空调用脉动热管冷热回收装置的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉动热管具有结构简单、传热性能卓越等优点,是一种新型高效传热原件。设计合理的脉动热管的传热特性不受重力场或极少受重力场的影响。基于脉动热管的此优势,在本课题之前的研究基础上,论文对脉动热管换热器进行改进设计,将其应用于空调排风余能回收系统。建立换热器的性能测试试验台,并对这两种换热器在空调排风余能回收系统中进行性能测试;分析脉动热管换热器的最小启动温差;讨论风速、新排风温差、倾斜角度等因素对其余能回收效率的影响。研究成果包括以下几方面:
     (1)设计改进了脉动热管换热器。脉动热管由8根增加到40根,相应地弯头数增加了五倍。将其与本课题之前脉动热管换热器的传热性能进行了比较,结果表明:在相同的条件下,本实验脉动热管换热器的换热量较大,其传热性能得到了较大的提高。
     (2)对于脉动热管换热器,存在一个最小启动温差。在风速2.0-3.0m/s的范围内夏季工况下,得出脉动热管换热器的最小启动温差是2.0℃。
     (3)影响脉动热管换热器换热效率的因素有风量、蒸发段温度及倾角等。随着排、新风比的增加,换热效率先下降后上升,排、新风比为1时其换热效率达到最低值;随着蒸发段气流的入口温度的增加,其换热效率上升;随着倾斜角度由0°→30°→60°→90°变化时,换热效率是先上升后下降,60°的倾角时其换热效率达到最高值。
     将本实验脉动热管换热器与重力热管换热器的传热性能进行了比较。结果表明,两者的总体传热特性相似,两种换热器蒸发段和冷凝段气流的进出口温差和效率都随着蒸发段入口的气流温度增加而增加。夏季工况蒸发段气流温度主要集中30-35℃,此温度范围内,脉动热管换热器的换热效率接近重力热管换热器的,而且脉动热管换热器的启动温差要小一些。所以,在空调排风系统能量回收中脉动热管显示出了较大的应用潜力。
Pulsating heat pipe (PHP), which is a new type of highly efficient heat transfer original with advantages of simple structure and excellent heat transfer performance. Another advantage of the PHP is that when it is well-designed, its heat transfer performance is little influenced by the gravitaty vector. Based on this good point and previous studies of this topica, the paper improve the design of PHP heat exchanger, using it in air-conditioning exhaust energy recovery systems. The test setup was Designed and built to further study their heat transfer performance in the air-conditioning exhaust heat recovery systems, also the minimum start-up temperature difference was measured. The relationships between the factors (wind velocity, temperature difference between the fresh air and the exhausted air, inelination angle) and the Performance of PHP heat exchanger were analyzed. Here are some research works and conclusions:
     Firstly, improving the design of PHP heat exchanger. The PHP increases to 40 by the 8 roots, corresponding to five-fold increase in the number elbow. We compared it with the PHP heat exchanger of previous studies of this topica on their heat transfer performence. Results show that, the PHP heat exchanger has more heat transfer and its heat performance is greatly improved in the same conditions
     Secondly, it has minimum activated temperature difference for the PHP heat exchanger. It is found that the wind velocity is in the range of 2.0-3.0m/s, the minimum start-up temperature difference between hot and cold air is 2℃for the PHP heat exchanger in summer condition.
     Thirdly, there has some influencea factors for heat transfer Performance of PHP heat exchanger, such as wind velocity, the evaporator air temperature and inelination angle. The effectiveness become smaller at first and after it reaches the smallest point it became bigger with increasing of the rate ratio between return and fresh air, and the smallest point was at the 1 rate ratio. With the evaporator air temperature increasing, the efficiency is increasing. Its effectiveness become bigger at first and after it reaches the biggest point it became smaller with increasing of inelination angle (from 0°、30°、60°to 90°), and the biggest point was at the 60°inelination angle.
     We compared PHP heat exchanger with the thermosyphon heat exchanger on their heat transfer performence. Results show that both types of heat exchangers showed the similar heat transfer characteristics generally. With the evaporator air temperature increasing, air temperature difference between imports and exports and the efficiency also increases, both for evaporation section and condensation section. The evaporation section air temperature between 30-35℃usually in summer conditions, data shows that the PHP minimum start temperature is smaller in this range. Therefore, the PHP heat exchangers in air-conditioning exhaust heat recovery system exist a lot of potential applications.
引文
[1]卞觉敏等.轮转式全热交换器在高层建筑中央空调中的应用与经济分析[J].能源研究与信息.1998,14(2):8-9
    [2]Akachi H. U.S. patent Number 4921041,1990
    [3]王晓鑫.脉动热管稳态运行机制的研究[D].天津大学.2009
    [4]马永锡,张红,苏磊.振荡热管内的振荡及传热传质特性[J].化工学报,2005,56(12):2265-2270.
    [5]杨彬.脉动热管扩热板的传热性能研究[D].中国科学院研究生院2009
    [6]Groll M, Khandekar S. Pulsating heat pipes:a challenge and still unsolved problem I heat pipe science [J].3rd Int. Conf. on Transport Phenomena in Multiphase Systems,2002 Baranow Sanomierski, Poland:35-43
    [7]马永锡,张红,庄骏.振荡热管—一种新型独特的传热元件[J].化工进展,2004,23(9):1008-1012
    [8]White E. and Beardmore R. The Veloeity of Rise of single Cylindrieal Air Bubbles Through Liquids Contained in Vertical Tubes. Chem. Engg. Scienee.1962,17:351-361
    [9]Maezawa S, Gi K, Minamisawa A, et al. Tbermal Performance of Capillary Tube The rmosyPhon[C].9th International Heat Pipe Conference, Albuquerque, Anleriea,1995:118-127
    [10]Groll M, Khandekar S. Pulsating heat Pipes:Progress and Prospects[C]. In:Proe of International Conference on Energy and the Environment, Shanghai, China, Dee10-13,2003:723-730
    [11]张显明,徐进良,施慧烈.倾斜角度及加热方式对脉冲热管传热性能的影响[J].中国电机工程学报,2004(11):222-227.
    [12]Akachi H. Looped Capillary Heat Pipe[J]. Japanese Patent. No.Hei6-97247.1994
    [13]Charoensawan P, Khandekar S, Groll M, et al. Closed loop pulsating heat pipes part A:parameter experimental investigations[J].Applied thermal engineering, 2003,23(16):2009-2020
    [14]Shafii M B,Faghri A,Zhang Yuwen.Thermal modeling of unlooped and looped pulsating heat pipes[J].ASME Journal of Heat Transfer,2001,123(6):1159-1172
    [15]Schneider M,Khandekar S,Schfer P,et al.Visualization of Thermofluid dynamic Phenmomena in Flat Plate Closed Loop Pulsating Heat Pipes[C].6th International Heat Pipe Symposium Chiang Mai,Thailand,2000:218-297
    [16]ZhangYuwen, Faghri A.Heattransfer in a pulsatingheat pipewith open end[J]. International Journal of Heat and MassTransfer,2002,45(4):755-764
    [17]曲伟,马同泽.环路型脉动热管的稳态运行机制[J].工程热物理学报,2004,2(25):323-325
    [18]杨蔚原,张正芳,马同泽.回路型脉动热管的运行与传热[J].上海交通大学学报,2003,37(9):1399-1401
    [19]Miyazaki Y, Arikawa M. Oscillatory flow in the oscillating heat pipe[C]. Advanced Research Institute of Science and Engineering:Proceeding of 11th international heat pipe conference.Tokyo:Japan Association for Heat Pipes,1999:131-136
    [20]Khandekar S, Schneider M,Schafer P,et al.Thermofluid dynamic study of flat plate closed-loop pulsating heat pipes[J].Micro-scale thermophysical,2002, 6(4):303-317
    [21]周岩,曲伟.脉动热管的毛细管结构和尺度效应实验研究[J].工程热物理学报,2007(4):646-648.
    [22]曹小林,周晋等.脉动热管运行机理的可视化及传热特性研究[C].第六届全国低温与制冷工程大会会议论文集,2003:88-92
    [23]曹小林,王伟等.环路型脉动热管的工质流动和传热特性实验研究[J].热科学与技术,2007,13(1):105-108
    [24]刘凤田,黄祥奎.空调用分体热虹吸热管冷热回收装置的试验研究[J].暖通空调,1994.4:25-27
    [25]Zuo Z J, North M T, Ray L. Combined Pulsating and CaPillary TransPort Mechanisms [C]. ASME International Congress and ExPosition, Nashville, Tennessee,1999:788-800
    [26]Wong T N, Tong B Y, LimSM, et al.Theoretical modeling of pulsating heat pipe[C]. Advanced Research Institute of Science and Engineering:Proceeding of 11th international heat pipe conference.Tokyo:Japan Association for Heat Pipes, 1999:159-163
    [27]Dobson R, Harms T, Lumped parameter analysis of closed and open oscillatory heat pipes [J].11th Int. Heat Pipe Conf.,1999,Tokyo, Japan:137-142
    [28]Khandekar S, Cui X, Groll M. Thermal performance modeling of pulsating heat pipes by artificial neural network[C]. Maidanik Yu.Proceeding of 12th international heat pipe conference.Moscow:Institute of Thermal Physics of the Ural Branch of The Russian Academy of Sciences,2002:215-219
    [29]崔晓钰,翁建华,葛志松等.铜-水振荡热管的传热特性[J].上海交通大学学报,2004,38(7):1188-1192
    [30]Khanderkar S, Charoesawan P, Groll M etc. Closed loop pulsating heat pipes Part B:visualization and semi-empirical modeling [J]. Applied Thermal Engineering 2003 (23):2021-2033
    [31]Rittidech S, Terdtoon P, Murakami M, etc. Correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe at normal operating condition [J]. Applied Thermal Engineering,2003,23:497-510
    [32]Katpradit T, Wongratanaphisan T, Terdtoon P, etc. Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state [J]. Applied Thermal Engineering,2005,25:2138-2151
    [33]Khandekar S, Manyam S, Groll M, et al. Two-Phase flow modeling in Closed loop Pulsating heat Pipe[C]. In:Proeeedings of the 13th Iniemational Heat Pipe Conference, Shanghai, China,2004:275-282
    [34]GI K, Sato F, Maezawa S, etc. Flow visualization experiment on oscillating heat pipe [J].11th Int. Heat Pipe Conf.1999,149-153.
    [35]Lee W H. Flow Visualization of Oscillating CaPillary Tube Heat Pipe[C].11th International Heat Pipe Conf. Tokyo, JaPan,1999:131-136
    [36]Tong B, Wong T, Ooi K. Closed-loop pulsating heat pipe [J]. Applied thermal engineering.2001,21(18):1845-1862.
    [37]Khandekar S, Dollinger N, Groll M. Understanding operational regimes of closed loop pulsating heat pipes:an experimental study [J]. Applied Thermal Engineering 23(2003):707-719.
    [38]Charoensawan P, Khandekar S, Groll M etc. Closed loop pulsating heat pipes Part A:parametric experimental investigations [J]. Applied Thermal Engineering, 23(2003):2009-2020.
    [39]Khandekar S, Groll M, Luckchoura V. An introduction to pulsating heat pipes [J], Electronics Cooling,2003,9(2):38-41.
    [40]Katpradit T, Wongratanaphisan T, Terdtoon P etc. Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state [J]. Applied Thermal Engineering,2005,25:2138-2151.
    [41]Katpradit T, Wongratanaphisan T, Terdtoon P etc. Effect of aspect ratios and Bond number on internal flow patterns of closed end Oscillating heat pipe at critical state [J].13th Int. Heat pipe conf.,2004, Shanghai, China.
    [42]杨蔚源,张正芳,马同泽.脉动热管运行的可视化实验研究[J].工程热物理学报,2001:117-120
    [43]曲伟,马同泽.脉动热管的工质流动和传热特性实验研究[J].工程热物理学报,2003,23(5):596-598.
    [44]曹小林,周晋,晏刚.脉动热管的结构改进及其传热特性的实验研究[J].工程热物理学报,2004,25(5):807-809.
    [45]曹小林,席战利,周晋等.脉动热管运行可视化及传热与流动特性的实验研究[J].热能动力工程,2004,19(4):411-416.
    [46]杨洪海,Khandekar S, Groll M单回路闭式脉动热管内流型的实验研究[J].流体机械,2007:60-63.
    [47]曲伟,马同泽.新型热管的研究进展和应用现状[J].南京工业大学学报,2003,25:79-93.
    [48]Akachi H, Miyazaki Y. Stereo-type heat lane heat sink[J].10th Int. Heat pipe conf.,1997, Stuttgart, Germany.
    [49]De.Villiers J.F. Cooling of Electronics Using Pulsating Heat Pipes [J]. South Africa:University of Stellenlmsch,2000.
    [50]Meena P, Rittidech S, Poomsa-ad N. Application of closed-loop oscillating heat-pipe with check valves(CLOHP/CV)air-preheater for reduced relative-humidity in drying systems[J].Applied Energy,2007,84(5):553-564.
    [51]Rittidech S, Dangeton W,Soponronnarit S.Closed-ended oscillating heat-pipe (CEOHP) air-preheater for energy thrift in a dryer[J].Appl Energy 2005,81:198-208.
    [52]Rittidech S, Wannapakne S.Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP) [J]. Appl Therm Eng 2007; 27:1978-1985.
    [53]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,2006.
    [54]张红,杨崚,庄骏.热管节能技术[M].北京:化工出版社,2009
    [55]Heine D, Groll M. The Compatibility of Organic Liquid and Industry Material In Heat Pipe.5th INPC. Tuskuba,1984
    [56]靳明聪,陈远国.热管及热管换热器[M],重庆:重庆大学出版社,1986.
    [57]韩洪达.应用于空调余能回收的脉动热管换热器的研究[D].东华大学硕士学位论文,2008
    [58]万勃.脉动热管传热性能及其传热关联式的实验研究[D].东华大学硕士学位论文2008:52.
    [59]廖光亚,辛明道.低液位沸腾转化点的理论分析与实验[J].重庆大学学报传热传质学专辑,1984,第七卷:41-47.
    [60]孙一坚.工业通风[M].3版.北京:中国建筑工业出版社,1994.
    [61]2005 Standard for performance rating of air-to-air heat exchangers for energy recovery ventilation heat equipment[S].Air-Conditioning and Refrigeration Institute, Virginia, USA,2005.
    [62]王伟.脉动热管的传热性能和启动特性[D].中南大学硕士学位论文,2007:20-22
    [63]徐荣吉,王瑞祥等.脉动热管启动过程的实验研究[J].西安交通大学学报,2007,41(5):530-533
    [64]Katsuhiko K, Morifumi T. Explosive phnomena in two-phase closed thermosyphons with and without a nonviolatile liquid[J]. 11th Iniernational Heat Pipe Conferenee,Japan,1999,1:104-109
    [65]徐荣吉,王瑞祥,丛伟,吴业正.脉动热管实验台的搭建及可视化实验研究[J].流体机械,2007(35):59-61.
    [66]吴玉庭等.池内过冷核沸腾表面活化核心密度的研究[J].北京航空航天大学学报,2000.10:581-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700