基于瞬态法的界面接触换热系数实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触换热系数作为评价界面换热能力的关键参数广泛应用于低温工程、微电子、材料加工及机械制造等诸多领域。国内外学者对此开展了大量的理论分析工作和建立在稳态热流法基础上的实验研究,并一致认为界面接触热阻产生的主要原因是微观粗糙接触界面处发生的热流收缩。实际上,很多界面接触换热过程是在短时间内动态发生的,且材料本身温度较高,如热加工过程中坯料与模具的接触,但这方面的研究报道尚不多见,可供参考的相关数据较为缺乏。因此,研究瞬态条件下的界面接触换热问题具有十分重要的意义。
     本文在分析了国内外相关文献的基础上,介绍了界面接触换热的基本理论,包括接触表面形貌模型、接触表面形变模型及接触热传导模型,根据CMY理论,阐述了接触换热系数的解析模型和理论计算关系式。基于瞬态反传热算法,设计了一套可行的接触换热系数实验测试设备,开发了配套的数据采集处理软件,研究了多种金属材料在不同接触载荷与不同初始温度条件下的接触换热系数,获得了一系列较为可靠的实验结果,对实验数据进行分析后,得出如下结论:
     1.接触发生后,试样内部温度场迅速重新分布,接触界面处温度变化尤其剧烈,在5秒内温度变化量达到最大值;试样校核测温点的温度计算值与实测值吻合较好,验证了计算方法的可靠性。
     2.瞬态接触换热系数在短时间内(大约5秒)迅速升高至某一值,并基本保持稳定;由于接触表面微观变形及计算误差两方面原因,随着时间延长,接触换热系数可能出现后续增加的趋势。
     3.压强和温度是影响瞬态接触换热系数的重要因素。初始温度不变的条件下,接触换热系数随接触压强增加整体上呈增加趋势;保持高温试样温度不变,在给定压强下,接触换热系数随低温试样温度变化呈现出某种特定的变化规律,这为工程实际中模具的预热提供了必要的数据参考。
     4.瞬态法与稳态法实验的基本原理是不同的,但是铝合金与模具钢间接触换热过程的实验结果表明,两种方法获得的接触换热系数值之间仍存在一定的关联性。
Contact heat transfer coefficient as the key parameter to estimate the ability of heat transfer across the interface has been broadly applied in many fields, such as cryonics engineering, microelectronics, metal hot forming and the manufacture of equipments. Many theoretical and steady experimental studies were developed, and researchers consistently agreed that the constriction of heat flow at the rough contact surface causes thermal contact resistance. In fact, some thermal contacts occur in a very short time dynamically with high temperature samples. The contact between blank and die in metal hot forming process is a typical example. It is necessary to research the thermal contact in transient state deeply due to the paucity of the related data. In this work, surface profile model, contact deformation model and contact heat transfer model were introduced based on many related literatures. The analytical model and theoretical correlation were also described according to the model established by Cooper, Mikic and Yovanovich. A new experimental apparatus with the data acquisition system was developed using the inverse method. Contact heat transfer coefficient of several typical metals was investigated at different contact pressure and initial temperature. It can be concluded from the experimental results as follows:
     1. The temperature field inner samples redistributes immediately after contact occurs. The variation of temperature at the interface reaches maximum in 5 seconds. Calculated and measured temperature at the verification position agrees well, which indicates that the experimental method is reliable.
     2. Contact heat transfer coefficient increases rapidly to a level at the beginning of contact, and then a much slower increase may occur with the increasing time because of the deformation of contact surface and calculated error.
     3. Contact pressure and initial temperature are both significant factors for contact heat transfer coefficient. Contact heat transfer coefficient increases with the increasing contact pressure generally. The study of temperature on low temperature sample provides some references for preheating of the die material in practice.
     4. The principles are different between steady and transient experiments. However, the experimental results between aluminum alloy and die steel show that there exists some relationship on contact heat transfer coefficient obtained from the two methods.
引文
[1]石零.低温固—固接触界面热传输研究[D]:(博士学位论文).武汉:华中科技大学,2006.
    [2]ROSOCHOWSKA M, BALENDRA R, CHODNIKIEWICZ K. Measurements of thermal contact conductance [J]. Journal of materials processing technology,2003,135:204-210.
    [3]张云湘.瞬态法接触热阻实验研究及其在快速铸轧工艺参数仿真中的应用[D]:(硕士学位论文).长沙:中南大学,2001.
    [4]赵兰萍,徐烈,李兆慈,等.固体界面间接触导热的机理和应用研究[J].低温工程,2000,4:29-34.
    [5]颜迪民.固体材料的接触传热[J].机械工程学报,1965,13(4):74-84.
    [6]JENG Y R, WANG P Y. An elliptical microcontact model considering elastic, elastoplastic and plastic deformation [J]. Transactions of the ASME,2003,125:232-240.
    [7]李晓谦.界面接触热阻实验与建模及其在快凝铸轧参数设计中的应用[D]:(博士学位论文).长沙:中南大学,2001.
    [8]GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces [C]. Proceedings of the Royal Society of London, series A, Mathematical and physical sciences,1966, A295 (1442):300-319.
    [9]COOPER M, MIKIC B B, YAVANOVICH M M. Thermal contact conductance [J]. International journal of heat mass transfer,1969,12:279-300.
    [10]MADHUSUDANA C V, FLETCHER L S. Contact heat transfer-the last decade [J]. AIAA, 1986,24(3):510-523.
    [11]BECK J V, KELTNER N R. Transient thermal contact of two semi-infinite bodies over a circular area [C]. AIAA 16th thermophysics conference, Palo Alto, Jun 23,1981.
    [12]JAIN V K. Determination of heat transfer coefficient for forging applications [J]. Journal of Materials Shaping Technology,1990,8:193-202.
    [13]DEGIOVANNI A, LAMINE A S, MOYNE C. Thermal contacts in transient states-a new model and two experiments [J]. Journal of thermophysics and heat transfer,1992,6:356-363.
    [14]LAMBERT M A, FLETCHER L S. Review of models for thermal contact conductance of metals [J]. Journal of thermophysics and heat transfer,1997,11(2):129-140.
    [15]LAMBERT M A, MIRMIRA S R, FLETCHER L S. Design graphs for thermal contact conductance of similar and dissimilar light alloys [J]. Journal of thermophysics and heat transfer, 2006,20(4):809-816.
    [16]MAROTTA E E, FLETCHER L S. Thermal contact conductance for aluminum and stainless steel contacts [J]. Journal of thermophysics and heat transfer,1998,12(3):374-381.
    [17]ZHAO L, PHELAN P E. Thermal contact conductance across filled polyimide films at cryogenic temperatures [J]. Cryogenics,1999,39:803-809.
    [18]BAHRAMI M, CULHAM J R, YOVANOVICH M M, et al. Thermal contact resistance of nonconforming rough surfaces, part 1:contact mechanics model [J]. Journal of thermophysics and heat transfer,2004,18(2):209-217.
    [19]BAHRAMI M, CULHAM J R, YOVANOVICH M M, et al. Thermal contact resistance of nonconforming rough surfaces, part 2:thermal model [J]. Journal of thermophysics and heat transfer,2004,18(2):218-227.
    [20]BAHRAMI M, CULHAM J R, YOVANOVICH M M, et al. Review of thermal joint resistance models for nonconforming rough surfaces [J]. Transactions of the ASME,2006,59:1-12.
    [21]WAHID S M S, MADHUSUDANA C V, LEONARDI E. Solid spot conductance at low contact pressure [J]. Experimental thermal and fluid science,2004,28:489-494.
    [22]ROSOCHOWSKA M, CHODNIKIEWICZ K, BALENDRA R. A new method of measuring thermal contact conductance [J]. Journal of materials processing technology,2004,145:207-214.
    [23]POLOZINE A, SCHAEFFER L. Influence of the inaccuracy of thermal contact conductance coefficient on the weighted-mean temperature calculated for a forged blank [J]. Journal of materials processing technology,2008,195:260-266.
    [24]FIEBERG C, KNEER R. Determination of thermal contact resistance from transient temperature measurements [J]. International Journal of Heat and Mass Transfer,2008, 51:1017-1023.
    [25]皇甫哲.金属接触面传热热阻的研究[D]:(博士学位论文).西安:西安交通大学,1989.
    [26]徐烈,杨军,徐佳梅,等.低温下固体表面接触热阻的研究[J].低温与超导,1996,24(1):53-58.
    [27]徐烈,张涛,赵兰萍,等.双热流法测定低温真空下固体界面的接触热阻[J].低温工程,1999,4:185-189.
    [28]赵兰萍,徐烈.固体界面间接触热阻的理论分析[J].中国空间科学技术,2003,4:6-11.
    [29]XU R P, FENG H D, ZHAO L P, et al. Experimental investigation of thermal contact conductance at low temperature based on fractal description [J]. International communications in heat and mass transfer,2006,33:811-818.
    [30]赵剑锋,王安良,杨春信.接触传热表面粗糙度曲线的统计特征[J].低温工程,2003,134(4):49-56.
    [31]钟明,程曙霞,孙承纬,等.接触热阻的蒙特卡罗法模拟[J].高压物理学报,2002,16(4):305-308.
    [32]应济,贾昱.粗糙表面接触热阻的理论和实验研究[J].浙江大学学报,1997,31(1):104-109.
    [33]赵宏林,黄玉美,徐洁兰,等.常用结合面接触热阻特性的试验研究[J].西安理工大学学报,1999,15(3):26-29.
    [34]赵宏林,黄玉美,盛伯浩.接触热阻理论计算模型的探讨[J].制造技术与机床,1999,9:23-24.
    [35]顾慰兰,杨燕生.温度对接触热阻的影响[J].南京航空航天大学学报,1994,26(3):342-349.
    [36]殷晓静,DEGIOVANNI A.同心圆柱套筒间接触热阻研究(Ⅰ):数学模型[J].北京科技大学学报,1996,18(4):383-386.
    [37]殷晓静,DEGIOVANNI A.同心圆柱套筒间接触热阻研究(Ⅱ):参数影响分析[J].北京科技大学学报,1996,18(5):464-467.
    [38]殷晓静,张欣欣,DEGIOVANNI A.测量双层薄同心圆筒接触热阻的瞬态脉冲法[J].钢铁,2000,35(5):60-62.
    [39]任红艳,胡金刚.接触热阻与接触导热填料[J].宇航材料工艺,1999,6:11-15.
    [40]湛利华,李晓谦,胡仕成.界面接触热阻影响因素的实验研究[J].轻合金加工技术,2002,30(9):40-43.
    [41]刘华,茅清希,安恩科,等.有温差两杆件接触的热传导问题[J].同济大学学报,2002,30(6):686-689.
    [42]张立文,朱德才,邢磊,等.铝合金与5CrMnMo模具钢界面接触换热系数实验研究[J].大连理工大学学报,2009,49(1):60-64.
    [43]朱德才.固体界面接触换热系数的实验研究[D]:(硕士学位论文).大连:大连理工大学,2007.
    [44]张兴致.高温合金及钛合金与模具材料接触换热试验研究[D]:(硕士学位论文).大连:大连理工大学,2009.
    [45]刘林华.固体接触热阻的数值模拟[D].(硕士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [46]张小平译.分形几何学[M].徐州:中国矿业大学出版社,1992.
    [47]SRIDHAR M R, YOVANOVICH M M. Elastoplastic contact conductance model for isotopic conforming rough surfaces and comparison with experiments [J]. Journal of heat transfer, 1996,118(2):3-9.
    [48]张朝纲.分形及其在表面科学中的应用[J].贵州科学,1998,16(3):226-232.
    [49]SALGON J J. A mechanical and geometrical approach to thermal contact resistance [J]. International journal of heat and mass transfer,1997,40(5):1121-1129.
    [50]MAJUMDAR A, TIEN C L. Fractal network model for contact conductance [J]. Journal of heat transfer,1991,113(8):516-525.
    [51]LAMBERT M A, FLETCHER L S. Thermal contact conductance of spherical rough metals [J]. Transactions of ASME:Journal of heat transfer,1997,119(4):684-690.
    [52]MIKIC B B. Thermal contact conductance, theoretical considerations [J]. International journal of heat and mass transfer,1974,17:205-214.
    [53]XING L, ZHANG L W, ZHANG X Z, et al. Experimental investigation of contact heat transfer at high temperature based on steady state heat flux method [J]. Experimental Heat transfer,2010,23(2):107-116.
    [54]钟明.接触热阻及双层组合介质温度场的研究[D]:(博士学位论文).合肥:中国科学技术大学,2001.
    [55]姚仲鹏,王瑞君.传热学[M].北京:北京理工大学出版社,1995.
    [56]BECK J V, BLACKWELL B, CLAIR C R ST. Inverse heat conduction, ill-posed problems [M]. New York:Wiley-Verlag,1985.
    [57]顾剑锋,潘健生,胡明娟.淬火冷却过程中表面综合换热系数的反传热分析[J].上海交通大学学报,1998,32(2):19-31.
    [58]中国机械工程学会锻压学会.锻压手册[M].北京:机械工业出版社,2002.
    [59]彭勋元,李翠仙.锻模温度对模具的影响[J].太原重型机械学院学报,1986, 7(1):18-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700