基于发泡和固化法的硅酸盐无机外墙保温材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于缺乏相关消防安全法规,大量可燃的有机保温材料被用于建筑外墙,造成了火灾事故频发。现阶段我国建筑外墙保温技术最突出的问题就是节能和防火之间的矛盾,有机保温材料虽然隔热性能好、质轻和价格便宜,但是可燃烧,一旦被点燃会释放大量的热量、烟气和毒性气体,并且会在建筑外立面上迅速蔓延,造成严重的后果,而无机保温材料防火性能优异,但是导热系数较大,而且易吸水,节能效率不高。本文从先防火再节能方面考虑,提出研发一种低导热系数、低成本、憎水和环境友好的无机外墙保温材料。
     本文采用理论分析与实验制备相结合的方法,利用发泡和固化法制备出导热系数较低,强度合适且具有憎水性的硅酸盐无机多孔保温材料,完成的主要研究工作如下:
     首先,研究了多孔保温材料内部的传热机理,发展了新型有效介质理论来描述多孔保温材料的内部传热。利用传热分析推导出理论的数学表达式并且验证了该理论的有效性,而且根据理论模型提出高孔隙率(或低容重)、低导热系数固相骨架与合理的孔隙结构这三种途径可以使多孔材料具有低导热系数,为研发工作提供了理论依据。
     然后,以工业莫来石粉为骨料和玉米淀粉为胶凝材料利用发泡和淀粉固化的方法制备了高孔隙率的莫来石基多孔保温材料,孔隙率最高的样品导热系数可以达到0.1W/mK左右,为研发工作奠定了实验基础。
     接着,针对发泡和淀粉固化法的缺点,以工业莫来石粉为骨料,用更经济更环保的水泥代替淀粉作为胶凝材料,利用发泡和水泥固化法制备了莫来石基多孔保温材料,降低了成本和减少了排放,优化了制备方法。
     最后,选择成本更低和更轻质的工业废料粉煤灰作为骨料,利用发泡和水泥固化法制备粉煤灰基多孔保温材料,并且采用发泡液先独立发泡再与浆料混合的方法代替之前的浆料直接发泡,制备出导热系数更低的样品。此外本文还使用水溶性防水剂对样品进行渗透性防水处理,经过防水处理后样品具有憎水性。
In recent years, due to a lack of corresponding fire prevention codes, a lot of combustible organic insulation materials are used in building exterior walls, resulting in frequent occurrence of fire accidents. Now in China, the most prominent problem in building exterior insulation technology is the contradiction between energy conservation and fire prevention. Although organic insulation materials have excellent insulation performance, light weight and cheap cost, they are flammable. Once ignited, organic insulation materials will release a lot of heat, smoke and toxic gases, and furthermore the flame will quickly spread on the building facade, resulting in serious consequences. Inorganic insulation materials have outstanding fire performance, but they have large thermal conductivity, high water absorption and low energy conservation efficiency. Considering fire prevention priority, this paper proposed preparing a low thermal conductivity, low cost, environmentally friendly and hydrophobic inorganic insulation materials for building exterior walls.
     In this paper, through combining theory and experiments, inorganic porous insulation materials with a low thermal conductivity, suitable strength, and hydrophobic were prepared using foaming and setting method. The main research work is as follows:
     First, the heat transfer mechanism in porous thermal insulation material was studied. A novel effective medium theory was developed to describe the internal heat transfer of porous thermal insulation material. The mathematical expression of the theory was deduced by heat transfer analysis and the validity of the theory was also verified. According to the model, the thermal conductivity of porous materials can be decreased through three approaches, increasing porosity (or decreasing bulk density), decreasing the thermal conductivity of solid skeleton and holding a reasonable pore structure. This work provided theory basis for the whole research work.
     Then, industrial mullite powder and corn starch are used as the aggregate and cementing materials respectively and highly porous mullite insulation materials were prepared by foaming and starch consolidation method. The thermal conductivity of highest porosity sample can reach0.1W/mK. This work provided experimental basis for further research work.
     Next, aiming at the shortcomings of foaming and starch consolidation method, more economic and environmentally friendly cementing material cement are used to substitute corn starch and porous mullite insulation materials were prepared by foaming and cement consolidation method. This method solved the problem of the cost and discharge of organic material, and optimized the preparation method.
     Finally, lower cost and lighter weight industrial waste fly ash and cement were used as the aggregate and cementing material respectively for preparing fly ash based porous insulation material. Moreover, lower thermal conductivity samples were prepared by using foaming agent foaming independently first and then mixing with slurry instead of direct foaming method. In addition, samples were treated by water proof agent, and after the treatment samples became hydrophobic.
引文
[1]张泽平,李珠董,彦莉.2007.建筑保温节能墙体的发展现状与展望[J].工程力学,(24):121-128.
    [2]清华大学建筑节能研究中心.2010.中国建筑节能年度发展研究报告[R].北京:中国建筑工业出版社.
    [3]邱勇.2007.建筑外墙自保温材料及体系研究[D].浙江大学.
    [4]古小英,沈峻,孙生根等.2005.住宅建筑外墙外保温技术现状与前景展望明[J].住宅科技,(6):28-30.
    [5]Al-Homoud M S.2005. Performance characteristics and practical applications of common building thermal insulation materials [J]. Building and Environment,40(3):353-366.
    [6]Jelle B P.2011. Traditional, state-of-the-art and future thermal building insulation materials and solutions-Properties, requirements and possibilities [J]. Energy and Buildings, 43(10):2549-2563.
    [7]杨凯.2006.聚苯颗粒保温砂浆的研制与工程应用[D].重庆大学.
    [8]Liang H-H and Ho M-C.2007. Toxicity characteristics of commercially manufactured insulation materials for building applications in Taiwan [J]. Construction and Building Materials, 21(6):1254-1261.
    [9]易爱华,刘建勇,赵侠等.2010.三种不同有机保温材料燃烧性能的研究[J].消防科学与技术,29(5):373-376.
    [10]亓延军.2012.常用有机外墙外保温系统火灾特性研究[D].中国科学技术大学.
    [11]王志杰.2011.外墙无机复合保温材料研究[D].大连海事大学.
    [12]孙卫卫.2009.建筑节能实施机制研究—以外墙外保温技术推广为例[D].山东建筑大学.
    [13]朱盈豹.2012.无机保温材料的应用和发展前景[J].辽宁建材,(2):10-12.
    [14]蔡凤武,姚文生,刘晓波.2011.岩棉保温材料性能探讨[J].河北建筑工程学院学报,29(1):49-55.
    [15]张训.2011.膨胀珍珠岩与玻化微珠配制无机保温砂浆的研究[D].华南理工大学.
    [16]李卫东,李月强,刘艳改等.2007.新型建材—泡沫玻璃的发展与应用前景[J].中国陶瓷工业,14(1):36-37.
    [17]张留生,邱永斌.2005.高温发泡陶瓷及其应用[J].新型建筑材料,(5):58-59.
    [18]李峰,胡琳娜.2008.发泡水泥材料的研究进展[J].混凝土,(5):80-82.
    [19]张水,李国忠.2011.发泡水泥轻质保温材料的制备与性能研究[J].墙材革新与建筑节能,(5):33-36.
    [20]张寿国,谢红波,李国忠.2006.硅酸钙保温材料研究进展[J].建筑节能,(5):28-30.
    [21]苏勇,何顺容,陈建明等.2001.憎水型微孔硅酸钙绝热制品的研制[J]新型建筑材料,(12):33-34.
    [22]曾令可,曹建新,王慧等,2004.硬硅钙石-Si02复合纳米超级绝热材[J].陶瓷学报,(2):75-79.
    [23]于漧.1996.用泡沫法生产轻质高强保温材料[J].建材工业信息,(22):10.
    [24]Baetens R, Jellea B P, Gustavsen A.2011. Aerogel insulation for building applications:A state-of-the-art review. Energy and Buildings,43(4):761-769.
    [25]张贺新,赫晓东,何飞.2007.气凝胶隔热性能及复合气凝胶隔热材料研究进展[J].材料工程,(1):94-97.
    [26]Lawrence W H.1998. Aerogel Applications [J]. Journal of Non-Crystalline Solids,255: 335-342.
    [27]吕鹏鹏,赵海雷,刘欣等.2012.常压干燥制备Si02气凝胶的研究[J].材料工程,(4):22-26.
    [28]Baetens R, Jelle B P, Thue JV et al.2010. Vacuum insulation panels for building applications:a review and beyond [J]. Energy and Buildings,42(2):147-172.
    [29]Demirbas M F.2006. Thermal energy storage and phase change materials:an overview [J]. Energy Sources, Part B:Economics, Planning and Policy,1(1):85-95.[30]苏磊静,丁雪佳,雷晓慧等.2012.相变保温建筑材料研究和应用进展[J].储能科学与技术,1(2):112-115.
    [1]吉昂,陶光仪,卓尚军,罗立强编著.2003.X射线荧光光谱分析[M].北京:科学出版社.
    [2]姜传海,杨传铮编著.2010.X射线衍射技术及其应用[M].上海:华东理工大学出版社.
    [3]董学超.2008.新型低成本多孔陶瓷分离膜的制备与性能研究[D].中国科学技术大学.
    [4]张凌燕编著.2007.矿物保温隔热材料及应用[M].北京:化学工业出版社.
    [5]胡芃,陈则韶编著.2009.量热技术和热物性测定[M].合肥:中国科学技术大学出版社.
    [6]Solorzano E, Reglero J A, Rodriguez-Perez M A, et al..2008. An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method [J]. International Journal of Heat and Mass Transfer,51:6259-6267.
    [7]Gustavsson M, Karawacki E, Gustafsson S E.1994. Thermal conductivity, thermal diffusivity, and specific heat of t in samples from transient measurements with hot disk sensors [J]. Review of Scientific Instruments,65(12):3856-3859.
    [1]Incropera F P, Dewitt D P, Bergman T L, Lavine A S. Fundamentals of Heat and Mass Transfer [M].葛新石,叶宏译.第六版.北京:化学工业出版社.
    [2]Zivcova Z, Gregorova E, Pabst W, et al..2009. Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent [J]. Journal of the European Ceramic Society,29(3):347-353.
    [3]Wei G S, Zhang X X, and Yu F.2007. Thermal conductivity of xonotlite insulation material [J]. International Journal of Thermophysics,28(5):1718-1729.
    [4]Nait-Ali B, Haberko K, Vesteghem H, et al..2006. Thermal conductivity of highly porous zirconia [J]. Journal of the European Ceramic Society,26(16):3567-3574.
    [5]Progelhof R C, Throne J L, and Ruetsch R R.1976. Methods for predicting the thermal conductivity of composite systems:a review [J]. Polymer Engineering and Science,16(9): 615-625.
    [6]Cheng P and Hsu C T.1999. The effective stagnant thermal conductivity of porous media with periodic structures [J]. Journal of Porous Media,2(1):19-38.
    [7]Wang J, Carson J K, North M F, et al..2006. A new approach to modelling the effective thermal conductivity of heterogeneous materials [J]. International Journal of Heat and Mass Transfer,49(17-18):3075-3083.
    [8]Miettinen L, Kekalainen P, Turpeinen T, et al..2012. Dependence of thermal conductivity on structural parameters in porous samples [J]. Aip Advances,2(1):021101.
    [9]Leach A G 1993. The thermal conductivity of fomas:1. Models for heat conduction [J], Journal of Physics D:Applied Physics,26 (5):733-739.
    [10]Hashin Z and Shtrikman S.1962. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials [J]. Journal of Applied Physics,33(10): 3125-3131.
    [11]Landauer R.1952. The Electrical Resistance of Binary Metallic Mixtures [J]. Journal of Applied Physics,23(7):779-784.
    [12]Nozad I, Carbonell R G, and Whitaker S.1985. Heat conduction in multiphase system 1: theory and experiments for two-phase system. Chemical Engineering Science,40(5):843-855.
    [13]Hsu C T, Cheng P, and Wong K W.1994. Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media [J]. International Journal of Heat and Mass Transfer, 37(17):2751-2759.
    [14]Wei G S, Liu Y S, Zhang X X, et al..2011. Thermal conductivities study on silica aerogel and its composite insulation materials [J]. International Journal of Heat and Mass Transfer, 54(11-12):2355-2366.
    [15]Carson J K, Lovatt S J, Tanner D J, Cleland A C.2006. Predicting the effective thermal conductivity of unfrozen, porous foods [J]. Journal of Food Engineering,75(3):297-307.
    [16]Deissler R G and Eian C S.1952. Investigation of effective thermal conductivities of powders [R]. National Advisory Committee for Aeronautics, RME52C05.
    [17]Zehner P and Schlunder E U.1970. Thermal conductivity of granular material at moderate temperatures [J]. Chemie Ingenieur Technik,42:933-941.
    [18]Carson J K. and Sekhon J P.2010. Simple determination of the thermal conductivity of the solid phase of particulate materials [J]. International Communications in Heat and Mass Transfer,37(9):1226-1229.
    [19]Hamilton R L and Crosser O K.1962. Thermal conductivity of heterogeneous two-component systems [J]. Industrial & Engineering Chemistry Fundamentals,1(3):187-191.
    [20]Kirkpatrick S.1973. Percolation and conduction [J]. Reviews of Modern Physics,45(4): 574-588.
    [21]Woodside Wand Messmer J H.1961. thermal conductivity if porous meadia.1. Unconsolidated sands [J]. Journal of Applied Physics,32(9):1688-1699.
    [22]Fu X, Viskanta R and Gore J P.1998. Prediction of effective thermal conductivity of cellular ceramics [J]. International Communications in Heat and Mass Transfer,25(2):151-160.
    [23]Veyhl C, Fiedler T, Andersen O, et al..2012. On the thermal conductivity of sintered metallic fibre structures [J]. International Journal of Heat and Mass Transfer,55(9-10):2440-2448.
    [1]Studart A R, Gonzenbach U T, Tervoort E, et al..2006. Processing routes to macroporous ceramics:A review [J]. Journal of the American Ceramic Society,89(6):1771-1789.
    [2]韩永生,李建保,魏强民.2002.多孔陶瓷材料应用及制备的研究进展[J].材料导报,16(3):26-30.
    [3]Dong Y C, Hampshire S, Zhou J, et al..2010. Recycling of fly ash for preparing porous mullite membrane supports with titania addition [J]. Journal of Hazardous Materials,180: 173-180.
    [4]黄春舒.2011.多孔轻质莫来石陶瓷制备及性能的研究[D].天津大学.
    [5]杨铎,杜海燕,李世慧等.2011.粉煤灰制多孔莫来石陶瓷的结构与性能[J].稀有金属材料与工程,40(1):25-28.
    [6]瞿为民.2012.泡沫法制备莫来石轻质隔热材料及其性能研究[D].武汉科技大学.
    [7]Yang F K, Li C W, Li Y M, et al.2012. Fabrication of Porous Mullite Ceramics with High Porosity Using Foam-gelcasting [J]. Key Engineering Materials,512-515:280-585.
    [8]Abe H, Seki H, Fukunaga A.1994. Preparation of bimodal porous mullite ceramics [J]. Journal of Materials Science,29(5):1222-1226.
    [9]Liu Y F, Liu X Q, Wei H, et al..2001. Porous mullite ceramics from national clay produced by gelcasting [J]. Ceramics International,27(1):1-7.
    [10]She, J H and Ohji T.2003. Fabrication and characterization of highly porous mullite ceramics [J]. Materials Chemistry and Physics,80(3):610-614.
    [11]Talou M H and Camerucci M A.2010. Two alternative routes for starch consolidation of mullite green bodies [J]. Journal of the European Ceramic Society,30(14):2881-2887.
    [12]Ding S Q, Zeng Y P, and Jiang D L.2007. Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying [J]. Journal of the American Ceramic Society,90(7):2276-9.
    [13]Wang M R, Jia D C, He P G, et al..2011. Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites [J]. Ceramics International,37(5):1661-1666.
    [14]Yang F K, Li C W, Li Y M, et al..2012. Effects of sintering temperature on properties of porous mullite/corundum ceramics [J]. Materials Letters,73:36-39.
    [15]Mao X S, Wang S W, and Shimai S.2008. Porous ceramics with tri-modal pores prepared by foaming and starch consolidation [J]. Ceramics International,34(1):107-112.
    [16]Peng H X, Fan Z, Evans J R G, et al..2000. Microstructure of ceramic foams [J]. Journal of the European Ceramic Society,20(7):807-813.
    [17]Lyckfeldt O and Ferreira J M F.1998. Processing of porous ceramics by'starch consolidation'[J]. Journal of the European Ceramic Society,18(2):131-140.
    [18]宋贤良.2003.利用淀粉原位凝固胶态成型高性能陶瓷的研究[D].华南理工大学.
    [19]Gregorova E, Pabst W, and Bohacenko I.2006. Characterization of different starch types for their application in ceramic processing [J]. Journal of the European Ceramic Society,26(8): 1301-1309.
    [20]姜传海,杨传铮编著.2010.X射线衍射技术及其应用[M].上海:华东理工大学出版社.
    [21]黄振健,谭春华,黄旭光.2010.基于光纤折射率传感原理的表面活性剂临界胶束浓度测定方法[J].物理化学学报,26(5):1271-1276.
    [22]Bezerril LM, de Vasconcelos C L, Dantas T N C, et al..2006. Rheology of chitosan-kaolin dispersions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,287:24-28.
    [23]Sepulveda P and Binner J G P.1999. Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers [J]. Journal of the European Ceramic Society,19(12): 2059-2066.
    [24]Rudnik E, Matuschek G, Milanov N, et al..2006. Thermal stability and degradation of starch derivatives [J]. Journal of Thermal Analysis and Calorimetry,85 (2):267-270.
    [25]Dong Y C, Feng X Y, Feng X F, et al..2008. Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash [J]. Journal of Alloys and Compounds,460: 599-606.
    [26]Mao X J, Shimai S Z, and Wang S W.2008. Gelcasting of alumina foams consolidated by epoxy resin [J]. Journal of the European Ceramic Society,28(1):217-222.
    [27]Barea R, Osendi M I, Ferreira J M, et al..2005. Thermal conductivity of highly porous mullite material [J]. Acta Materialia,53(11):3313-3318.
    [28]Russell L M, Johnson L F, and Hasselman D P H.1987. Thermal Conductivity/Diffusivity of Silicon Carbide Whisker Reinforced Mullite [J]. Journal of the American Ceramic Society,70(10):C-226-C-229.
    [29]Kyaw T M, Okamoto Y, and Hayashi K.1995. Thermal conductivity of mullite-zirconia composites [J]. Journal of the Ceramic Society of Japan,103(12):1289-1292.
    [30]Schneider H, Schreuer J, and Hildmann B.2008. Structure and properties of mullite-A review [J]. Journal of the European Ceramic Society,28(2):329-344.
    [31]Carson J K, Lovatt S J, Tanner D J, et al..2005. Thermal conductivity bounds for isotropic, porous materials [J]. International Journal of Heat and Mass Transfer,48(11): 2150-2158.
    [1]杨富巍.2011.无机胶凝材料在不可移动文物保护中的应用[D].浙江大学.
    [2]Juillerat F K, Gonzenbach U T, Elser P, Studart A R, Gauckler LJ.2011. Microstructural Control of Self-Setting Particle-Stabilized Ceramic Foams [J]. Journal of the American Ceramic Society,94(1):184-190.
    [3]Juillerat, F K, Gonzenbach U T, and Gauckler L J.2012. Tailoring the hierarchical pore structures in self-setting particle-stabilized foams made from calcium aluminate cement [J]. Materials Letters,70:152-154.
    [4]蔡舒,于显著,许国华等.2006.α-磷酸三钙骨水泥自固化制备多孔磷酸钙复相陶瓷[J].硅酸盐学报,34(3):324-328.
    [5]杨基典,玉幼云和童三多.1986.<水泥定义和名词术语>介绍[J].建筑材料科学研究院院刊,(5):26-31.
    [6]Gonzenbach U T, Studart A R, Tervoort E, Gauckler L J.2007. Tailoring the microstructure of particle-stabilized wet foams [J]. Langmuir,23(3):1025-1032.
    [7]陈娟.2005.硫铝酸盐水泥的性能调整与应用研究[D].武汉大学.
    [1]韩怀强,蒋挺大编著.2001.粉煤灰利用技术[M].北京:化学工业出版社.
    [2]姚志通.2010.固体废弃物粉煤灰的资源化利用—以杭州热电厂和半山电厂粉煤灰为例[D].浙江大学.
    [3]金太权.1991.测定石英玻璃的导热系数[J].吉林工学院学报,12(1):39-42.
    [4]秦展琰,陈文华,王蕾.1996.粉煤灰高效隔热保温材料研究[J].能源研究与利用,(6):37-48.
    [5]代红艳.2007.粉煤灰保温隔热材料的研究[J].太原大学学报,8(1):126-128.
    [6]张水,李国忠,姜葱葱,张卫豪.2011.粉煤灰在水泥发泡轻质保温材料中的应用研究[J].粉煤灰,(6):3-5.
    [7]Ferreira C, Ribeiro A, and Ottosen L.2003. Possible applications for municipal solid waste fly ash [J]. Journal of Hazardous Materials,96(2-3):201-216.
    [8]Narayanan N and Ramamurthy K.2000. Structure and properties of aerated concrete:a review [J]. Cement and Concrete Composites,22(5):321-329.
    [9]竺万发.2012.松香胶发泡剂制备泡沫混凝土保温材料的试验研究[D].湖北工业大学.
    [10]王岩,王晶,卢方正,李三鸣.2012.十二烷基硫酸钠临界胶束浓度测定实验的探讨[J].实验室科学,15(3):70-72.
    [11]Zhao Y L, Ye J W, Lu X B, et al..2010. Preparation of sintered foam materials by alkali-activated coal fly ash [J]. Journal of Hazardous Materials,174(1-3):108-112.
    [12]焦宏涛,高文元,李长敏,张玉苍.2011.糖滤泥作成孔剂研制环保型保温材料[J].陶瓷学报,32(1):51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700