液氮浴中沸腾换热系数的反传热求解与验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深冷处理技术作为一种有潜力的热处理工艺,已经在各行各业中得到较为广泛的应用,然而其对材料的作用机理问题还存在争议,需要进一步进行研究,而分析其中的传热问题是机理探索的基础之一。深冷处理通常以液氮为冷却介质,此时工件在液氮浴中的沸腾换热系数是一个非常重要的参数。目前沸腾换热系数求解方式有很多,包括经验公式法、集总参数法、给定热流法和反传热法等。与其它求解方式相比,反传热法种类多且求解精度较高,从而在沸腾换热系数的求解中采用反传热方法成为一种选择。
     本文首先介绍了课题背景及意义、沸腾换热经验公式及Westwater沸腾实验结果、反传热方法的研究进展,以及本课题的研究基础等背景。第二章基于反传热方法原理及考虑显式有限差分法的应用限制,编写了用于计算一维导热条件下沸腾换热系数的程序。考虑到程序需要调用时间间隔极小的温度数据,设计了一套快速采集温度的反传热测量装置,并对自制热电偶响应时间进行了估测。对不锈钢块不同朝向时各测点的温度变化情况进行了测量,并利用反传热程序对实验数据进行分析,以了解不锈钢块朝向对沸腾换热系数的影响情况。鉴于利用反传热方法得到的换热系数数据存在波动且存在个别不合理数据点,采取对换热系数数据进行分段拟合以及修正后再分段拟合等方法获得相关表达式。
     最后为验证上述换热系数的准确性,对两个不同测试对象的整体温度场分别进行了实验测量和采用不同方法所得换热系数的数值模拟,并将两者的结果进行了对比分析。结果表明,根据五种不同方法得到的换热系数的模拟结果与实验测量结果之间都存在一定的偏差,利用反传热计算并去除个别不合理数据点后的修正拟合所得换热系数更加贴近实际测量结果。
As a promising heat treatment technique, cryogenic treatment is widely used in many fields, however, there is still controversy about the mechanisms for cryogenic treatment in material. Further investigation has its necessity and the analysis of heat transfer problems in cryogenic treatment is one of key points in mechanisms exploration. Cryogenic treatment usually uses liquid nitrogen as cooling medium, where the boiling heat transfer coefficient of workpiece in liquid nitrogen bath is an important parameter. Many methods have been developed to obtain the boiling heat transfer coefficient, including experiential equation method, lumped parameter method, inverse heat conduction method and so on. Comparing with other methods, inverse heat conduction method has the advantages of variety and high precision, so it can be considered as a choice in obtaining the boiling heat transfer coefficient.
     An introduction will be firstly made on the background and importance of research, the experiential formula for boiling heat transfer and Westwater's results on boiling experiments, the advances in inverse heat conduction method, and our previous efforts on this research topic. Following the fundamentals of inverse heat conduction and the requirement of explicit finite difference approach, Chapter 2 will be mainly devoted on the compilation of a program for solving boiling heat transfer coefficient under one-dimension conduction condition. Considering that the program requires temperature data with small time intervals, an inverse-heat-conduction measuring system was designed for fast temperature acquisition and also for assessing the qualification of the thermocouples' responding time. Making use of inverse heat conduction program and multi-directional experimental data of test points in stainless steel block, the block's orientation was found to have no apparent influence on boiling heat transfer coefficient. The repeatability of heat transfer coefficient data is also fairly good. To obtain a mathematical expression for numerical simulation, data-fitting procedure was carried out to clear the fluctuation in heat transfer coefficient data. We also notice that there exist some unreasonable data in the calculation result of heat transfer coefficient from the inverse-heat-conduction program, a corrected fitting of the data (by eliminating the unreasonable data points from original calculated heat transfer coefficient data) is also suggested to improve its accordance to experimental results.
     Finally, in order to verify the accuracy of the heat transfer coefficient obtained from different methods, the comparison was made to the temperatures from experimental measurement and from numerical simulation (with those different heat transfer coefficients), respectively. The comparative results demonstrate that there always exits some discrepancy between simulating results by adopting the above heat transfer coefficients and measuring results from experiments. However, compared with the results with other heat transfer coefficients, those from the simulation with the heat transfer coefficient by corrected fitting shows best agreement with experimental results .
引文
[1]王笑天,金属材料学[M].北京:机械工业出版社,1987
    [2]陈鼎,黄培云,黎文献,金属材料深冷处理发展概况.热加工工艺,2001,(4):57-59
    [3]夏雨亮,金滔,汤珂,许斌,张晓忠,陈佑军.深冷处理工艺及设备的发展现状和展望.低温特气,2007,25(1):4-8.
    [4]金滔,陈鹏翔,汤珂,夏雨亮,张晓忠,陈佑军.液氮浴中不锈钢板的动态冷却过程试验及模拟分析,低温工程,2007;(2):21-25.
    [5]Randall F.Barron.Cryogenic Heat Transfer,Philadelphia:Taylor and Francis,1999
    [6]陈鹏翔,深冷处理传热模拟及低温阀门试验系统设计.[硕士学位论文],浙江大学,2006
    [7]夏雨亮,低温阀门冷态实验过程传热模拟及深冷处理设备研制.[硕士学位论文],浙江大学,2007
    [8]徐济鋆.沸腾传热和气液两相流,北京:原子能出版社,1993
    [9]J.W.Westwater,J.J.Hwalek,M.E.Iriving,Suggested standard method for obtaining boiling curves by quenching.Industrial and Chemical Fundamentals,1986,25(4):685-692
    [10]L.A.Bromley,Heat transfer in stable film boiling.Chemical Engineering Progress,1950,46(2):221-227
    [11]N.V.Shumakov,A method for the experimental study of the process of heating a solid body.Soy.Phys.Tech.Phys.(Translated by American Institute of Physics),1957,2:771-781
    [12]G.Stolz,Jr.,Numerical solutions to an inverse problem of heat conduction for simple shapes.ASME J.Heat Transfer,1960,82:20-26.
    [13]O.R.Burggraf,An exact solution of the inverse problem in heat conduction theory and application,J.of Heat Transfer,1964,86:373-382
    [14]Kover'yanov,V.A,Inverse problem of nonsteady-state thermal conductivity,Teplofizika Vysokiph Temperatur,1967,5(1):141-143
    [15]E.M.Sparrow,A.Haji-Sheikh,T.S.Lundgren,The inverse problem in transient heat conduction.J.of Heat Transfer,1964,86:369-375
    [16]M.Shoji,Study of inverse problem of heat conduction(in Japanese).Trans.JSME,1978,44(381):1633-1643
    [17]M.Imber,J.Khan,Prediction of transient temperature distributions with embedded thermo-couples,AIAA Journal,1972,10(6):784-789
    [18]M.Imber,Temperature extrapolation mechanism for two-dimensional heat riow,AIAA Journal,1974,12(8):1089-1093.
    [19]H.K.Chen,S.M.Chang,Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer, 1990, 33 (4): 621-628.
    [20] Masanori Monde, Analytical method in inverse heat transfer problem using Laplace transform technique. Int. J. Heat Mass Transfer, 2000, 43: 3965-3975
    [21] J. V. Beck, Calculation of surface heat flux from an internal temperature history. ASME Paper 62-HT-46, 1962
    [22] Miller,K., Least squares method for ill-posed problems with a prescribed bound. SIAM J. Math. Anal., 1970,1(1): 52-74
    [23] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington, 1977.
    [24] Reinsch, C. H. J., Smoothing by spline function. Numerische Mathematik, 1967, 110: 30-37
    [25] Murio,D.A., On characterization of the solution of the inverse heat conduction problem. ASME, 1985,No.85-WA/HT-41
    [26] Hills, R. G., Mulholland, G. P., The accuracy and resolving power of one dimensional transient inverse heat conduction theory as applied to discrete and inaccurate measurement. Int. J. Heat and Mass Transfer, 1979, 22: 1221-1229
    [27] Backus, B., Gilbert, F., Uniqueness in the inversion in inaccurate gross earth data. Phil. Tran. R. Soc, Lond., 1980, 266: 123-192
    [28] Blackwell, B. F., Efficient technique for the numerical solution of the one-dimensional inverse problem of heat conduction. Numerical Heat Transfer, 1981,4: 229-238
    [29] J. Beck, Nonlinear estimation applied to the nonlinear inverse heat conduction problem. Int. J. Heat Mass Transfer, 1970, 13: 703-715
    [30] J. V. Beck, B. Litkouhi and C. R. St. Clair, Jr, Efficient sequential solution of the nonlinear inverse heat conduction problem. Numer. Heat Transfer, 1982, 5: 275-286
    [31] Willians, S. D., Curry, D. M., An analytical and experimental study for surface heat flux determination. J. Spacecraft, 1984, 14(10): 632-637
    [32] Hensel, E. C., Hills, R. G., A space marching finite difference algorithm for the one dimensional inverse conduction heat transfer problem. ASME, 1984, No.84-HT-48
    [33] Krutz, G. W., Schoenhals, R. J., Hore, P. S., Application of the finite-element method to the inverse heat conduction problem. Numer. Heat Transfer, 1978, 1: 489-498
    [34] Bass, B. R., Application of the finite element method to the nonlinear inverse heat conduction problem using Beck's second method. ASME Journal of Engineering for Industry, 1980, 102: 168-176
    [35] Beck, J. V., Murio, D. A., Combined function specification regularization procedure for solution of inverse heat conduction problem. AIAA, 1986, 24: 180-185
    [36] J. I. Frankel, M. Keyhani, A globe time treatment for inverse heat conduction Problems. J. Heat Transfer, 1997, 119: 673-683
    [37] V. Dumek, M. Druckmuller, Raudensk, K..A. Woodbury, Novel approaches to the ICHP: Neural networks and expert systems, Inverse Problems in Engineering: Theory and Practice, in: Proceedings of the First International Conference on Inverse Problems in Engineering, ASME No.I00357, 1993, p. 275-282.
    [38] M. Raudensky, J. Horsky, J. Krejsa, Usage of neural network for coupled parameter and function specification inverse heat conduction problem. Int. Commun. Heat Mass Transfer, 1995, 22(5): 661-670
    [39] J. Blum, W. Marquardt, An optimal solution to inverse heat conduction problems based on frequency-domain interpretation and observers. Numer. Heat Transfer, 1997, Part B, 32: 453-478
    [40] W.Marquardt, H. Auracher, An observer-based solution of inverse heat conduction problems. Int. J. Heat Mass Transfer, 1990, 33(7): 1545-1562
    [41] E.Bayo, H. Moulin, O. Crisalle, G. Gimenez, Well-conditioned numerical approach for the solution of the inverse heat conduction problem. Numer. Heat Transfer, 1992, Part B, 21:79-98
    [42] H. C. Moulin, E. Bayo, Well-conditioned numerical method for nonlinear inverse heat conduction problem. Numer. Heat Transfer, 1992, Part B, 22: 321-347
    [43] D. M. Trujillo, H. R. Busby, Practical Inverse Analysis in Engineering, CRC Press, New York, 1997
    [44] R. E. Kalman, A new approach to linear filtering and prediction problems. ASME J. Basic Eng., 1960, Ser. 82d: 35-45
    [45] P. Tuan, C. Ji, L. Fong , W. Huang, An input estimation approach to on-line two-dimensional inverse heat conduction problem, Numer. Heat Transfer, 1996, Part B, 29: 345-363
    [46] C. Ji, H. Jang, Experimental investigation in inverse heat conduction problem. Numer. Heat Transfer, 1998, Part A, 34: 75-91
    [47] M. N. Ozisik, H. R. B. Orlande, Inverse Heat Transfer Fundamentals and Application, Taylor & Francis, New York, 2000
    [48] M. N. Colaco, H. R. B. Orlande, Comparison of different versions of the conjugate gradient method of function specification. Numer. Heat Transfer, 1999, Part A, 36: 229-249
    [49] C. Huang, S. Wang, A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method. Int. J. Heat Mass Transfer, 1999, 42: 3387-3403
    [50] J. R. Shenefelt, R. Luck, R. P. Taylor, J. T. Berry, Solution to inverse heat conduction problem employing singular value decomposition and model-reduction. Int. J. Heat and Mass Transfer, 2002, 45: 67-74
    [51]D.A.Murio,Stable numerical solution of a fractional-diffusion inverse heat conduction problem.Computers and Mathematics with Applications,2006,54:1492-1501
    [52]F.Kowsary,A.Behbahaninia,A.Pourshaghaghy,Transient heat flux function estimation utilizing the variable metric method.International Communications in Heat and Mass Transfer,2006,33:800-810
    [53]李希靖,JFHT-TCQ推荐探头冷却过程辨识一非线性导热反问题的正则解.机械工程学报,1989,25(2):37-40
    [54]周静伟,程尚模,李文军,李希靖,导热反问题实测数据的一致逼近平滑方法研究.核动力工程,1997,18(3):244-248
    [55]吴洪潭,表面温度和热流的一种间接测量技术.宇航计测技术,2003,23(2):30-34
    [56]贺国强,孟泽红,求解热传导反问题的一种正则化Newton型迭代法.应用数学和力学,28(4):479-486
    [57]程眉,许小忠,程军,原少勤,淬火工件/介质边界换热条件研究.华北工学院学报,1997,18(2):104-106
    [58]杨冬,陈听宽,导热反问题方法在计算瞬态传热过程中的应用.核动力工程,18(6):554-558
    [59]程赫明,王洪纲,陈铁力.45钢淬火过程中传导方程逆问题求解.1997,33(5):467-472
    [60]顾剑锋,潘健生,胡明娟,淬火冷却过程中表面综合换热系数的反传热分析.上海交通大学学报,1998,32(2):19-22
    [61]顾剑锋,潘健生,胡明娟,淬火介质换热系数的计算机测算.热加工工艺,1998,(5):13-14
    [62]许建俊,华泽钊,刘宝林,傅行军,用淬冷法确定饱和液氮中的池沸腾热流密度曲线,上海理工大学学报,1998,20(2):112-116
    [63]陈乃录,潘健生,廖波,高长银,叶健松.淬火油动态下换热系数的测量及计算.热加工工艺,2002,(3):6-7
    [64]李辉平,赵国群,牛山廷,栾贻国,基于有限元和最优化方法的淬火冷却过程反传热分析.金属学报,2005,41(2):167-172
    [65]薛齐文,杨海天,共轭梯度法求解非线性多宗量稳态传热反问题.计算力学学报,2005,22(10):51-54
    [66]王秀春,智会强,人工神经网络和遗传算法在导热反问题中的应用.河北工业大学学报,2004,33(2):171-176
    [67]寇蔚,孙丰瑞,杨立,神经网络求解传热反问题的可行性研究.激光与红外,2004,34(5):347-349
    [68]杨鹏,神经网络算法在导热反问题中的应用.硕士学位论文,河北工业大学,2003
    [69]张宇鑫,宋玉普,王登刚,张燕,基于遗传算法的混凝土一维瞬态导热反问题.工程力学,2003,20(5):87-90
    [70]杨尔辅,液体火箭推进系统状态监控和故障诊断正反问题与算法研究.博士学位论文,北京航空航天大学,1999
    [71]白博峰,郭烈锦,陈学俊,最小二乘原理求解多维瞬态导热反问题.计算物理,1997,14(5):696-698
    [72]王登刚,刘迎曦,李守巨,二维稳态导热反问题的正则化解法,吉林大学自然科学学报,2000,(2):56-60
    [73]袁艳平,程宝义,ANSYS的二次开发与多维稳态导热反问题的数值解.建筑热能通风空调,2004,23(2):92-94
    [74]李岗,刘伟涛,许云华,板坯连铸结晶器传热反算方法研究.特种铸造及有色金属,2007,27(4):267-270
    [75]李岗,刘伟涛,许云华,传热反问题方法在漏钢预报中的应用.铸造技术,2007,28(5):702-704
    [76]关荣华,传热反问题与设备内部故障诊断.河北工业大学学报,2000,20(1):93-95
    [77]刘慧开,杨立,王艳武,孙丰瑞.基于传热反问题的异步电机定子温升:分析.电子器件,2006,29(4):1178-1186
    [78]钱亮,程素森,李维广,沈海波,张劲草,铜冷却壁炉墙内型管理传热学反问题模型.炼铁,2006,25(2):18-22
    [79]J.V.Beck,B.Blackwell,C.R.St.Clair,Inverse Heat Conduction-Ill Posed Problem,Wiley,New York,1985
    [80]洪剑平,金滔,汤珂,反传热问题及其在深冷处理传热分析中的应用.低温与超导,2008,36(2):10-14
    [81]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998
    [82]袁希光,传感器技术手册.北京:国防工业出版社,1989
    [83]陈国邦,低温工程材料.杭州:浙江大学出版社,1998
    [84]张波,盛和太.ANSYS有限元数值分析原理与工程应用.北京:清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700