimensional mini and microchannels. International Journal of Heat andMass Transfer,2002,41(11):1017~1027.
    [32] Liu Zhigang, Liang Shiqiang, Masahiro Takei. Experimental study on forced convective heattransfer characteristics in quartz microtube. International Journal of Thermal Sciences,2007,46(2):139~148.
    [33] Lin Ting Yu, Yang Chien Yuh. An experimental investigation on forced convection heat transferperformance in micro tubes by the method of liquid crystal thermography. International Journalof Heat and Mass Transfer.2007,50(23-24):4736~4742.
    [34] Yang Chien Yuh, Lin Ting Yu. Heat transfer characteristics of water flow in microtubes.Experimental Thermal and Fluid Science,2007,32(2):432~439.
    [35] Omar Mokrani, Brahim Bourouga, Cathy Castelain, et al. Fluid flow and convective heat transferin flat microchannels. International Journal of Heat and Mass Transfer.2009,52(5-6):1337~1352.
    [36] Wahib Owhaib, Bjorn Palm. Experimental investigation of single-phase convective heat transferin circular microchannels. Experimental Thermal and Fluid Science.2004,28(2-3),105~110
    [37] B Agostini, B Watel, A Bontemps, et al. Friction factor and heat transfer coefficient of R134aliquid flow in mini-channels. Applied Thermal Engineering,2002,22(16):1821~1834.
    [38] Wen Jian, Li Yanzhong, Zhou Aimin, et al. PIV experimental investigation of entranceconfiguration on flow maldistribution in plate-fin heat exchanger. Cryogenics,2006,46(1):37~48.
    [39]张哲,厉彦忠,许箐.板翅式换热器物流分配特性的实验研究.西安交通大学学报,2003,37(9):920~924.
    [40]焦安军,厉彦忠,张瑞,等.封头结构对板翅式换热器物流分配不均匀性的影响.化工学报,2003,54(7):907~912.
    [41]刘俊强,陈明辉,扈玉民,等.套管管束式换热器的阻力特性和流量分配研究.核科学与工程,2007,12(4):339~343.
    [42] Julio C Pacio, Carlos A Dorao. A study of the effect of flow maldistribution on heat transferperformance in evaporators. Nuclear Engineering and Design,2010,240(11):3868~3877.
    [43]朱玉琴,李迓红,毕勤成,等.超临界直流锅炉变压运行下水冷壁中间分配集箱的流量分配特性.动力工程,2007,27(5):663~666.
    [44]张魏静,杨冬,黄莺,等.超临界直流锅炉螺旋管圈水冷壁流量分配及壁温计算.动力工程,2009,29(4):342~347.
    [45]庞力平,孙保民,王波,等.径向引入方式下联箱并联分支管中两相流流量分配计算.化工学报,2009,60(12):3006~3011.
    [46]钟贤和,张力,伍成波.较大流量多支管流量分配实验与数值模拟.重庆大学学报,2006,29(1):41~44.
    [47]李夔宁,吴小波,尹亚领.平行流蒸发器内气液两相流分配均匀性实验研究.热能动力工程,2009,24(6):759~765.
    [48] Mohammad Ahmad, Georges Berthoud, Pierre Mercier. General characteristics of two-phaseflow distribution in a compact heat exchanger. International Journal of Heat and Mass Transfer,2009,52(1-2):442~450.
    [49] M A Habiba, R Ben Mansour, S A M Said, et al. Evaluation of flow maldistribution in air-cooled heat exchangers. Computers&Fluids,2009,38(3):677~690.
    [50] Lee J K, Lee S Y. Distribution of two-phase annular flow at header-channel junctions.Experimental Thermal and Fluid Science,2004,28(2-3):217~222.
    [51] S Kim, E Choi, Y I Cho. The effect of header shapes on the flow distribution in a manifold forelectronic packaging applications. International Communications in Heat and Mass Transfer,1995,22(3):329~341.
    [52] S Horiki, T Nakamura, M Osakabe. Thin flow header to distribute feed water for compact heatexchanger. Experimental Thermal and Fluid Science,2004,28(2-3):201~207.
    [53] Tushar Kulkarni, Clark W Bullard, Keumnam Cho. Header design trade-offs in microchannelevaporators. Applied Thermal Engineering,2004,24(5-6):759~776.
    [54] A Marchitto, F Devia, M Fossa, et al. Experiments on two-phase flow distribution inside parallelchannels of compact heat exchangers. International Journal of Multiphase Flow.2008,34(2):128~144.
    [55] Cho H, Cho K, Youn B, et al. Flow maldistribution in microchannel evaporator. The9thInternational Refrigeration and Air-Conditioning Conference.Purdue University.2002, R6-5.
    [56] Daniel M Tompkins, Tae Yoo, Predrag Hrnjak, et al. Flow distribution and pressure drop inmicrochannel manifolds. The9th International Refrigeration and Air Conditioning Conference.Purdue.2002, R6-4.
    [57] Lu Fan, Luo Yonghao, Yang Shiming. Analytical and experimental investigation of flowdistribution in manifolds for heat exchangers. Journal of hydrodynamics,2008,20(2):179~185.
    [58] Watanabe M, Katsuda M, Nagata K. Two-phase flow distribution in multi-pass tube modelingserpentine type evaporator. ASME/JSME Thermal Engineering Conference.1995,2:35~42.
    [59] Sivert Vist, Jostein Pettersen. Two-phase flow distribution in compact heat exchanger manifolds.Experimental Thermal and Fluid Science,2004,28(2-3):209~215.
    [60] Koyama S, Wijayanta A T, Kuwahara K, et al. Developing two-phase flow distribution inhorizontal headers with downward micro-channel branches.11th International Refrigeration andAir Conditioning Conference. Purdue University,2006, R142:1~10.
    [61] Bowers C S, Hrnjak P S, Ty Newell. Two-phase refrigerant distribution in a micro-channelmanifold.11th International Refrigeration and Air Conditioning Conference. Purdue University.2006, R161:1~9.
    [62] Honggi Cho, Keumnam Cho. Mass flow rate distribution and phase separation of R-22inmulti-microchannel tubes under adiabatic condition. Microscale Thermalphysical Engineering,2004,8(2):129~139.
    [63] S G Kandlikar, Z Lu, W E Domigan, et al. Measurement of flow maldistribution in parallelchannels and its application to ex-situ and in-situ experiments in PEMFC water managementstudies. International Journal of Heat and Mass Transfer,2009,52(7-8):1741~1752.
    [64] Shi Junye, Qu Xiaohua, Qi Zhaogang, et al. Investigating performance of microchannelevaporators with different manifold structures. International Journal of Refrigeration,2011,34(1):292~302.
    [65] Chang Y J, Wang C C. A generalized heat transfer correlation for louver fin geometry.International Journal of Heat and Mass Transfer,1997,40(3):533~544.
    [66] Wang C C, Lee C J, Chang C T, et al. Heat transfer and friction correlation for compact louveredfin-and-tube heat exchangers. International Journal of Heat and Mass Transfer,1999,42(11):1945~1956.
    [67] Leu Jin Sheng, Liu Min Sheng, Liaw Jane Sunn, et al. A numerical investigation of louveredfin-and-tube heat exchangers having circular and oval tube configurations. International Journalof Heat and Mass Transfer,2001,44(22):4235~4243.
    [68] J M Saiz Jabardo, J R Bastos Zoghbi Filho, A Salamanca. Experimental study of the air sideperformance of louver and wave fin-and tube coils. Experimental Thermal and Fluid Science,2006,30(7):621~631.
    [69] Ching Tsun Hsieh, Jiin Yuh Jang.3-D thermal-hydraulic analysis for louver fin heat exchangerswith variable louver angle. Applied Thermal Engineering,2006,26(14-15):1629~1639.
    [70] Chang Yu Juei, Chang Wen Jeng, Li Ming Chia, et al. An amendment of the generalized frictionfaction correlation for louver fin geometry. International Journal of Heat and Mass Transfer,2006,49(21-22):4250~4253.
    [71] Xu Xiangguo, Leung Chunwah, Chan Mingyin, et al. Condensate retention on a louver fin andtube air cooling coil. International Journal of Refrigeration,2007,30(3):409~417.
    [72] A Nuntaphan, S Vithayasai, T Kiatsiriroat, et al. Effect of inclination angle on free convectionthermal performance of louver finned heat exchanger. International Journal of Heat and MassTransfer,2007,50(1-2):361~366.
    [73] Dong Junqi, Chen Jiangping, Chen Zhijiu, et al. Heat transfer and pressure drop correlations forthe multi-louvered fin compact heat exchangers. Energy Conversion and Management,2007,48(5):1506~1515.
    [74] Li Wei, Wang Xialing. Heat transfer and pressure drop correlations for compact heat exchangerswith multi-region louver fins. International Journal of Heat and Mass Transfer,2010,53(15-16):2955~2962.
    [75]寇磊,廖胜明,刘玉涵.百叶窗翅片传热特性的数值模拟.建筑热能通风空调,2009,28(1):6~9.
    [76]董启军,陈江平,袁庆丰,等.百叶窗翅片的传热和阻力性能试验研究.动力工程,2006,26(6):871~874.
    [77]董启军,陈江平,陈芝久.百叶窗翅片的传热与阻力性能试验关联式.制冷学报,2007,28(5):10~14.
    [78]田小虎,李隆键,童明伟,等.车用百叶窗翅片式热交换器空气侧性能的CFD研究.天津理工大学学报,2007,23(2):63~66.
    [79]吴金星,王任远,尹凯杰,等.空气冷却器空气侧百叶窗翅片强化传热性能研究.制冷与空调.2011,11(4):69~74.
    [80]海瑛,陈敬虞,李文贵.气流非均匀分布时百叶窗翅片式换热器性能仿真.机电工程,2011,28(9):1068~1072.
    [81]李斌,陶文铨.5mm管径百叶窗翅片流动与传热数值模拟.天津大学学报,2011,44(9):798~802.
    [82] T kulkarni,C W Bullard. Design tradeoffs in micro channel heat exchanger. University of Illinoisat Urbana Champaign. ARCR TR-20,2003.
    [83] Bajura R A, Jones Jr E H. Flow Distribution Manifolds. Journal of Fluids Engineering,1976,98:654~666.
    [84] Ralphl WEBB, Kilyoan Chung. Two-phase flow distribution to tubes of parallel flow air-cooledheat exchangers. Heat Transfer Engineering,2005,26(4):3~18.
    [85] Lee J K, Lee S Y. Dividing Two-Phase Annular Flow within a Small Vertical RectangularChannel with a Horizontal Branch, Proc.3rd International Conference on Compact HeatExchangers and Enhancement Technology for the Process Industries, Davos, Switzerland,2001:361~368.
    [86] Lee Jun Kyoung, Lee Sang Yong. Distribution of Two-Phase Annular Flow at Header-ChannelJunctions. Experimental Thermal and Fluid Science,2004,28(2-3):217~222.
    [87] Kim J S, Im Y B. Two-Phase Flow Distribution in a Compact Heat Exchanger Header, Proc.1stInternational Conference on Microchannels and Minichannels, Ed. S. G. Kandlikar, Rochester,New York,2003:513~518.
    [88] Roland Haussmann. Hard-Soldered flat tube evaporator with a dual flow and one row in the airflow direction for motor vehicle air conditioning system, US006161616A. Dec.19,2000.
    [89]车德福,李会雄.多相流及其应用.西安:西安交通大学出版社,2007:505~509.
    [90]吴晓敏,熊永,王维城,等.扁平多分支管内两相流流量分配的数值模拟.工程热物理学报,2008,29(5):837~839.
    [91] Boutsianis E, Dave H, Frauenfelder T, et al. Computational simulation of intracoronary flowbased on real coronary geometry. European Journal of Card iothoracic Surgery,2004,26(2):248~256.
    [92] Moujaes S F, Deshmukh S. Three-dimensional CFD predications and experimental comparisonof pressure drop of some common pipe fitting in turbulent flow. Journal of Energy Engineering,2006,132(2):61~66.
    [93] Yakhot V, Orzag S A. Renormalization Group Analysis of Turbulence: Basic theory. ScienceCompute,1986,1:3~11.
    [94]陶文铨.数值传热学.西安:西安交通大学出版社,2001,347~376.
    [95]张恺,张小松,陈向阳,等.空调器空气焓差法性能测试不确定度分析.流体机械,2006,34(11):72~75.
    [96]林建忠,阮晓东,陈邦国,等.流体力学.北京:清华大学出版社.2005:274~275.
    [97]刘巍,朱春玲.分流板结构对微通道平行流蒸发器性能的影响.化工学报,2012,63(3):761~766.
    [98] N Ablanque, C Oliet, J Rigola, et al. Two-phase flow distribution in multiple parallel tubes.International Journal of Thermal Sciences,2010,49(6):909~921.
    [99] Masahiro Osakabe, Tomoyuki Hamada, Sachiyo Horiki. Water flow distribution in horizontalheader contaminated with bubbles. International Journal of Multiphase Flow,1999,25(5):827~840.
    [100] Guyh Dituba Ngoma, Francis Godard. Flow distribution in an eight level channel system.Applied Thermal Engineering,2005,25(5-6):831~849.
    [101] Meisen Li, Yoshiyuki Bando, Takanori Tsuge, et al. Analysis of liquid distribution innon-uniformly packed trickle bed with single phase flow. Chemical Engineering Science,2001,56(21-22):5969~5976.
    [102] Y Jiang, M R Khadilkar, M H Al Dahhan, et al. Single phase flow modeling in packed beds:discrete cell approach revisited. Chemical Engineering Science,2000,55(10):1829~1844.
    [103]焦安军,厉彦忠,张瑞,等.导流片的导流角度对其性能的影响.化工学报,2001,52(9):761~765.
    [104] Wen Jian, Li Yanzhong. Study of flow distribution and its improvement on the header of platefin heat exchanger. Cryogenics,2004,44(11):823~831.
    [105] Wen Jian, Li Yanzhong, Zhou Aimin, et al. PIV experimental investigation of entranceconfiguration on flow maldistribution in plate fin heat exchanger. Cryogenics,2006,46(1):37~48.
    [106] Selma Ben Saad, Patrice Clement, Jean Francois Fourmigue, et al. Single phase pressure dropand two-phase distribution in an offset strip fin compact heat exchanger. Applied ThermalEngineering,2012,49:99~105.
    [107]向立平,曹小林,欧阳琴.汽车空调平行流式冷凝器空气侧性能研究.流体机械,2007,35(10):64~67.
    [108]陈基镛,梁荣光,欧阳俊,等.汽车空调平行流式冷凝器优化换热的研究.机电工程技术,2008,37(5):20~22.
    [109]张兴群,袁秀玲,黄东.平行流式冷凝器的热力性能研究.流体机械,2005,33(12):65~68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700