热轧带钢紊流酸洗关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸洗是冷轧带钢生产过程中一道重要的工艺,酸洗质量的好坏很大程度上决定着带钢表面的质量。为提高带钢表面的质量,在轧制前必须将带钢表面的氧化皮通过紊流酸洗工艺加以去除。酸洗质量的优劣取决于带钢酸洗过程中的各个因素,如酸洗液的温度、浓度、带钢的运动速度、喷射梁喷射流量、喷射角度、氧化皮的剥离方式等。这其中的研究理论涉及到冲击射流理论,化学反应动力学,湍流扩散理论和对流传热理论。以往对酸洗研究的方法主要以试验为主,将试验结果拟合成经验公式,或通过大量的现场试验和酸洗槽内的流态模拟建立紊流酸洗的模型,模型以控制为主,并无明确的数学表达式,也没有考虑实际酸洗过程中气泡的剥离作用和带钢运动时带钢表面受射流冲击的传热和传质,而这些因素与酸洗效率有着直接的关系。因此,研究酸洗各因素对带钢表面的氧化皮的溶解速率、氢气泡的生成、气泡对氧化皮的剥离以及带钢表面的传热传质机理都对提高酸洗效率有至关重要的作用。
     本文以带钢紊流酸洗作为研究对象,提出采用酸洗电位导数首零法来判定酸洗终点时间。采用此方法测定的酸洗终点时间与Hudson的酸洗经验公式具有很好的吻合性,验证了导数首零法判定酸洗终点时间的可靠性和可行性。精确控制酸洗终点时间可以避免过酸洗,而过酸洗会加重氢对钢材基体渗入,从而引起材料的性能发生改变,甚至使钢材发生氢脆。
     对不同酸洗时间点的钢板试样进行金相分析,观测氧化皮截面随酸洗时间的变化关系,得出了酸液是从氧化皮表面薄弱的或者较易溶解的位置开始渗入内层,初始酸洗核的数量也成为酸洗效率的因素之一,为酸洗模型的建立做了铺垫。在此基础上,首次引入湍流传质系数和对流传热理论,并结合氧化皮与酸液的接触面积、酸液温度和浓度建立了带钢表面氧化皮溶解的数学模型。研究表明,对于经过破鳞的氧化皮,酸洗时间与初始氧化皮的面积以及传质系数和反应系数的倒数和成正比,而与酸液浓度和破鳞度成反比。而对于未破鳞的氧化皮,酸洗时间还与酸洗初期酸洗核的形成有关。
     试验研究典型结构和成分的氧化皮在不同酸液温度、浓度和破鳞度下带钢表面氧化皮的形貌变化和氢气泡的增长规律,得到不同条件下气泡生成时间、气泡数目变化、难溶于酸的氧化皮初始剥离时间和剥离时氧化皮颗粒的尺寸。基于理想气体状态方程,假定单位时间内基体溶解的摩尔数等于氢气泡生成的摩尔数,研究气泡在基体表面的生长和脱离理论机理,建立了气泡直径与氧化皮厚度、氧化皮溶解速率、基体溶解速率、酸液温度和浓度之间的关系,并理论推导了气泡脱离和氧化皮剥离的条件。
     用湍动能来表征氢离子的传质系数,计算了各酸洗参数对运动带钢表面湍动能的分布影响,并结合实际紊流酸洗槽,分析了各酸洗参数对带钢表面湍动能的影响程度。研究表明,当入射角为45°,带钢运动速度与入射速度值相同且运动方向与入射角方向相反时,能在滞止点处获得最大的湍动能。入射流量及喷射角度主要影响酸槽入口区域带钢表面流态和湍流强度分布,而其在酸槽内部的分布主要由带钢运动速度决定。
     结合射流理论简化酸槽结构,采用雷诺应力模型,VOF模型和SIMPLIC算法对带钢在酸洗槽中的表面对流传热系数和引起的带钢温升进行了固气液三相耦合计算,得到了酸洗工艺参数对带钢表面努赛尔数分布和带钢温升速率的影响。
     本文建立的带钢表面氧化皮溶解理论和气泡剥离理论对紊流酸洗工艺都具有一定的指导意义,对今后酸洗工艺的发展和优化提供了理论支撑和试验依据。
Steel acid pickling is an improtant technique in the process of cold-rolled strip production and the quality of the strip surface is heavily reliant upon the pickling process. In the process of steel strip production, oxide scale on the strip surface should be removed in turbulent acid pickling process so as to improve the quality of strip surface. The quality of acid pickling is determined by the parameters such as acid temperature, acid concentration, the strip speed, acid injection flow rate, the incident angle, and the peeling behaviors of the scale.
     The turbulent acid pickling theory relates to jet impinging theory, chemical reaction kinetics, turbulent diffusion theory and convective heat transfer theory. However, previous studies on acid pickling were mainly aimed at testing whose results were fit to empirical formula or a acid pickling control model set up on the basis of a large number of trials and flow simulation in the acid pickling tank. Mathematical expression for turbulent acid pickling, the peeling effect of the hydrogen bubble generated by the reaction between the steel base and hydrochloric acid and the heat and mass transfer characteristic of the impingment moving strip, which play a great role in improving pickling efficiency, have not been investigated. Therefore, the investigation of each pickling parameter is essential to master the mechanism of heat and mass transfer and the bubble growth.
     In this research, turbulent acid pickling for steel strip is investigated. The method of first zero potential differential value which base on electrochemistry is put forward to determin the endpoint of acid pickling. The pickling time determined by the method of first zero potential differential value is well consonant with the emprical formula done by Hudson, which verifies the reliability and feasibility of the new method. Besides, the precise control of the pickling can avoid overpickling. The overpickling of the steel will increase the penetrability of hydrogen to the steel matrix and change the material properties of the steel strip, even to cause hydrogen embrittlement.
     Morphology change of the typical oxide scale with time is analysed to observe the change of the cross section of the oxide scale. It follows that the acid penetrates the inner of the scale from the position of weak or soluble surface. Besides, the number of initial pickling core is also an important factor to affect the picling efficiency. Based on this, the theory of chemical reaction dynamics and heat transfer combines with the parameters such as acid temperature, acid concentration, chemical reaction rate, concentration diffusion upon the strip and the contact area between the acid and oxide scale to build a mathematical model of the dissolution of oxide scale. The results show that for scale-breaking strip, the pickling time is proportional to initial area of the scale and reciprocal sum of the mass transfer coefficient and chemical reaction coefficient, and is inversely proportional to the acid concentration and the degree of the sacle breaking. Apart from above paremeters, for the unscale-breaking strip, the pickling time even has a relationship with the formation of the pickling nucleus.
     Laws of the hydrogen bubble growing are investigated under different acid temperature, acid concentration and the degree of the scale breaking to obtain the initial time of bubble formation, changes in the number of bubbles, initial time of oxide removal and size of the detached scale for the scale which is difficult to dissolve in acid.
     Assumed that the number of moles of strip base diffusion is equal to the number of moles of bydrogen bubbles generation, a theoretical bubble growing and peeling model which bases on the state equation of ideal gas is established to determine the relationship among the diameter of the bubble, thickness of the scale, dissolution rate of the scale, dissolution rate of the strip base, acid temperature and acid concentration. Based on this, the requirements of the bubble detachment and the scale removal are theoretically determined.
     The turbulent kinetic energy distribution on the moving strip surface which represents the hydrogen ion diffusion coefficient is computed under different pickling parameters. Moreover, the effect of pickling parameters on the turbulent kinetic energy distribution upon the strip surface are computed to measure the degree of those parameters on the convective mass transfer of strip surface. The simulation revels that the maximal turbulent kinetic energy is obtained under the condition that the jet angle is45°when the moving direction of the strip opposites to the jet inclination. Flow rate and jet angle determine the flow state and turbulent kinetic energy in the entrance of the pickling tank, however, the speed of the moving strip determines flow state and turbulent kinetic energy in the inner of the tank.
     Finally, the initial temperature of the steel strip is found to have a great effect on the acid pickling efficiency. Temperature rise of the steel strip in still acid is theoretically analyzed. The Reynolds stress turbulence model and VOF model solved sequentially by the SIMPLIC method are used to do the solid-liquid coupling calculation of the heat transfer upon the steel strip and temperature rise of the strip in the turbulent pickling tank to obtain the influence of pickling process parameters on the Nusselt number distribution and temperature rise of the strip.
     The achievements of this research are beneficial to turbulent pickling process, and supply helpful theoretical and experimental guides to further process development and optimization.
引文
[1]R. Y. Chen, W. Y. D. Yuen. Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms[J].Oxidation of Metals.2001,56(1-2):89-118
    [2]R. Y. Chen, W. Y. D. Yuen. A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling[J].Oxidation of Metals.2000,53(5-6):539-560
    [3]H. Luthy, C. P. Marinello, P. Scharer. Factors influencing metal-resin tensile bond strength to filled composites[J]. Dental Materials.1990,6(2):73-77
    [4]X. J. Wang, G. Yu, Y.J. Ouyang, et al. One-step pickling-activation before magnesium alloy plating[J]. Transactions of Nonferrous Metals Society of China.2009,19(2): 504-510
    [5]N. Ipek, B. Holm, R. Pettersson, et al. Electrolytic pickling of duplex stainless steel[J]. Materials and Corrosion.2005,56(8):521-532
    [6]W. F. Kladnig. A review of steel pickling and acid regeneration an environmental contribution[J]. International Journal of Materials and Product Technology,2003,19(6): 550-561
    [7]R. M. Hudson. Pickling of hot rolled strip:an overview[J]. Iron and Steelmaker.1991, 9(1):31-39
    [8]L.A. Fernando. Solution chemistry of HNO3/HF pickle mixtures[J]. Metallurgical Transactions B.1990,21(1):5-9
    [9]G. Hubmer, A. Osterkorn, K. Rendl, et al. New method for the determination of the endpoint in steel pickling[J]. Metallurgical Plant and Technology International.2002, 25(5):68-70
    [10]G. Hubmer, A. Osternkorn, K. Rendl, et al. Elegant determination of endpoint in pickling of steel[J]. Stal'.2003 (6):60-64
    [11]W. Sun, A. K. Tieu, Z. Jiang, et al. Surface characteristics of oxide scale in hot strip rolling[J]. Journal of Materials Processing Technology.2003,140(1):76-83
    [12]R. Y. Chen, W. Y. D. Yuen. Improvement of pickling characteristics of hot-rolled strip through heat treatment of the oxide scale[C]. ISS 44th Mechanical Working and Steel Processing Conference.2002:17-22
    [13]R. Y. Chen, W. Y. D. Yuen. Effects of finishing and coiling temperatures on the scale structure and picklability of hot rolled strip. Iron and Steelmaker.2000,27(4):47-53
    [14]R. Y. Chen, W. Y. D. Yuen. Oxidation of low-carbon, low-silicon mild steel at 450-900 ℃ under conditions relevant to hot-strip processing[J]. Oxidation of Metals.2002, 57(1-2):53-79
    [15]A. Chattopadhyay, T. Chanda. Role of silicon on oxide morphology and pickling behaviour of automotive steels[J]. Scripta Materialia,2008,58(10):882-885
    [16]卜福明,何申,叶纯杰,潘红良.热轧304不锈钢表面氧化皮特性的探讨[J].材料保护.2011,44(2):48-50
    [17]H. E. Evans, D. A. Hilton, R. A. Holm, et al. Influence of silicon additions on the oxidation resistance of a stainless steel[J]. Oxidation of Metals.1983,19(1-2):1-18
    [18]R. Y. Chen, W. Y. D. Yuen, I. Mak. Oxide scale growth and its pickling characteristics of hot-rolled steel strip[C].43rd Mechanical Working and Steel Processing Conference. 2001:287-299
    [19]W. Sun, A. K. Tieu, Z. Jiang, et al. High temperature oxide scale characteristics of low carbon steel in hot rolling[J]. Journal of Materials Processing Technology.2004, 155-156(30):1307-1312
    [20]F. I. Wei. The effect of scale structure on pickling of steel strip[J]. Anti-Corrosion Methods and Materials.1988,35(12):4-6
    [21]M. Zhang, G. Shao. Characterization and properties of oxide scales on hot-rolled strips[J]. Materials Science and Engineering.2007,452-453(15):189-193
    [22]潘霏.热轧硅钢表面氧化皮的特征和酸洗加速技术的研究[D].华东理工大学.2013
    [23]王鹏,任玉成.拉伸弯曲矫直机基本工艺参数的确定[J].四川冶金.2005,27(2):18-20
    [24]杨红,刘溪桥,龙武山.拉伸弯曲矫直机的结构设计理论分析[J].一重技术.2002,(2-3):4-6
    [25]P. J. McGinn. Commercializing high-temperature superconductors[J]. JOM Journal of the Minerals, Metals and Materials Society.1998,50(10):7-13
    [26]P. R. Cetlin, S. Yue, J. J. Jonas. Simulated rod rolling of interstitial free steels[J]. The Iron and Steel Institute of Japan,1993:33(4):488-497
    [27]L. A. Agishev. Interaction of magnetic and mechanical properties of 08Kh18T1 ferritic steel [J]. Stal',1993, (13):70-71
    [28]H. E. Evans, R.C. Lobb. Conditions for the initiation of oxide-scale cracking and spallation[J].Corrosion Science.1984,24(3):209-222
    [29]S. Melster, A. Pargmann. Stretch bending levelers in pickling lines[J]. Iron and Steel Engineer.1995,72(2):37-41
    [30]S. Iwadoh. Steel and characteristics of ferric compound:An experimental study about the cause of work roll wear on the cold reduction of Al-killed CC steel Ⅲ[C].The 106th Iron and Steel Institute of Japan Meeting Programme.1983,69(13):85
    [31]任涛.酸洗线拉伸弯曲矫直机的应用[J].鞍钢技术.2001,(2):17-21
    [32]刘现翠,苏兰海等.宝钢2030酸洗机组中拉矫机和平整机的延伸率分配[J].北京科技大学学报.2005,27(5):38-42
    [33]杨子良.拉矫破鳞试验机及连续带钢酸洗模型的开发[D].华东理工大学.2013
    [34]R. M. Hudson, D. W. Brown, C.J. Warning. Factors influencing the pickling time required for hot-rolled steel strip[J]. Journal of Metals.1967,19(3):9-13
    [35]R. M. Hudson, C. J. Warning. Effect of strip velocity on pickling rate of hot rolled steel in hydrochloric acid[J]. Journal of Metals.1982,34(2):65-70
    [36]R. M. Hudson. Pickling hot rolled strip[J]. Metal Finishing.1984,82(3):39-46
    [37]B. J. Goode. R. D. Jones. J. N. H. Howells. Kinetics of pickling of low carbon steel[J]. Ironmaking & Steelmaking.1996.23(2):164-170
    [38]L. F. Li, P. Caenen, M. Daerden, et al. Mechanism of single and multiple step pickling of 304 stainless steel in acid electrolytes[J]. Corrosion Science.2005,47(5):1307-1324.
    [39]R. Y. Chen, W.Y.D. Yuen. On the pickling mechanisms of hot-rolled steel strip[C].44th Mechanical Working and Steel Processing Conference Proceedings:8th International Rolling Conference and International Symposium on Zine-Coated Steels.2002,40: 1077-1089
    [40]S. Yamaguchi, T. Yoshida, T. Saito. Improvement in descaling of hot strip by hydrochloric acid[J]. The Iron and Steel Institute of Japan.1994,34(8):670-678
    [41]M. J. L. Gines, G.J. Benitez, T. Perez, et al. Study of the picklability of 1.8mm hot-rolled steel strip in hydrochloric acid. Latin American Applied Research.2002,32(4):281-288
    [42]T. P. Hoar, The pickling of steels:a survey of the general principles[J].Sheet Metal Industry.1944,(20):1533-1539
    [43]F. Wever, H. J. Engell. Electrochemische undetsunchungen uber den einflub des walz-and gulhzunders von stahl auf die corrosion und uber den beizovrgang[J].Arch. Eisen.1956,7(7):475-486.
    [44]B. Frisch, W. Thiele. The tribologically induced effect of hydrogen effusion and penetration in steels[J]. Wear.1984,95(2):213-227
    [45]C. M. Ho, Y. C. Tai. Micro-electro-mechanical-systems (MEMS) and fluid flows[J]. Annual Review of Fluid Mechanics.1998,30(1):579-612
    [46]F. G. Pempera, M. Casal. Rolling, annealing, pickling line in avesta polarit[J]. Iron and Steel.2002,37(11):38-41
    [47]C. F. David. A model and application describing the dissolution of a metal/metal oxide using an acid electrolyte[C]. Preceedings from the 1st international surface engineering congress and the 13th IFHTSE congress.2002,12(7):390-394
    [48]A. Pengidore. Pickling theory of carbon and stainless steel with modeling[J].Society of Manufacturing Engineers.1998,(11):23-34
    [49]A. G. Doernemann. Model-based control system for pickling lines [J]. Iron and Steel Engineer.1997,174(1):47-50
    [50]A. G. Dornemann, H. Teichert. Model for turbulence pickling lines[J]. Metallurgical Plant and Technology International.1996,17(2):70-75
    [51]K. Pielsticker. Modern pickling lines with Vario technology [J]. Metallurgical Plant and Technology International.1995,18(1):82-84
    [52]A. Mehrle, P. Gittler, M. Javurek. Numerical, experimental and analytical investigation of the mass outflow from a pickling tank[J]. Computational Technologies for Fluid/Thermal/Structure/Chemical Systems with Industrial Applications.2004,491(2): 191-199
    [53]B. C. Khoo, D. Xu, W. Y. D Yuen, et al. A computer analysis of turbulent flow of acid in the pickling of steel strip[C]. International Conference on Scientific & Engineering Computation. Singapore:National University of Singapore.2002:171-175
    [54]N. Vogl. CFD analysis of free surface flow with droplet interaction[C]. Proceedings of the Third International Conference on Engineering Computational Technology.2002,1: 77-78
    [55]R. A. Oriani. A mechanistic theory of hydrogen embrittlement of steels[J]. Berichte der Bunsengesellschaft fur physikalische Chemie.1972,76(8):848-857
    [56]J. Woodtli, R. Kieselbach. Damage due to hydrogen embrittlement and stress corrosion cracking[J]. Engineering Failure Analysis.2000,7(6):427-450
    [57]S. Muralidharan, R. Chandrasekar, S.V.K. Iyer. Effect of piperidones on hydrogen permeation and corrosion inhibition of mild steel in acidic solutions[J]. Journal of Chemical Sciences,2000,112(2):127-136
    [58]L. F. Li, P. Caenen, J. P. Celis. Effect of hydrochloric acid on pickling of hot-rolled 304 stainless steel in iron chloride-based electrolytes[J]. Corrosion science,2008,50(3): 804-810
    [59]H. W. Pickering, R. P. Frankenthal. On the mechanism of localized corrosion of iron and stainless steel I. Electrochemical studies[J]. Journal of the Electrochemical Society,1972, 119(10):1297-1304
    [60]赵文威.低污染型化学酸洗法脱除不锈钢氧化鳞皮的研究[D].东北大学.2010:27
    [61]G. Hubmer, A. Osterkom, K. Rendl, et al. An elegant determination of the endpoint in the pickling of steel[J]. Iron and Steel.2003,2003,38(9):39-42
    [62]M. Kowaka. Metal corrosion damage and protection technology [M]. New York:Allerton Press,1990
    [63]N. K. Mukhopadhyay, Sridhar G. Hydrogen embrittlement failure of hot dip galvanised high tensile wires [J]. Engineering Failure Analysis.1999,6(4):253-265
    [64]E. T. George. Steel heat treatment:Metallurgy and technologies [M]. Boca Raton:Taylor & Francis,2007
    [65]A. Zinbi, A. Bouchou. Delayed cracking in 301 austenitic steel after bending process: Martensitic transformation and hydrogen embrittlement analysis [J]. Engineering Failure Analysis.2010,17(5):1028-1037
    [66]M. Elhoud, N. C. Renton. Hydrogen embrittlement of super duplex stainless steel in acid solution [J]. International Journal of Hydrogen Energy.2010,35(12):6455-6464
    [67]C.L. Lai. L. W. Tsay. The effects of cold rolling and sensitisation on hydrogen embrittlement of AISI 304L welds [J]. Corrosion Science.2010,52(4):1187-1193
    [68]G. Atxaga, A. Pelayo. Failure analysis of a set of stainless steel disc springs [J]. Engineering Failure Analysis.2006,13(2):226-234
    [69]陈永清.典型不锈钢表面氧化皮及混酸酸工艺的研究[D].华东理工大学,2006
    [70]K. Takeda, S. Takeuchi. Removal of oxide layer on metal surface by vacuum arc[J]. Materials Transactions.1997,38(7):636-642
    [71]陈德奇,潘良明,黄彦平.生长及脱离汽泡附壁接触直径经验关系式[J].核动力工程.2011,32(2):103-106
    [72]H. N. Oguz. A. Prosperetti. Dynamics of bubble growth and detachment from a needle[J]. Journal of Fluid Mechanics.1993,257(1):111-145
    [73]A. Asai, T. Hara, I. Endo. One-dimensional model of bubble growth and liquid flow in bubble jet printers[J]. Japanese Journal of applied physics.1987,26(10):1794-1801
    [74]N. S. Ramesh, D. H. Rasmussen, G. A. Campbell. Numerical and experimental studies of bubble growth during the microcellular foaming process[J]. Polymer Engineering & Science.1991,31(23):1657-1664
    [75]T. Theofanous, L. Biasi, H. S. Isbin, et al. A theoretical study on bubble growth in constant and time-dependent pressure fields[J]. Chemical Engineering Science,1969, 24(5):885-897
    [76]B. P. Boudreau, C. Algar, B.D. Johnson, et al. Bubble growth and rise in soft sediments[J]. Geology,2005,33(6):517-520
    [77]D. E. Rosner, M. Epstein. Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates in highly supersaturated liquids[J]. Chemical Engineering Science, 1972,27(1):69-88
    [78]S. Vafaei, D. Wen. Bubble formation in a quiescent pool of gold nanoparticle suspension[J]. Advances in Colloid and Interface Science.2010,159(1):72-93
    [79]周泽翔,程海斌,薛理辉等.改善化学镀层结合力的方法及其检测手段[J].材料导报.2006,20(2):79-81
    [80]A. R. Brandt, A. E. Farrell. Scraping the bottom of the barrel:greenhouse gas emission consequences of a transition to low-quality and synthetic petroleum resources[J]. Climatic Change.2007,84(3-4):241-263
    [81]K. Niihara, R. Morena, D. P. H. Hasselman. Evaluation of K of brittle solids by the indentation method with low crack-to-indent ratios[J]. Journal of Materials Science Letters.1982,1(1):13-16
    [82]P. J. Burnett, D. S. Rickerby. The relationship between hardness and scratch adhession[J]. Thin Solid Films.1987,154(1):403-416
    [83]J. J. Kim, T. S. Jang, Y. D. Kwon, et al. Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method [J]. Journal of Membrane Science.1994,93(3):209-215
    [84]S. D. Christian, A. R. Slagle, E. E. Tucker, et al. Inverted vertical pull surface tension method[J]. Langmuir.1998,14(11):3126-3128
    [85]H. J. Sue, A. F. Yee. Study of fracture mechanisms of multiphase polymers using the double-notch four-point-bending method[J]. Journal of Materials Science.1993,28(11): 2975-2980
    [86]J. M. Whitney, C. E. Browning. W. Hoogsteden. A double cantilever beam test for characterizing mode I delamination of composite materials[J]. Journal of Reinforced Plastics and Composites.1982,1(4):297-313
    [87]K. Mori, S. Maki, Y. Tanaka. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. CIRP Annals-Manufacturing Technology.2005,54(1): 209-212
    [88]J. Schroppel, F. Thiele. On the calculation of momentum, heat, and mass transfer in laminar and turbulent boundary layer flows along a vaporizing liquid film[J]. Numerical Heat Transfer.1983,6(4):475-496
    [89]李东生,吴建国.平面射流的数值模拟研究[J].冶金能源.2001,20(6):42-45
    [90]K. S. Choo, S. J. Kim. Comparison of thermal characteristics of confined and unconfined impinging jets[J]. International Journal of Heat and Mass Transfer.2010,53(15): 3366-3371
    [91]E. Baydar, Y. Ozmen. An experimental investigation on flow structures of confined and unconfined impinging air jets[J]. Heat Mass Transfer.2006,42(4):338-346
    [92]Y. T. Yang, Y. X. Wang. Three-dimensional numerical simulation of an inclined jet with cross-flow[J]. International Journal of Heat and Mass Transfer.2005,48(19):4019-4027
    [93]S. Pramanik, M. K. Das. Numerical Characterization of a Planar Turbulent Offset Jet Over an Oblique Wall[J]. Computers & Fluids.2013,77(1):36-55
    [94]T. S. O'Donovan, D. B. Murray. Fluctuating fluid flow and heat transfer of an obliquely impinging air jet[J]. International Journal of Heat and Mass Transfer.2008,51(25): 6169-6179
    [95]S. Pramanik, A. M. Achari, M. K. Das. Numerical simulation of a turbulent confined slot impinging jet[J]. Industrial & Engineering Chemistry Research.2012,51(26):9153-9163
    [96]B. W. Liu, Y. Jiang, Y. Song, S. Z. Yu. Numerical simulation on the influence of altitude on jet flow field[J]. Advances in Mechanical and Electronic Engineering.2012,176(1): 349-355
    [97]E. Baydar, Y. Ozmen. An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers[J]. Applied Thermal Engineering.2005, 25(2):409-421
    [98]D. H. Lee, Y. S. Chung, D. S. Kim. Turbulent flow and heat transfer measurements on a curved surface with a fully developed round impinging jet[J]. International Journal of Heat and Fluid Flow.1997,18(1):160-169
    [99]A. Chorny, V. Zhdanov. Turbulent mixing and fast chemical reaction in the confined jet flow at large Schmidt number[J]. Chemical Engineering Science.2012,68(1):541-554
    [100]M. T. Kandakure, V. C. Patkar, A. W. Patwardhan. Characteristics of turbulent confined jets[J]. Chemical Engineering and Processing:Process Intensification.2008,47(8): 1234-1245
    [101]F. J. Trujillo, T. Safinski, A. A. Adesina. Solid-liquid mass transfer analysis in a multi-phase tank reactor containing submerged coated inclined-plates:A computational fluid dynamics approach[J]. Chemical Engineering Science.2009,64(6):1143-1153
    [102]T. Watanabe, Y. Sakai, K. Nagata, et al. Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction[J]. Experiments in fluids.2012,53(5):1369-1383
    [103]A. Uchibori, A. Watanabe, H. Ohshima. Numerical analysis of supersonic gas jets into liquid pools with or without chemical reaction using the SERAPHIM program[J]. Nuclear Engineering and Design.2012.249:35-40
    [104]刘沛清.自由紊动射流理论[M].北京:北京航空航天大学出版社.2008
    [105]T. J. Craft, L. J. W. Graham, B. E. Launder. Impinging jet studies for turbulence model assessment:Ⅱ. An examination of the performance of four turbulence models[J]. International Journal of Heat and Mass Transfer.1993,36(10):2685-2697
    [106]P. A. Durbin. A Reynolds stress model for near-wall turbulence [J]. Journal of Fluid Mechanics.1993,249(1):465-498
    [107]B. E. Launder, G. J. Reece, W. Rodi. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics.1975,68(3):537-566
    [108]Y. Nagano, M. Tagawa. An improved k-ε model for boundary layer flows[J]. Journal of Fluids Engineering.1990,112(1):33-39
    [109]W. P. Jones, B. E. Launder. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer.1972,15(2):301-314
    [110]J. Reveillon, L. Vervisch. Response of the dynamic LES model to heat release induced effects[J]. Physics of Fluids.1996,8:2248
    [111]倪浩清,沈永明.工程湍流流动、传热及传质的数值模拟[M].北京:中国水利水电出版社.1996
    [112]J. Senter, C. Solliec. Flow field analysis of a turbulent slot air jet impinging on a moving flat surface[J]. International Journal of Heat and Fluid Flow.2007,28(4): 708-719
    [113]S. Ostrach. Low-gravity fluid flows[J]. Annual Review of Fluid Mechanics.1982,14(1): 313-345
    [114]M. L. Hwang,Y. T. Yang. Numerical simulation of turbulent fluid flow and heat transfer characteristics in metallic porous block subjected to a confined slot jet[J]. International Journal of Thermal Sciences.2012,55:31-39
    [115]R. Dutta, B. Srinivasan, A. Dewan. LES of a turbulent slot impinging jet to predict fluid flow and heat transfer[J]. Numerical Heat Transfer, Part A:Applications.2013,64(10): 759-776
    [116]M. Dharavath, D. Chakraborty. Numerical simulation of supersonic jet impingement on inclined plate[J]. Defence Science Journal.2013,63(4):355-362
    [117]N. M. R. Khosravi, M. R. Ehsani. Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing[J]. International Communications in Heat and Mass Transfer.2008,35(9):1211-1219
    [118]N. L. Chester, M. A. Wells, V. Prodanovic. Effect of inclination angle and flow rate on the heat transfer during bottom jet cooling of a steel plate[J]. Journal of Heat Transfer. 134(12):122201.1-122201.9
    [119]K. Choo, T. Y. Kang, S. J. Kim. The effect of inclination on impinging jets at small nozzle-to-plate spacing[J]. International Journal of Heat and Mass Transfer.2012, 55(13):3327-3334
    [120]J. Z. Zhang, S. Gao, X. M. Tan. Convective heat transfer on a flat plate subjected to normally synthetic jet and horizontally forced flow[J]. International Journal of Heat and Mass Transfer.2013,57(1):321-330
    [121]F. A. Jafar, G. R. Thorpe, O. F. Turan. Flow visualization and heat transfer characteristics of liquid jet impingement[J]. International Journal for Computational Methods in Engineering Science and Mechanics.2012,13(4):239-253
    [122]D. Benmouhoub, A. Mataoui. Turbulent heat transfer from a slot jet impinging on a flat plate[J]. Journal of Heat Transfer.2013,135(10):102201.1-102201.9
    [123]A. Royne, C. J. Dey. Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays[J]. International Journal of Heat and Mass Transfer.2006,49(3-4): 800-804
    [124]S. S. Mohapatra, S. V. Ravikumar, A. Verma, et al. Experimental investigation of effect of a surfactant to increase cooling of hot steel plates by a water jet[J]. Journal of heat transfer.2013,135(3):032101.1-032101.7
    [125]C. W. Hirt, B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics.1981,39(1):201-225
    [126]J. U. Brackbill, D. B. Kothe, C. Zemach. A continuum method for modeling surface tension [J]. Journal of Computation Physics.1992,100(2):335-354
    [127]T. Okawa, T. Kitahara, K. Yoshida, et al. New entrainment rate correlation in annular two-phase flow applicable to wide range of flow condition[J]. International Journal of Heat and Mass Transfer.2002,45(1):87-98
    [128]F. F. Cadek. A fundamental investigation of jet impingement heat transfer[D]. University of Cincinnati,1968
    [129]A. H. Beitelmal, M. A. Saad, C. D. Patel. The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet[J]. International Journal of Heat and Fluid Flow.2000,21(2):156-163
    [130]J. Stevens, B. W. Webb. The effect of inclination on the local heat transfer under an axisymmetric, free liquid jet[J]. International Journal of Heat Mass Transfer.1991, 34(4):1227-1236
    [131]M. A. R. Sharif, A. Banerjee. Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate[J]. Applied Thermal Engineering.2009,29(2): 532-540
    [132]K. S. Raju, I. E. U. Schlunder. Heat transfer between an impinging jet and a continuously moving flat surface[J]. Warme-und Stoffubertragung.1977,10(2): 131-136
    [133]S. Ishigai, S. Nnkanishi, M. Mizuno, et al. Heat transfer of the impinging round water jet in the interference zone of film flow along the wall[J]. Bulletin of JSME,1977, 20(139):85-92
    [134]V. Narayanan, J. Seyed-Yagoobi, R. H. Page. An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow[J]. International Journal of Heat and Mass Transfer.2004,47(8):1827-1845
    [135]F. Gori, L. Bossi. Optimal slot height in the jet cooling of a circular cylinder[J]. Applied Thermal Engineering.2003.23(7):859-870

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700