超声速主流条件发汗冷却的流动和传热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天飞行器技术的发展,液体火箭及吸气式发动机燃烧室壁面以及高超声速飞行器外壳的工作热环境越来越恶劣,发汗冷却技术被认为是最有可能解决未来航空航天飞行器中关键部位热防护问题的技术方案之一。研究真实条件下发汗冷却的流动换热规律,对下一代液体火箭发动机以及高超声速飞行器的发展具有重要意义。
     已有的发汗冷却研究多采用低温低速主流条件,不能直接反映真实工况下的发汗冷却规律。本文以真实发汗冷却应用环境为背景,搭建了Ma为3的超声速主流风洞实验台,采用纹影仪观测主流激波结构,红外热像仪测量发汗壁面温度信息,研究分析了颗粒直径为90μm的青铜、不锈钢粉末烧结多孔平板,烧结金属丝网多孔平板以及不锈钢烧结粉末多孔曲面结构的发汗冷却规律,同时通过数值模拟,分析了发汗出流和主流相互作用以及激波结构对发汗冷却影响的具体规律。研究结果表明,发汗冷却二次流注入能够有效减小壁面速度梯度,降低壁面温度;高固体骨架热导率会有助于热量向多孔冷端传递,提高冷却效率;冷却效率基本不随主流总温的变化而变化。
     针对超燃冲压发动机燃烧室支板热防护的具体问题,提出、设计并加工了不同结构的烧结金属粉末多孔支板结构,采用发汗冷却方式对其进行热防护。在高温高速风洞中的搭载实验结果表明此种结构能够有效对支板进行保护,并且通过对支板底部表面测量的温度分布可以看出,此种发汗冷却支板热防护方案存在很大的优化设计空间。
     最后利用解析解及数值计算相结合的方法,对发汗冷却多孔介质区域采用局部非热平衡模型进行了计算和分析,研究了冷端边界条件设置以及计算模型的简化和选择对多孔壁面温度的影响。研究结果表明:多孔区冷端边界处应考虑冲击换热的影响,否则在小雷诺数流动时会造成计算温度低于实际值;在求解发汗冷却解析解过程中所进行的常物性、忽略流体热扩散项假设会使得计算的压力、温度信息与实际情况有所偏差,尤其不能忽略热弥散效应对多孔介质内换热的影响;温度跳跃效应会使微多孔内流固相温度升高,速度滑移效应会使多孔壁面进出口边界压差减小。
Thermal protection for aerospace vehicles has become a great challenge due to thehigh thermal loads experienced in liquid fuel rockets and scramjet chambers.Transpiration cooling is one of the most promising cooling techniques for protecting thesurface from ablation in the high temperature supersonic mainstream. Studies of thetranspiration cooling mechanism with real working conditions are very important for thedevelopment of liquid fuel rockets and super/hypersonic vehicles.
     Transpiration cooling studies using low velocities mainstream and temperaturescan not directly model the transpiration cooling characteristics for real workingconditions. This study used a supersonic wind tunnel with Mach number3toexperimentally investigate supersonic transpiration cooling. The wall temperatures weremeasured by an infrared camera and a schlieren system to observe the shock wavestructures. The flow and heat transfer mechanisms of sintered porous structures, wovenwire mesh structures and curved sintered porous structures were investigatedexperimentally and numerically. The results show that the velocity gradients near thesurface are significantly reduced by the coolant transpiration, with bronze porous walltemperatures lower than stainless steel wall temperature because of the higher thermalconductivity and that the cooling effectiveness did not change much with themainstream total temperature.
     A transpiration cooling scheme was developed for struts using a sintered metalporous medium provide thermal protection for struts in scramjet chambers.Transpiration cooling experiments using methane as the coolant with supersonic, hightemperature main flow demonstrated that this strut cooling scheme provides effectivethermal protection. The temperature distribution measured by thermocouples welded tothe bottom of the strut indicated that the system parameters can be optimized tosignificantly improve the cooling.
     In addition, analytical and numerical methods were used to calculate thetranspiration cooling temperature distribution in the porous media using the LocalThermal Non-Equilibrium model. The analytical model predicted the temperaturedistribution in the porous wall with different coolant entrance boundary conditions. Numerical simulations were used to evaluate the temperature changes caused by thesimplifications in the analytical solutions. Transpiration cooling using a microporousmedia was also numerically studied. The analytical solutions showed that theconvection heat transfer at the entrance should be considered with low Reynoldsnumber flow; otherwise, the solution will underpredict the temperatures. Comparisonsof the numerical results with the analytical solutions indicated that the material thermalproperties and the thermal diffusion term significantly affect the pressure andtemperature distributions in the porous matrix. The transpiration cooling simulations inthe microporous media showed that the wall temperature jump increased thetemperatures in the microporous wall while the velocity slip effect reduced the pressuredrops between the inlet and outlet surfaces.
引文
[1] NASA.2011NASA Strategic Plan[R/OL].(2011-2-14)[2013-04-10]. http://www.nasa.gov/pdf/516579main_nasa2011strategicplan.pdf.
    [2]赵爽,崔晓梅.俄罗斯制定2030年前及未来航天发展战略.国际太空,2012(7):28-31.
    [3]新华社.2011年中国的航天[EB/OL].北京:中华人民共和国国务院新闻办公室.(2011.12.29)[2013-04-10]. http://news.xinhuanet.com/politics/2011-12/29/c_111331864.htm.
    [4] Haeseler D, Mading C, Rubinskiy V, et al. Experimental investigation of transpiration cooledhydrogen-oxygen subscale chambers,34th AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit, Cleveland, OH, USA,1998, AIAA-1998-3364.
    [5]林左鸣.战斗机发动机的研制现状和发展趋势.航空发动机,2006(1):1-8.
    [6]倪萌,朱惠人,裘云,等.航空发动机涡轮叶片冷却技术综述.燃气轮机技术,2005(4):25-33.
    [7] Rogers R C, Capriotti D P, Guy R W. Experimental supersonic combustion research atNASA Langley.20th AIAA Advanced Measurement and Ground Testing TechnologyConference Albuquerque, NM, USA,1998, AIAA98-2506.
    [8] Matsuo K, Miyazato Y, Kim H D. Shock train and pseudo-shock phenomena in internal gasflows. Progress in Aerospace Sciences,1999,35(1):33-100.
    [9] Barthelemy R R. The National aero-space plane program-A revolutionary concept.Proceedings of the Intersociety Energy Conversion Engineering Conference, Boston, MA,USA,1991:2382-2391.
    [10] Powell O A, Edwards J T, Norris R B, et al. Development of hydrocarbon-fueled scramjetengines: the hypersonic technology (HyTech) program. Journal of Propulsion and Power,2001,17(6):1170-1176.
    [11] Ferlemann P G. Comparison of hyper-X Mach10scramjet preflight predictions and flightdata. A Collection of Technical Papers-13th AIAA/CIRA International Space Planes andHypersonic Systems and Technologies Conference, Capua, Italy,2005:1412-1418.
    [12] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstrationprogram,2008, AIAA2008-2540.
    [13] Peebles C. Road to Mach10: lessons learned from the X-43A flight research program.Reston, VA, USA: AIAA,2008
    [14]刘桐林.俄罗斯高超声速技术飞行试验计划(一).飞航导弹,2000(4):23-30.
    [15] Falempin F, Scherrer D, Laruelle G, et al. French hypersonic propulsion program PREPHA-results, lessons and perspectives: Proceedings of the8th AIAA International Space Planesand Hypersonic Systems and Technologies Conference, Norfolk, VA. USA,1998, AIAA1998-1565.
    [16] The hypersonics technology development and verification strategy of the Germanhypersonics technology programme: Proceedings of the AIAA/DGLR5th InternationalAerospace Planes and Hypersonics Technologies Conference, Munich, Germany,1993,AIAA1993-5072.
    [17] Weingartner S. S NGER-The reference concept of the German hypersonics technologyprogram: Proceedings of the AIAA/DGLR5th International Aerospace Planes andHypersonics Technologies Conference, Munich, Germany,1993AIAA1993-5161.
    [18] Novelli P, Koschel W. Progress of the JAPHAR cooperation between ONERA and DLR onhypersonic airbreathing propulsion: Proceedings of the AIAA/NAL/NASDA/ISAS-10thInternational Space Planes and Hypersonic Systems and Technologies Conference, Kyoto,Japan,2001, AIAA2001-1870.
    [19] Steelant J. Achievements obtained for sustained hypersonic flight within the LAPCATproject: Proceedings of the15th AIAA International Space Planes and Hypersonic Systemsand Technologies Conference, Dayton, OH, USA,2008, AIAA2008-2578.
    [20] Serre L, Defoort S. LAPCAT II: towards a Mach8civil aircraft concept, using advancedrocket/dual-mode ramjet propulsion system: Proceedings of the16th AIAA/DLR/DGLRInternational Space Planes and Hypersonic Systems and Technologies Conference, Bremen,Germany,2009, AIAA2009-7328.
    [21] Steelant J. Sustained hypersonic flight in Europe: technology drivers for LAPCAT II:Proceedings of the16th AIAA/DLR/DGLR International Space Planes and HypersonicSystems and Technologies Conference, Bremen, Germany,2009, AIAA-2009-7240.
    [22] Tsien H S. Problems in motion of compressible fluids and reaction propulsion[D]. Pasadena:California Institute of Technology,1938.
    [23] Polezhaev Y. Will there or will there not be a hypersonic airplane. Journal of EngineeringPhysics and Thermophysics,2000,73(1):3-8.
    [24] Scheuermann T, Chun J, Von Wolfersdorf J. Experimental investigations of scramjetcombustor characteristics:15th AIAA International Space Planes and Hypersonic Systemsand Technologies Conference, Dayton, Ohio, USA,2008, AIAA-2008-2552.
    [25] Wieting A R, Thornton E. Thermostructural analysis of a scramjet fuel-injection strut..Langley Res Cent, Hampton,1978:119-144.
    [26] Steelant J. ATLLAS: Aero-thermal loaded material investigations for high-speed vehicles:15th AIAA International Space Planes and Hypersonic Systems and TechnologiesConference, Dayton, OH, USA,2008,2008-2582.
    [27] Bouchez M, Beyer S. PTAH-SOCAR fuel-cooled composite materials structure:15th AIAAInternational Space Planes and Hypersonic Systems and Technologies Conference. Dayton,OH, United states,2008
    [28] Campbell N C, Pittinato G F, Martin M T. Transpiration-cooled nosetip development: ArmyMaterials and Mechanics Research Center Technical Report, AMMRC-TR-80-30,1980
    [29]中国人民解放军总装备部主编.高超声速气动热和热防护[M],北京:国防工业出版社,2003.
    [30]葛绍岩,刘登瀛,徐静中,等.气膜冷却[M],北京:科学出版社,1985.
    [31]时骏祥.发散冷却基础问题的理论研究:[博士学位论文].合肥:中国科学技术大学热科学及能源工程系,2009.
    [32] Kacynski K J, Hoffman J D. The prediction of nozzle performance and heat transfer inhydrogen/oxygen rocket engines with transpiration cooling, film cooling, and high area ratio.30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, IN, USA,1994,AIAA-94-2757.
    [33] Modlin J M, Colwell G T. Surface cooling of scramjet engine inlets using heat pipe,transpiration, and film cooling. Journal of Thermophysics and Heat Transfer,1992,6(3):500-504.
    [34] Tsujikawa Y, Northam G B. Effects of hydrogen active cooling on scramjet engineperformance. International Journal of Hydrogen Energy,1996,21(4):299-304.
    [35] Reynolds O. Note on thermal transpiration: Proceedings of the Royal Society of London.:Vol.30(1879-1880), pp.300-302.
    [36] Eckert E, Cho H H. Transition from transpiration to film-cooling. International Journal ofHeat and Mass Transfer,1994,37Suppl.1:3-8.
    [37] Eckert E R G, Livingood N B. Comparison of effectiveness of convection-, transpiration-,and film-cooling methods with air as coolant. NACA TN2010,1953.
    [38]吴慧英,程惠尔,牛禄.层板发汗冷却推力室壁温的数值模拟.工程热物理学报,2001(1):104-106.
    [39] Glass D E, Dilley A D, Kelly H N. Numerical analysis of convection/transpiration cooling.Journal of Spacecraft and Rockets,2001,38(1):15-20.
    [40] Steelant J. ATLLAS: aero-thermal loaded material investigations for high-speed vehicles:15th AIAA International Space Planes and Hypersonic Systems and TechnologiesConference. Dayton, OH, United states:2008.
    [41] Bertin J J, Cummings R M. Fifty years of hypersonics: where we’ve been, where we’regoing? Progress in Aerospace Sciences,2003,39:511-536.
    [42]洪长青,张幸红,韩杰才,等.热防护用发汗冷却技术的研究进展(Ⅰ)──冷却方式分类、发汗冷却材料及其基本理论模型.宇航材料工艺,2005(6):7-12.
    [43]吉洪亮,张长瑞,曹英斌.发汗冷却材料研究进展.材料导报,2008(1):1-3.
    [44] Mueggenburg H, Hidahl J W, Kessler E L. Platelet actively cooled thermal managementdevices,1992, AIAA92-3127.
    [45] May L, Burkhardt W M. Transpiration cooled throat for hydrocarbon rocket engines, NASACR-184272,1991.
    [46]张峰,刘伟强.层板发汗冷却在液体火箭发动机中的应用与发展综述.火箭推进,2007(6):43-48.
    [47]刘阳,杨卫华,姜利祥.层板发汗冷却推力室的传热特性.燃烧科学与技术,2006(5):423-426.
    [48]张峰,刘伟强.层板发汗冷却结构的非均匀温度分布受热皱损的求解.航空学报,2007(1):138-141.
    [49]张峰.层板发汗冷却理论分析及应用研究[博士学位论文]:国防科学技术大学航天与材料工程学院,2008.
    [50] Duwez P, Wheeler H L. Heat transfer measurements in a nitrogen sweat-cooled porous tube:Progress Report. Pasadonn: Jet Propulsion Laboratory,1947, NO.4-48
    [51] Keener D, Lenertz J, Bowersox R, et al. Transpiration cooling effects on nozzle heat transferand performance. Journal of Spacecraft and Rockets,1995,32(6):981-985.
    [52] Chen F, Bowman W J, Bowersox R. Effect of transpiration cooling on nozzle heat transfer.Journal of Spacecraft and Rockets,1996,33(3):453-455.
    [53] Lezuo M, Haidn O J. Transpiration cooling using gaseous hydrogen.33rdAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA, USA,1997,AIAA-1997-2909.
    [54] Greuel D, Herbertz A, Haidn O J, et al. Transpiration cooling applied to C/C liners ofcryogenic liquid rocket engines.40th AIAA/ASME/SAE/ASEE Joint Propulsion Conferenceand Exhibit, Fort Lauderdale, FL, United states,2004, AIAA-2004-3682.
    [55] Calabro M. Innovative lox/methane upper stage for future launchers: Rast2005: Proceedingsof the2nd International Conference On Recent Advances in Space Technologies,2005:344-350.
    [56] Serbest E, Haidn O, Hald H, et al. Effusion cooling of throat region in rocket engines:Applying fibre reinforced ceramics.37th AIAA, ASME, SAE, ASEE JPC Conference andExhibit, Salt Lake City, Utah,2001, AIAA-2001-3410.
    [57] Ortelt M, Fischer I, Hald H, et al. Empirical verification of effusion cooled CMC rocketthrust chambers.41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Tucson, AZ, United states,2005, AIAA2005-3569.
    [58] Greuel D, Herbertz A, Haidn O J, et al. Transpiration cooling applied to C/C liners ofcryogenic liquid rocket engines:40th AIAA/ASME/SAE/ASEE Joint Propulsion Conferenceand Exhibit. Fort Lauderdale, FL, United states,2004, AIAA-2004-3682.
    [59] Herbertz A, Ortelt M, Muller I, et al. Transpiration-cooled ceramic thrust chamberapplicability for high-thrust rocket engines:48th AIAA/ASME/SAE/ASEE Joint PropulsionConference&Exhibit, Atlanta, Georgia, USA,2012, AIAA2012-3990.
    [60] Hald H, Ortelt M, Fischer I, et al. Effusion cooled cmc rocket combustion chamber: ACollection of Technical Papers-13th AIAA/CIRA International Space Planes and HypersonicSystems and Technologies Conference, Capua, Italy,2005,239-247
    [61] Soller S, Kirchberger C, Kuhn M, et al. Experimental investigation of cooling techniquesand materials for high speed flight propulsion systems:16th AIAA/DLR/DGLRInternational Space Planes and Hypersonic Systems and Technologies Conference. Bremen,Germany,2009, AIAA2009-7374.
    [62] Langener T, von Wolfersdorf J, Steelant J. Experimental investigations on transpirationcooling for scramjet applications using different coolants. AIAA Journal,2011,49(7):1409-1419.
    [63] Van Foreest A, Sippel M, Klevanski J, et al. Transpiration cooling to handle theaerothermodynamic challenges of the spaceliner concept:2nd European conference foraerospace sciences.2007.
    [64] Van Foreest A, Sippel M, Guelhan A, et al. Transpiration cooling using liquid water. Journalof Thermophysics and Heat Transfer,2009,23(4):693-702.
    [65] Sippel M, Van Foreest A. Spaceliner rocket-powered high-speed passenger transportationconcept evolving in FAST20xx:61st International Astronautical Congress, Prague, CZ, USA,2010, IAC-10-D2.4.06.
    [66] Van Foreest A, Sippel M. Gülhan A, et al. Transpiration cooling methods for the spaceliner:Notes on Numerical Fluid Mechanics and Multidisciplinary Design,2008,98:170-185.
    [67]王燚,方玉诚,郭章,等.丝网多孔发散冷却面板烧结新工艺探索.1995:14-26.
    [68]姜翔焰,刘增祥.发汗面板用GH30织网丝和网的研制.天津冶金,1991(1):43-48.
    [69] Zhu Y, Jiang P, Sun J, et al. Injector head transpiration cooling coupled with combustion inH2/O2subscale thrust chamber. Journal of Thermophysics and Heat Transfer,2013,27:42-51.
    [70] Moffat R J, Kays W M. Turbulent boundary layer on a porous plate: experimental heattransfer with uniform blowing and suction. International Journal of Heat and Mass Transfer,1968,11(10):1547-1566.
    [71] Simpson R L, Moffat R J, Kays W M. Turbulent boundary layer on a porous plate-experimental skin friction with variable injection and suction. International Journal of Heatand Mass Transfer,1969,12(7):771.
    [72] Thielbah. W H, Kays W M, Moffat R J. The turbulent boundary-layer on a porous plate-experimental heat-transfer with uniform blowing and suction, with moderately strongacceleration. Journal of Heat Transfer,1972,94(1):111.
    [73] Kays W M. Heat transfer to the transpired turbulent boundary layer. International Journal ofHeat and Mass Transfer,1972,15(5):1023-1044.
    [74] Kearney D W, Kays W M, Moffat R J. Heat transfer to a strongly accelerated turbulentboundary layer: some experimental results, including transpiration. International Journal ofHeat and Mass Transfer,1973,16(6):1289-1305.
    [75] Bellettre J, Bataille F, Lallemand A, et al. Studies of the transpiration cooling through asintered stainless steel plate. Experimental Heat Transfer,2005,18:33-44.
    [76] Bellettre J E O, Bataille F C, Rodet J, et al. Thermal behavior of porous plates subjected toair blowing. Journal of Thermophysics and Heat Transfer,2000,14(4):523-532.
    [77] Liang D, Kuan W, Qian Z, et al. An experimental investigation on transpiration cooling ofporous flat plate:2011International Conference on Remote Sensing, Environment andTransportation Engineering (RSETE),2011:5692-5696.
    [78] Langener T, Wolfersdorf V, Laux T, et al. Experimental investigation of transpiration coolingwith subsonic and supersonic flows at moderate temperature levels:44thAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit21-23July2008, Hartford,CT, USA,2008, AIAA2008-5174.
    [79] Kikkawa S, Senda M, Sakagushi K, et al. Transpiration cooling using air as a coolant. HeatTransfer-Japanese Research,1992,21(4):424-433.
    [80] Meinert J, Huhn J, Serbest E, et al. Turbulent boundary layers with foreign gas transpiration.Journal of Spacecraft and Rockets,2001,38(2):191-198.
    [81] Shinzo K, Mamoru S, Katsuji S. Experimental investigation on transpiration cooling withwater sprays and impinging air jets. Transactions of the Japan Society of MechanicalEngineers-Part B,1991,3(57):1114-1119.
    [82] Brunk W E. Experimental investigation of transpiration cooling for a turbulent boundarylayer in subsonic flow using air as a coolant: NASA Technical Note4091. Ohio: LewisFlight Propulsion Laboratory,1957.
    [83] Mathelin L, Bataille F, Lallemand A. The effect of uniform blowing on the flow past acircular cylinder. Journal of Fluids Engineering-Transactions of the ASME,2002,124(2):452-464.
    [84] Wang J H, Messner J, Stetter H. swqan experimental investigation of transpiration cooling.PartⅠ: application of an infrared measurement technique. International Journal of RotatingMachinery,2003,9(3):153-161.
    [85] Wang J H, Messner J, Stetter H. An experimental investigation on transpiration cooling partⅡ: comparison of cooling methods and media. International Journal of Rotating Machinery,2004,10(5):355-363.
    [86] Choi S H, Scotti S J, Song K D, et al. Transpiring cooling of a scram-jet engine combustionchamber.32nd AIAA Thermophysics Conference, Atlanta, GA, USA,1997, AIAA1997-2576.
    [87]于淼.发汗冷却换热过程的数值模拟和实验研究[硕士学位论文].北京:清华大学热能工程系,2005.
    [88]余磊,姜培学,任泽霈.发汗冷却换热过程的实验研究与数值模拟.工程热物理学报,2005(01):95-97.
    [89]余磊.发汗冷却换热过程的数值模拟和实验研究[硕士学位论文].北京市:清华大学热能工程系,2003.
    [90]孟丽燕.发汗冷却过程中流动与换热规律研究[博士学位论文].北京市:清华大学热能工程系,2005.
    [91]孟丽燕,姜培学.烧结多孔壁面发汗冷却换热的实验研究.清华大学学报(自然科学版),2005,11(45):1537-1539.
    [92]刘元清.发汗冷却基础问题的实验研究和数值模拟[博士学位论文].北京:清华大学热能工程系,2010.
    [93] Liu Y, Jiang P, Xiong Y, et al. Experimental and numerical investigation of transpirationcooling for sintered porous flat plates. Applied Thermal Engineering,2013,50:997-1007.
    [94]金韶山.液体火箭发动机推力室及钝体头锥发汗冷却研究[博士学位论文].北京:清华大学热能工程系,2008.
    [95]金韶山,姜培学,苏志华.钝体头锥发汗冷却对流换热实验研究.工程热物理学报,2009(06):1002-1004.
    [96] Liu Y Q, Jiang P X, Jin S S, et al. Transpiration cooling of a nose cone by various foreigngases. International Journal of Heat and Mass Transfer,2010,53(23-24):5364-5372.
    [97] Otsu H, Fujita K, Ito T. Application of the transpiration cooling method for reentry vehicles:Collection of Technical Papers-45th AIAA Aerospace Sciences Meeting. Reno, NV, Unitedstates,2007:14433-14443.
    [98] Chauvin L T, Carter H S. Exploratory tests of transpiration cooling on a porous8°cone atM=2.05using nitrogen gas, helium gas, and water as the coolants, NACA RM-l55C29.Washington: NACA Langley Aeronautical Laboratory,1955.
    [99] Song K D, Choi S H, Scotti S J. Transpiration cooling experiment for scramjet enginecombustion chamber by high heat fluxes. Journal of Propulsion and Power,2006,22(1):96-102.
    [100] Froehlke K, Haidn O J, Serbest E. New experimental results on transpiration cooling forhydrogen/oxygen rocket combustion chambers.34th AIAA/ASME/SAE/ASEE JointPropulsion Conference and Exhibit, Cleveland, OH, USA,1998, AIAA-1998-3443.
    [101] Serbest E, Greuel D, Haidn O J, et al. Effusion cooling of throat region in rocket enginesapplying fibre reinforced ceramics:37th AIAA, ASME, SAE, ASEE JPC Conference andExhibit Salt Lake City, Utah,2001, AIAA2001-3410.
    [102] Kuhn M, Hald H. Application of transpiration cooling for hot structures: RESPACE–KeyTech. for Reusable Space Sys., NNFM98,2008:82–103.
    [103] Kuhn M, Gülhan A, Esser B, et al. Experimental investigations of transpiration cooledCMC's in supersonic plasma flows: Proceedings5th European Workshop on ThermalProtection Systems and Hot Structures, Noordwijk, The Netherlands,2006.
    [104] Soller S, Kirchberger C, Kuhn M, et al. Experimental investigation of cooling techniquesand materials for highspeed flight propulsion systems:16th AIAA/DLR/DGLR InternationalSpace Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany,2009, AIAA2009-7374.
    [105] Zinner W, Haeseler D, Mading C. Development of advanced technologies for futurecryogenic thrust chamber applications:33rd AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit, Seattle, WA, USA,1997, AIAA-1997-3312.
    [106]林瑞泰.多孔介质传热传质引论[M],北京:科学出版社,1995.
    [107] Pulkrabek W W, Wabrek R M, Ibele W E. The permeability of alumina over an extendedtemperature-range. International Journal of Thermophysics,1990,11(1):251-258.
    [108] Ergun S. Fluid flow through packed columns. Chemical Engineering Progress,1952,48(2):89-94.
    [109] Donald A. Nield A B. Convection in porous media[M], New York: Springer,2006.
    [110] Aerov M E, Tojec O M. Hydraulic and thermal basis on the performance of apparatus withstationary and boiling granular layer. Himia Press, Leningrad (in Russian),1968.
    [111] Zeng Z W, Grigg R. A criterion for non-Darcy flow in porous media. Transport in PorousMedia,2006,63(1):57-69.
    [112] Vafai K, Kim S J. On the limitations of the Brinkman-Forchheimer extended Darcy equation.International Journal of Heat and Fluid Flow,1995,16(1):11-15.
    [113] Noman, R., and M. Z. Kalam,1990, Transition from laminar to non-darcy flow of gases inporous media, in P. F. Worthington, ed.,Advances in core evaluation, volume1: accuracy andprecision in reserves estimation: London, Gordon and Breach, p.447–462.
    [114] Amiri A, Vafai K. Analysis of dispersion effects and nonthermal equilibrium, non-Darcian,variable porosity incompressible-flow through porous-media. International Journal of Heatand Mass Transfer,1994,37(6):939-954.
    [115] Vafai K, Tien C L. Boundary and inertia effects on flow and heat transfer in porous media.International Journal of Heat and Mass Transfer,1981,24(2):195-203.
    [116] Klinkenberg L J. The permeability of porous media to liquids and gases. Drilling andProduction Practice,1941:200-213.
    [117]陈熙.动力论及其在传热与流动研究中的应用[M],北京:清华出版社.
    [118]胥蕊娜,姜培学,李勐,等.微细多孔介质中流动及换热实验研究.工程热物理学报.
    [119] Huang Y, Jiang P, Xu R. Experimental investigation of fluid flow and internal convectionheat transfer in mini-micro porous media: Proceedings of the ASME20092ndMicro/Nanoscale Heat&Mass Transfer International Conference. Shanghai, China,2009.
    [120] Kuwahara F, Shirota M, Nakayama A. A numerical study of interfacial convective heattransfer coefficient in two-energy equation model for convection in porous media.International Journal of Heat and Mass Transfer,2001,44(6):1153-1159.
    [121] Kar K K, Dybbs A. Internal heat transfer coefficients of porous metals: Heat transfer inporous media, Proceedings of the Winter Annual Meeting, Phoenix, AZ,1982.(HeatTransfer Symposia Series. HTD Volume22),1982:81-91..
    [122] Pallares J, Grau F X. A modification of a Nusselt number correlation for forced convectionin porous media. International Communications in Heat and Mass Transfer,2010,37(9):1187-1190.
    [123] De Lemos M B S A. Convective heat transfer coefficient for turbulent flow in a porousmedium formed by an array of square rods. Latin American Journal of Solids and Structures,2005,2:291-304.
    [124] Wakao N, Kaguei S, Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluidheat-transfer coefficients in packed-beds--correlation of Nusselt numbers. ChemicalEngineering Science,1979,34(3):325-336.
    [125] Achenbach E. Heat and flow characteristics of packed-beds. Experimental Thermal andFluid Science,1995,10(1):17-27.
    [126] Dixon A G, Gresswell D L. Theoretical prediction of effective heat transfer parameters inpacked beds. AIChE J.,1979,25(4):663-676.
    [127] Xu R N, Huang Y L, Jiang P X, et al. Internal heat transfer coefficients in microporou smedia with rarefaction effects. Sci China Tech Sci,2012,55:1-6.
    [128] Amiri A, Vafai K, Kuzay T M. Effects of boundary-conditions on non-Darcian heat transferthrough porous media and experimental comparisons. Numerical Heat Transfer. Part a,Applications,1995,27(6):651-664.
    [129] Alazmi B, Vafai K. Constant wall heat flux boundary conditions in porous media under localthermal non-equilibrium conditions. International Journal of Heat and Mass Transfer,2002,45(15):3071-3087.
    [130] Jiang P X, Ren Z P. Numerical investigation of forced convection heat transfer in porousmedia using a thermal non-equilibrium model. International Journal of Heat and Fluid Flow,2001,22(1):102-110.
    [131] Wang J H, Wang H N. A discussion of transpiration cooling problems through an analyticalsolution of local thermal nonequilibrium model. Journal of Heat Transfer,2006,128(10):1093-1098.
    [132] Al-Nimr M A, Abu-Hijleh B A. Validation of thermal equilibrium assumption in transientforced convection flow in porous channel. Transport in Porous Media,2002(49):127-138.
    [133] Minkowycz W J, Haji-Sheikh A, Vafai K. On departure from local thermal equilibrium inporous media due to a rapidly changing heat source: the sparrow number. InternationalJournal of Heat and Mass Transfer,1999,42(18):3373-3385.
    [134] Vafai K. Sozen M. Analysis of energy and momentum transport for fluid flow through aporous bed. Transactions of the ASME,1990,112:690-699.
    [135] Lee D Y, Vafai K. Analytical characterization and conceptual assessment of solid and fluidtemperature differentials in porous media. International Journal of Heat and Mass Transfer,1999,42(3):423-435.
    [136] Amiri A, Vafai K. Transient analysis of incompressible flow through a packed bed.International Journal of Heat and Mass Transfer,1998,41(24):4259-4279.
    [137] Marafie A, Vafai K. Analysis of non-darcian effects on temperature differentials in porousmedia. International Journal of Heat and Mass Transfer,2001,44(23):4401-4411.
    [138] Haddad O M, Al-Nimr M A, Al-Khateeb A. Validation of the local thermal equilibriumassumption in natural convection from a vertical plate embedded in porous medium:non-darcian model. International Journal of Heat and Mass Transfer,2004,47(8-9):2037-2042.
    [139] Wang J H, Shi J X. Discussion of boundary conditions of transpiration cooling problemsusing analytical solution of LTNE model. Trans. ASME, J. Heat Transfer,2008,130(1): No.1.
    [140] Andoh Y H, Lips B. Prediction of porous walls thermal protection by effusion ortranspiration cooling. An analytical approach. Applied Thermal Engineering,2003,23(15):1947-1958.
    [141] Hwang G J, Wu C C, Chao C H. Investigation of non-darcian forced convection in anasymmetrically heated sintered porous channel. Journal of Heat Transfer,1995,117(3):725-732.
    [142] Von Wolfersdorf J. Effect of coolant side heat transfer on transpiration cooling. Heat andMass Transfer/Waerme-Und Stoffuebertragung,2005,41(4):327-337.
    [143] Shi J X, Wang J H. Optimized structure of two layered porous media with genetic algorithmfor transpiration cooling. International Journal of Thermal Sciences,2008,47(12):1595-1601.
    [144] Lionel Mathelin F B A L. Blowing models for cooling surfaces. International Journal ofThermal Sciences,2001,40(11):969-980.
    [145] Polezhaev Y V, Seliverstov E M. A universal model of heat transfer in systems withpenetration cooling. High Temperature,2002,40(6):922-931.
    [146] Glass D E, Dilley A D, Kelly H N. Numerical analysis of convection/transpiration cooling.Journal of Spacecraft and Rockets,2001,38(1):15-20.
    [147] Bellettre J, Bataille F, Lallemand A. A new approach for the study of turbulent boundarylayers with blowing. International Journal of Heat and Mass Transfer,1999(42):2905-2920.
    [148] Cuhadaroglu B. Numerical study of turbulent boundary layers with heat transfer andtangential transpiration. International Journal of Numerical Methods for Heat&Fluid Flow,2004,14(5-6):760-782.
    [149] Cebeci T. Calculation of compressible turbulent boundary layers with heat and mass transfer.AIAA Journal,1971,9(6):1091.
    [150] Leontiev A I, Lushchik V G, Yakubenko A E. Compressible turbulent boundary layer on apermeable plate with injection of foreign gas. High Temperature,2007,45(4):488-496.
    [151] Sreekanth, Reddy N M. Numerical simulation of transpiration cooling over blunt bodies athypersonic Mach numbers:30th AIAA Thermophysics Conference, San Diego, CA,1995,AIAA95-2082.
    [152] Sreekanth, Reddy N M. Transpiration cooling analysis at hypersonic Mach numbers by usingNavier-Stokes equations:6th AIAA/ASME Joint Thermophysics and Heat TransferConference, Colorado Springs, Colorado Springs, CO, USA, I994,AIAA94-2075.
    [153]余磊,姜培学,任泽霈.发汗冷却湍流换热过程的数值模拟.清华大学学报(自然科学版),2003(12):1668-1671.
    [154]于淼,姜培学.高温气体流过圆管时壁面发散冷却的数值模拟.清华大学学报(自然科学版),2006,46(2):242-246.
    [155]刘伟强,陈启智,吴宝元.液体火箭发动机层板式预燃室液氧发汗冷却热控制.推进技术,1998(5):11-15.
    [156] Landis J A, Bowman W J. Numerical Study of a Transpiration Cooled Rocket Nozzle:32ndAIAA/ASME/SAE/ASEE Joint Propulsion Conference. Lake Buena Vista, FL,1996,AIAA-1996-2580.
    [157]姜培学,任泽霈,张左,等.液体火箭发动机推力室发汗冷却传热过程的数值模拟:(Ⅰ)数理模型.推进技术,1999,20(3):1-4.
    [158]姜培学,任泽霈,张左,等.液体火箭发动机推力室发汗冷却传热过程的数值模拟:(II)数值方法与计算结.推进技术,1999,20(4):17-21.
    [159]孟丽燕,姜培学,蒋方帅,等.基于局部非热平衡模型的发汗冷却过程的数值模拟.工程热物理学报,2006,27(4):667-669.
    [160] Sumitani Y, Kasagi N. Direct numerical simulation of turbulent transport with uniform wallinjection and suction. AIAA Journal,1995,33(7):1220-1228.
    [161] Jiang L, Choudhari M, Chang C L, et al. Numerical simulations of laminar-turbulenttransition in supersonic boundary layer: Collection of Technical Papers-36th AIAA FluidDynamics Conference. San Francisco, CA, United states:2006:986-1001.
    [162] Leite P H M, Santos W F N. Direct simulation of heat transfer and pressure distributions ofhypersonic flow over backward-facing steps: Encontro De Modelagem Computacional,, Riode Janeiro, RJ, Brazil,2009.
    [163] Brillant G, Franc O B, Fr E E D. Large-eddy simulation of a turbulent boundary layer withblowing. Theoretical and Computational Fluid Dynamics,2004,17:433-443.
    [164] Apte S V, Yang V. A large-eddy simulation study of transition and flow instability in aporous-walled chamber with mass injection. Journal of Fluid Mechanics,2003,477:215-224.
    [165] Jiang P X, Lu X C. Numerical simulation of fluid flow and convection heat transfer insintered porous plate channels. International Journal of Heat and Mass Transfer,2006,49(9-10):1685-1695.
    [166] Xu R N, Jiang P X. Numerical simulation of fluid flow in microporous media. InternationalJournal of Heat and Fluid Flow,2008(29):1447-1455.
    [167] Bouchez M, Chevalier A, Transpiration cooled fuel injector bar for a ramjet engine: Europe,No. EP0846920B1[P],2003-06-11.
    [168] Bulman M J, Transpiration cooling for a vehicle with low radius leading edges: UnitedStates, No.5351917[P],1994-10-04.
    [169] Chevalier A, Bouchez M, Fuel-injecting apparatus for ramjet engine cooled by transpiration:United States, No.6164061[P],2000-12-26.
    [170] Bulman M J, Transpiration cooling for a vehicle with low radius leading edge: United States,No.5452866[P],1995-09-26.
    [171] Henry C L, Delametter J E, Scramjet fuel injection system having independent fuel suppliesfor supersonic and hypersonic operation: United States, No.5660040[P],1997-08-26.
    [172] Rannie. A simplified theory of porous wall cooling: Technical report. Pasadena: JetPropulsion Laboratory,1947.
    [173] Friedman J J. A theoretical and experimental investigation of rocket motor sweat cooling.Journal American Rocket Society,1949,79:147-154.
    [174] Liu Y Q, Xiong Y B, Jiang P X, et al. Effects of local geometry and boundary conditionvariations on transpiration cooling. International Journal of Heat and Mass Transfer,2013, inpress.
    [175] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows,1992,AIAA-92-0439.
    [176] ANSYS FLUENT13.0theory guide. SAS IP Inc. Cheyenne, WY,2010.
    [177] Hunt M L, Tien C L. non-Darcy convection in cylindrical packed beds. Journal of HeatTransfer,1988,110:378-384.
    [178] Jiang P X, Ren Z P, Wang B X. Numerical simulation of forced convection heat transfer inporous plate channels using thermal equilibrium and nonthermal equilibrium models.Numerical Heat Transfer; Part a: Applications,1999,35(1):99-113.
    [179] Sutherland W. The viscosity of gases and molecular force. Philosophical Magazine Series5,1893,36(223):507-531.
    [180] Koodziej A, Lojewska J, Jaroszynski M, et al. Heat transfer and flow resistance for stackedwire gauzes: experiments and modelling. International Journal of Heat and Fluid Flow,2012,33(1):101-108.
    [181] Dodge F T, Ricker R E. Flow of liquid jets through closely woven screens. Journal ofSpacecraft and Rockets,1978,15(4):213-218.
    [182] Wu W T, Liu J F, Li W J, et al. Measurement and correlation of hydraulic resistance of flowthrough woven metal screens. International Journal of Heat and Mass Transfer,2005,48(14):3008-3017.
    [183] Nair A R, Krishnakumar K. Numerical modeling of single blow transient testing of a wirescreen mesh heat exchanger:10th National Conference on Technological Trends (NCTT09).Kerala, India,2009.
    [184]黄寓理,姜培学,胥蕊娜.气体在微细多孔介质中的流动阻力研究.工程热物理学报,2009(8):1360-1362.
    [185]黄寓理.微细多孔介质内部流动与换热研究[硕士学位论文].北京:清华大学热能工程系,2010.
    [186]黄寓理,姜培学,胥蕊娜.微细多孔介质中对流换热研究.工程热物理学报,2011(2):273-276.
    [187]胥蕊娜.微细多孔结构内流动与换热研究[博士学位论文].北京:清华大学热能工程系,2007.
    [188] Sreekanth, Reddy N M. Injection cooling of blunt bodies flying at high Mach numbers.Journal of Thermophysics and Heat Transfer,1996,10(4):586-592.
    [189] Sreekanth, Reddy N M. Study of transpiration cooling over a flat-plate at hypersonic Machnumbers. Journal of Thermophysics and Heat Transfer,1995,9(3):552-555.
    [190] Tani K, Kanda T, Kudou K. Aerodynamic performance of scramjet inlet models with a singlestrut. Journal of Propulsion and Power,2006,22(4):905-912.
    [191] Tetlow M R, Doolan C J. Comparison of hydrogen and hydrocarbon-fueled scramjet enginesfor orbital insertion. Journal of Spacecraft and Rockets,2007,44(2):365-373.
    [192] Masuya G, Komuro T, Murakami A, et al. Ignition and combustion performance of scramjetcombustors with fuel injection struts. Journal of Propulsion and Power,1995,11(2):301-307.
    [193] Sullins G A, Anderson Jr. J D, Drummond J P. Numerical investigation of supersonic baseflow with parallel injection: AIAA/ASME3rd Joint Thermophysics, Fluids, Plasma and HeatTransfer Conference. St Louis, MO, USA,1982, AIAA-82-1001.
    [194] Pandey K M, Thangavel S. CFD analysis of scramjet combustor using strut with circular andplaner injector: ASME2011International Mechanical Engineering Congress and Exposition,IMECE2011. Denver, CO, United states,2011:1521-1529
    [195]孙冰,郑力铭.超燃冲压发动机支板热环境及热防护方案.航空动力学报,2006(2):336-341.
    [196] Bouchez M, Beyer S. PTAH-SOCAR fuel-cooled composite materials structure:2009status:16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems andTechnologies Conference. Bremen, Germany,2009, AIAA2009-7353.
    [197] Mcgee H A. Molecular Engineering [M], New York: McGraw-Hill,1991.
    [198] Ambrosio A, Wortman A. Stagnation-point shock-detachment distance for flow aroundspheres and cylinders in air. Journal of the Aerospace Sciences,1962,29(7):875.
    [199] Alazmi B, Vafai K. Analysis of variants within the porous media transport models. Journal ofHeat Transfer,2000,122(2):303-326.
    [200] Kuznetsov A V. Thermal nonequilibrium, non-darcian forced convection in a channel filledwith a fluid saturated porous medium-a perturbation solution. Applied Scientific Research,1996,57(2):119-131.
    [201] Martin A R, Saltiel C, Shyy W. Heat transfer enhancement with porous inserts inrecirculating flows. Journal of Heat Transfer,1998,120(2):458-467.
    [202] Jiang P, Wang Z, Ren Z, et al. Experimental research of fluid flow and convection heattransfer in plate channels filled with glass or metallic particles. Experimental Thermal andFluid Science,1999,20:45-54.
    [203] Jiang P X, Wang B X, Luo D A, et al. Fluid flow and convective heat transfer in a verticalporous annulus. Numerical Heat Transfer Part a-Applications,1996,30(3):305-320.
    [204] Jiang P X, Wang Z, Ren Z P, et al. Experimental research of fluid flow and convection heattransfer in plate channels filled with glass or metallic particles. Experimental Thermal andFluid Science,1999,20(1):45-54.
    [205] Jiang P X, Li M, Ma Y C, et al. Boundary conditions and wall effect for forced convectionheat transfer in sintered porous plate channels. International Journal of Heat and MassTransfer,2004,47(10-11):2073-2083.
    [206] Rodriguez A C. Steady state transpiration cooling in porous media under local, non-thermalequilbrium fluid flow. Houston, TX: NASA Johnson Space Center,2002
    [207]于淼,姜培学.发汗冷却过程中多孔壁面内的局部非热平衡分析.工程热物理学报,2007,28(2):286-288.
    [208] Turnacliff R D. An experimental study of local convective heat transfer and pressure drop forlaminar and turbulent flow of air within a uniformly packed bed of spheres[D]: University ofMinnesota,1957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700