淬火槽加载工件前后介质流速场的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淬火在金属学中的定义是加热工件“受控的放热”,是金属工件获得所需组织和性能的重要工艺手段。生产中因淬火引起的畸变和内在质量问题是导致工件返修和报废的重要原因。淬火畸变产生的因素很多,但淬火冷却的不均匀性是淬火畸变和开裂的主要原因。所以研究淬火槽内介质流速场不仅能对淬火槽槽体、搅拌和均流系统的优化设计具有指导意义,而且结合工件的形状和装炉方式还能有助于分析、预测畸变易发生的部位,指导工件的合理装夹,提高工件淬火冷却的均匀性和减少畸变,这对于热处理实际生产具有重要的应用价值。
     本文依据车间使用的淬火油槽DZC40(有效淬火区φ2500mm×3000mm)建立计算模型,应用大型计算流体力学软件Fluent6.2对淬火油槽空载和加载与实际尺寸一致的盘状齿轮、齿轮轴和齿圈三种典型工件进行了三维建模和数值计算,通过模拟计算和实验验证得到:
     1)淬火槽空载时,在槽体的中上部形成了大范围的流速均匀的“有效淬火区”,当加载工件后,流速场变化显著,介质根据工件形状和装夹方式介质形成了全新的流速场分布。
     2)当加载盘状齿轮叠放的工件串时,工件串的正上部和下部形成了明显的低速区,而位于工件串外层的齿面周边边沿处介质的流速却明显高于其余部位;
     3)加载多件齿轮轴立装于盘状夹具之上时,齿轮轴外侧流速较高且均匀,而内侧的底部流速却很低;
     4)加载齿圈叠放于盘状实心和空心夹具上时,中上层齿圈内外侧流速均较均匀,而下层齿圈内外侧的流速差别较大;
     5)本文对盘状齿轮的冷却模拟过程进行了试验验证。通过在流速场模拟的几个特征区放置40Cr棒状试棒,根据其心部硬度和端淬曲线找出其处的淬火烈度和介质流动状态,试验结果与模拟吻合较好。
     6)通过对淬火槽流速场的模拟,得到空载和加载后介质流场的分布及其特点,为淬火槽的设计及不同形状齿轮的装夹提供了理论上的参考依据,从而为提高齿轮淬火质量和减小热处理畸变起到有益的作用。
In metallography, the definition of quenching is "the controlled extraction of heat",it is the most important process for components to get required microstructures and proper mechanical. In production, the main cause of reject and reversion of the products is workpiece distortion or inner quality question in quenching. In the factors inducting distortion and cracking the main cause is the non-uniformity in cooling. While the hot workpieces are quenched in the quenching tank, and the distribution of quenchant flow field in it has an crucial influence on the quenching uniformity of the workpiece.Therefore research on the quenchant flow field in the tank not only can optimize the desigen of tank corporeity, agitator system and flow-equalizing equipment, and but also can analyse and predict where the distortion easliy occured by workpiece shap and racking, and then improve the quenching uniformity of workpiece to avoid from large distortion and quenching cracking.
     In order to study the quenchant flow field in the quencing oil tank used in the workshop, a 3-D model of the tank(effective quenching zoneφ2500mm×3000mm) with real workpiece dimensionescaped dimension error was first established. Aided by the Fluent 6.2——a good-size commercialsoftware the quenchant velocity in the quenching tank without and with workpieces was obtained. The results of simulation and experiments are as following:
     (1) When the tank is without loading, a "effective quenching zone" will be formed in the middle and top of the tank . After loading of workpieces the distribution of quenchant flow field will produce great chang and the new distribution of it will be formed by the racking mode of the partes and the part shap.
     (2) When the tank is with loading of geares piled up on the rack, the quenchant velocity on the top and bottom of the rack appears very slow,but the velocity on the edge of the gears is faster than other position.
     (3) The simulation result of quenchant flow field in the tank with gear shafts standing on a disk showes that: The quenchant velocity is fast and symmetrical around the gear shafts except the inner region of bottom of the gear shafts.
     (4) A quenching tank with gear rings standing on the disk or rack was selected to simulate the flow field. The simulation result showes that the velocity around the gear rings on the top and middle of the rack is symmetrical , but it is different around gear rings on the bottom of rack.
     (5) In order to validate the simulation result,a test was conducted,several test bars of 40Cr steel were placed separably on the special spots of rack,according to the correction of core hardness and the hardenability of sample, the quench severity of each spot was found.
     (6) Through the simulation of the quenchant flow field in the tank with or without workpieces,there distribution and characteristic were obtained. The present work is helpful for design of the tank and the racking of different gears,and could improve the quenching quality of gear and decrease the quenching distortion.
引文
[1]陈锐,罗新民.钢件的淬火热处理变形与控制[J].热处理技术与装备,2006,27(1):18-22
    [2]Klaus-Dieter Thoben,Dieter Klein."Distortion Engineering":A system-oriented view on the distortion of component-parts[J].金属热处理,2004,29(11):43-50.
    [3]许学军,陈国学,刘春成,等.钢的淬火过程的数值模拟[J].大型铸锻件,1997,2:6-10
    [4]李强,王葛.淬火冷却过程计算机模拟研究的现状及发展趋势[J].重型机械,2001,6:4-7
    [5]钟斌,陈刚.淬火过程数值模拟技术研究[J].安徽冶金科技职业学院学报,2004,14(1):11-13
    [6]张伟民,陈乃录,胡明娟,潘健生.热处理智能技术[J].热处理,2004,19(1):1-5
    [7]潘健生等.热处理计算机模拟与智能控制[J].机械工人(热加工).2002,9:29-31
    [8]D.Scott Mackenzie.A Discussion of Present and Future Technologies[J].Gear Technology,2005,3/4:20-28
    [9]陈乃录,潘健生,廖波,等淬火油动态下换热系数的测量及计算[J].热加工工艺,2002,3:6-7
    [10]中国机械工程学会热处理学会.热处理手册(第三版第1卷)[M].北京:机械工业出版社,2001:126
    [11]姚善长,T.Ericsson.淬火过程的计算机模拟[J].金属热处理,1987,8:25-32
    [12]全钰泰.热处理过程中温度、组织转变和应力的计算机模拟技术[J].渝州大学学报(自然科学版),1999,16(2):51-54
    [13]李辉平,赵国群,栾贻国,等.淬火过程有限元模拟技术的研究现状及其关键技术[J].山东大学学报(工学版),2004,34(5):116-121
    [14]S.Sjostrom.Interactions and Constitutive Models for Calculating Quench Stresses in Steel[J]Materials Science and Technology,1985,1(10):823-829
    [15]程晓敏,陶应龙,吴兴文.20钢渗碳淬火应力与畸变的有限元计算[J].金属热处理,2003,28(10):35-37
    [16]李勇军,潘健生,胡明娟,等.马氏体相变塑性及其在淬火数值模拟中的应用[J].上海交通大学学报,2001,35(3):352-355
    [17]赵海鸥,潘健生.第二届淬火和变形控制会议论文综述[J].金属热处理,1997,12:30-34
    [18]潘健生,胡明娟.计算机模拟与热处理智能化[J].金属热处理,1998,7:21-23
    [19]顾剑锋,潘健生,胡明娟.淬火冷却过程中表面综合换热系数的反传热分析[J].上海交通大学学报,1998,32(2):19-22
    [20]顾剑锋,潘健生,胡明娟.淬火介质换热系数的计算机测算[J].热加工工艺,1998,5:13-14
    [21]李辉平,赵国群,牛山廷等.淬火过程冷却曲线的采集及换热系数求解方法的研究[J].金属热处理,2006,31(7):29-32
    [22]胡明娟,潘健生,李兵,等.界面条件剧变的淬火过程三维温度场的计算机模拟[M].金属热处理,1996,17(增):91-97
    [23]宋冬利,顾剑锋,胡明娟,等.基于数值模拟的718塑料模具钢大模块淬火新 工艺[J].钢铁,2004,39(9):64-68
    [24]陈洪,刘勇,杨贤镛.森吉米尔中间辊淬火温度场的有限元模拟[J].材料热处理学报,2006,27(4):126-129
    [25]田东,胡明娟,潘健生.淬冷过程中三维传热的数值模拟[J].兵器材料科学与工程,1998,21(4):28-31。
    [26]田东,胡明娟,潘健生.T8钢淬火过程三维温度场计算及试验[J].上海交通大学学报,1998,32(2):109-111
    [27]潘健生,胡明娟,田东.,等.淬火过程计算机模拟研究的若干进展[J].金属热处理,1998,12:30-31
    [28]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000,240
    [29]赵洪壮,许红,刘相华,等.热处理过程数值模拟综述[J].热处理,2004,19(1):6-11
    [30]中国机械工程学会热处理学会.热处理手册(第三版第1卷)[M].北京:机械工业出版社,2001:145-147
    [31]JOHNSON A W,MEHL R F.Reactions of kinetics in processes of nucleation and growth[J].Transaetions AIME.1939,135:416
    [32]石伟,武世勇,张向琨,等.淬火过程的三维数值模拟研究与软件开发[A].首届热处理活动周论文集[C],中国大连:中国机械工程学会,2002:15-20
    [33]王同珍,蔡大勇,李强,等.淬火过程组织转变孕育期的模拟计算[M].金属热处理,2005,30(增)102-104
    [34]Koistinen.D.F.and Marburger.R.E.A General Equation Prescribing the Extent of the Austenite-martensite Transformation in Pure Iron-carbon Alloys and Plain Carbon Steels[J],Acta Met,,1959,7(1):59-60
    [35]B.Smoljan.Computer Simulation of IT-diagrams of Steel[A].14~(th) Congress of International Federation for Heat Treatment and Surface Engineering[C].shanghai china,2004:706-709
    [36]徐祖耀.相变原理[M].北京:科学出版社,1988:408-427
    [37]徐祖耀等.奥氏体在非连续冷却时的转变[J].金属学报.1965,8(3):360-365
    [38]王顺兴,王祝伟,刘勇.提高淬火模拟精度的系统化处理方法[J].材料热处理学报,2003,24(3):79-83
    [39]Tamas RETI,Imre FELDE,Hakan GUR.Modeling of Reversible γ/αTransformations of Low Carbon Steels in the Intercritical Temperature Range[A].14~(th)Congress of International Federation for Heat Treatment and Surface Engineering[C].shanghai china,2004:702-705
    [40]顾剑锋、潘健生、胡明娟.淬火过程的计算机模拟及应用[J].金属热处理,2000,5:35-37
    [41]SONG Dong-li,GU jian-feng,ZHANG Wei-min,et al.Numerical Simulation on Temperature and Microstucture during Quenching Process of Large-sized AISI P20 Steel Die Blocks[A].14~(th) Congress of International Federation for Heat Treatment and Surface Engineering[C].shanghai china,2004:740-745
    [42]赖宏,刘天模.45钢零件淬火过程温度场的ansys模拟[J].重庆大学学报,2003,26(3):82-84
    [43]聂理君,尹立孟,刘炳,等.ANSYS在淬火过程数值模拟的应用[J].新技术新工艺,2006,5:43-44
    [44]LI Yan-zeng,YAN Mu-fu,WU Kun.Numerical Simulation of Temperature and Stress Fields of Ti-Alloy Thin-well Barrel during Quenching Process[A].14~(th) Congress of International Federation for Heat Treatment and Surface Engineering[C].shanghai china,2004:769-771
    [45]YAO Xin,ZHU Li-hua,LI M.Victor.Finite Element Analysis Stress and Distortion in an Eccentric Ring Induced by Quenching[A].14~(th) Congress of International Federation for Heat Treatment and Surface Engineering[C].shanghai china,2004:746-751
    [46]叶健松,李勇军,潘健生,等.大型支承辊热处理过程的数值模拟[J].机械工程材料,2002,26(6):12-15
    [48]Taleb L and SidoroffF.A micromechanical modeling of the greenwood-Johnson mechanism in transformation induced plasticity[J].Internation Joural of Plasticity,2003,19:1821-1842
    [49]Greenwood G W and Johnson R h.The deformation of metals under small stresses during phase transformation[J].Proc.Roy.Soc.,1965,A283:403-421
    [50]Magee C L.Transformation kinetics,micro-plasticity and aging of martensite in Fe-31Ni[D].Carnegie Inst.Tech.,Pittsburgh,PA,1966
    [51]Leblond J B,Devaux J,Devaux J C.Mathematical modelling of transformation plasticity in steels-Ⅰ.case of ideal plastic phases[J],international of Plasticity,1989,5:551-572
    [52]Axel H(o|¨)fter,Werner Theisen,Christoph Broeckmann.Quenching Simulation of PM Coated Tools[A].14~(th) Congress of International Federation for Heat Treatment and Surface Engineering[C].shanghai china,2004:752-757
    [53]阮冬,潘健生,刘德忠,等.特大型气体渗碳炉德流场动力学计算机模拟[J].金属热处理,1999,1:37-40
    [54]Zhang J,ChenXiao et al.Proc.of 1~(st) Biennal Eeng[M].Mathermatical Conf,Melbourne,1994:11-13,
    [55]李强,王葛,陈乃录,等.淬火介质流场计算机模拟[J].科学通报,2002, 47(24):1861-1862
    [56]王葛,李强,陈乃录,等.淬火槽内介质流场的计算机模拟[J].重型机械,2002,6:31-34
    [57]陈乃录,李强,廖波,等.淬火槽中介质流速的测量及流速场的模拟[J].材料热处理学报,2002,23(2):33-36
    [58]李芳.带有搅拌系统的淬火槽内介质流场的计算机模拟[D].苏州:江苏大学工学硕士论文,2005
    [59]陈乃录,高长银,单进,等.动态淬火介质冷却特性及换热系数的研究[J].材料热处理学报,2001,22(3):41-44
    [60]N.N.kavskii and R.R.Zelokhovtseva,Optimum cooling during the quenching of steel[J].Izv.V.U.Z.chernaya Metall,1982,3:111-113
    [61]陈景仁(美).湍流模型[M].第一版.上海:上海交通大学出版社,1989
    [62]C.J.Chen,S.Y.Jaw.Fundamentals of TurbulencModeling.Taylor&Francis,Washington,1998
    [63]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998
    [64]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001
    [65]J.D.Anderson,Computational Fluid Dynamics:The Basics with Applications.McGraw-Hill.1995,清华大学出版社,2002
    [66]王福军.计算流体动力学分析[M].清华大学出版社,2004
    [67]顾敏,陈岩。冷却设备对淬火效果的影响[J],汽车工艺与材料 2005,10
    [68]大和久 重雄(日本),陈元泰译 冷却液和冷却槽的冷却能力[J],兰州理工大学学报,1981,01:103-110
    [69]程里,程方.大型渗碳齿轮圈热处理畸变与控制[J],金属热处理,2005,30(3): 88-90
    [70]张也影,流体力学[M],北京:高等教育出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700