水平异形管降膜蒸发流动与传热强化机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源供应局势的紧张,高效传热强化技术已经成为节约能源及提高能源利用效率的重要途径之一。水平管降膜蒸发器因其传热系数高温差小等优点而被广泛用于海水淡化、化工石油、制冷空调和食品加工等领域。本文提出了采用异形截面管改善流动条件强化降膜蒸发,并对其流动传热特性及强化传热机理进行了深入的数值模拟和实验研究。
     首先对水平管降膜蒸发的管间流型、滴柱状流下的分离间距(降膜波长)、液膜厚度及液膜破裂等流动机理进行了总结,整理并分析了水平管降膜蒸发传热的经验关联式及降膜蒸发传热的影响因素,通过理论分析给出了本文研究所需的光滑管降膜蒸发的流动和传热数理模型。通过以上分析发现,降膜蒸发一般处于层流状态,其对流换热的热阻主要存在于壁面附近以及液膜的热阻,必须改善壁面附近的流动及减薄液膜以强化传热。光滑异形截面管特殊的弧形壁面能够在增强壁面与膜内液体对流换热的同时减薄液膜,降低过程热阻并强化降膜蒸发。
     基于VOF (Volume of Fluid)方法详细模拟研究了蛋形管和滴形管两种异形管的强化传热机理。结果表明异形管的特殊弧形壁面的确能够有效地引导管外流体的流动分布,使流体微团受到沿壁面切向向下的重力分力增大,液膜流动加快而变薄。蛋形管周向130。附近其流速在靠近壁面附近可高出圆管30%左右,而在汽液界面也高出4%。膜内液体流动加快,一方面显著增强了流体与壁面的对流换热,另一方面使液膜减薄的同时增强了液膜波动效应,促进了液膜传热,加快了流体内部的热量向汽液界面的传递。蛋形管和滴形管的液膜厚度最小值出现的周向位置较圆管靠后且比其值分别小9.8%和2.0%。分析发现膜内无量纲过余温度θ随布液高度和喷淋密度的增大而降低,随周向角度的增大而增大,同时发现蛋形管和滴形管的θ小于圆管,具有较薄的热边界层厚度,且两异形管的膜内温度梯度均大于圆管膜内梯度。对其进行场协同分析发现蛋形管、滴形管和圆管的膜内对流换热场协同余弦值依次增大,表明蛋形管膜内温度梯度方向与速度矢量方向夹角优于其余两种,也证实上面的数值模拟是可靠的。对比发现蛋形管的传热性能确实最好,滴形管次之,表明异形截面管可有效强化降膜蒸发传热。
     为进一步优化蛋形管的强化传热,在喷淋密度为0.29kg/(m-s)和布液高度为9mm时模拟分析了六种不同截面形状蛋形管的降膜流动及传热特性。结果表明半轴比增大导致膜内液体流动加快,液膜厚度降低,膜厚最小值点的周向位置靠后。半轴比大于4的蛋形管降膜特性倾向于竖直平板降膜,热边界层得到较充分的发展而变厚,导致无量纲过余温度增大,温度梯度减小,相应的传热性能减弱。比较发现半轴比在2-3时的蛋形管具有较小的无量纲过余温度和较大的温度梯度,传热性能较好。通过拟合数据得到半轴比为2.4的最优蛋形强化管结构。表明通过合理优化水平降膜管的截面形状改善管子表面液膜分布促进传热性能提高的技术路线是正确的。
     搭建降膜流动冷态实验台,使用高速摄像技术观测了蛋形管及圆管管间降膜流型及流型间转变并测量了降膜流动数据;自制电导探针并测量了不同Re数和管间距时周向液膜厚度。实验发现:蛋形管及圆管管间流型均随Re数增加依次呈现滴状流、滴柱状流、柱状流、柱片状流和片状流等流型;在管间流型在向滴柱状流和向柱状流过渡时,蛋形管的转变Re数稍小于圆管,向片状流过渡时明显小于圆管,而从柱状流向柱片状流过渡时小得更多,约40%。因此蛋形管的柱片状流型区域扩大,即所跨度的Re数范围增大,此区降膜流动工质的流量消耗较片状流时小但其对液膜的冲击效应并未明显减弱,有利于降膜蒸发传热。降膜波长随Re数增加而变短,在Re>400后变化趋于平缓:随管间距的增大而变长,但当管间距大于一定值后其基本不发生变化。相较圆管,滴、柱状流时蛋形管降膜波长平均降低6.66%。测量发现管间距增大使液膜厚度变薄的影响在管子顶部较为明显;液膜厚度随着Re数增加而增大。电导探针实测膜厚值与数值模拟结果吻合较好,表明文中所用的数值模拟方法是可靠性的。通过拟合实验数据得出了蛋形管和圆管各自降膜波长和膜厚最小值的预测关联式,表明管间距对降膜流动特性的影响不能忽略。
     设计制作了水平管降膜蒸发器并测验了蛋形管和圆管各自构成的单列管和管束的降膜传热性能,在分离总传热系数后得到了管外降膜表面传热系数。实验结果表明蛋形管的特殊弧形壁面结构的确促进了管外降膜蒸发传热,强化传热效果明显,相对于光滑圆管,单列管和管束时蛋形管外的降膜表面传热系数分别增加了13.4-16.1%和11.9%-13.6%。水作为降膜工质,在200With the increasing tension of energy shortage, the high-efficiency heat transfer enhancement technologies has become an important approach to save energy and im-provement efficiency of energy utilization. The horizontal falling film evaporators are widely applied in many industrial processes (the desalination and fresh water treat-ment industry, the petrochemical industry, refrigeration and air-conditioning Industry and the food processing industries, etc.) due to their high heat transfer coefficients at low mass flow rates and small temperature differences. In this paper, an new approach for heat transfer enhancement by using shaped tube in falling film evaporation is pro-posed, and detailed research has been conducted both numerically and experimentally to investigate the heat transfer enhancement mechanism.
     Firstly, Summaries about the hydrodynamics of falling film flow, including in-tertube flow modes, space between two jets or droplets (falling film wavelength), film thickness and film breakdown, have been done. Then empirical formulas for heat transfer coefficient are discussed and the influence factors are analyzed in details. Al-so, the mathematical model of falling film flow and heat transfer is analyzed, which will be adopted in the following numerical simulation. According to the analysis above, the falling film is generally laminar flow. It can be found that the thermal re-sistance mainly exists in the near wall region and also thermal resistance through the liquid film. Therefore, it is an effective enhanced heat transfer technology to keep disturbance to the fluid in the near wall region and thin the film. Smooth shaped tube with a special curved surface could improve the falling film evaporation by enhancing the heat convection between the wall and the liquid and thinning the film thickness.
     Based on the VOF method, the mechanism of heat transfer enhancement caused by two shaped tubes that are oval-and drop-shaped tubes is studied numerically in details. The results show that the shaped tubes with special curved surfaces can pro-duce an effective guidance to the fluid that flow outside the tubes and accelerate the film flow by inducing a larger gravity component in the flow direction. For example, at the angular positions of30°, the dimensionless velocity of the oval-shaped tube is about30%and4%larger than that of the circular tube neat the wall and the va-por-liquid interface, respectively. The increase of the liquid velocity in the film is helpful to enhance the heat convection between the wall and the liquid. Besides, it can improve the fall of the liquid and thin the film and strengthen the wave in the film, which resulted in enhancing heat transfer from the inner liquid to the vapor-liquid in-terface through the laminar liquid film. The circumferential angle, where the minimum film thicknesses appear, of oval-and drop-shaped tubes is larger, and the value of minimum film thicknesses decrease9.8%and2.0%compared with the cir-cular tube, respectively. The dimensionless excess temperature decreases with the increases of feeder height, flow mass rate and increases with the increase of the angu-lar positions. Compared with the circular tube, the two shaped tubes have a lower dimensionless excess temperature and a thinner thermal boundary layer with a lager temperature gradient. The analysis based on field synergy principle shows that the co-sines of average synergy angle of flow field outside the circular tube, the drop-and oval-shaped tube the tubes increase in its order, which indicates that the increased ve-locity induced by the oval-shaped tube can improve the field synergy performance in the whole film, may also proves the reliability of the numerical simulation. By com-parison, the oval-shaped tube has best heat transfer ability followed by drop-shaped tube, which means tubes with a special shaped section can effectively improve heat transfer on the falling film evaportation.
     In order to obtain the optimal structure, the falling film flow and heat transfer characteristics of oval-shaped tubes with six different cross-sections are analyzed at a mass flow rate of0.29kg/(m·s) and a liquid feeder height of9mm. With increasing semi-axis ratio, the liquid flow velocity in the film increases and the film thickness decreases. The circumferential position of the minimum film thickness is larger at a bigger semi-axis ratio. The falling film characteristic of the oval-shaped tube with a semi-axis ratio than4is inclined to similar with that on the vertical plate, and has a fully developed and thicker thermal boundary layer leads to weaken heat transfer. Results show the oval-shaped tube with a semi-axis ratio of2to3has a smaller di-mensionless excess temperature and a lager temperature gradient, which means a better heat transfer performance. It is found that the semi-axis ratio of2.4is the best optimal structure for oval-shaped enhanced tube by fitting the numerical data, which declares that the optimization of the cross section of horizontal tubes will be helpful to the film distribution improvement and the heat transfer enhancement of the falling film flow.
     For studying the falling film flow characteristic, an experimental system is set up. The intertube flow modes, modes transform and the falling film wavelength are ob-served with the help of a high speed camera. The film thicknesses along the circumference under different Reynolds number and intertube spacing are measured by using a home-made conductance probe. Experimental results show that the flow modes on the oval-shaped tube are similar to the circular tube, which is the droplet, droplet-jet, jet, jet-sheet and sheet mode with the increase of film Reynolds number. The mode transition starts early (at lower Reynolds number) by using the oval-shaped tube. The primary difference is an enlargement of the zone in which jet-sheet mode exists; that is, the jet to jet-sheet transition occurs at about40%lower film Reynolds numbers than that of the circular tube. While the jet-sheet to sheet transition occurs at somewhat higher Reynolds numbers. In practice, this means that an evaporating fall-ing film will tend to stay in the advantageous jet-sheet mode down to lower mass flow rates on oval-shaped tubes than on an array of circular tubes. The falling dimension-less wavelength increases obviously with the decrease of Reynolds number below400and firstly increases then tends towards stability with increasing of intertube spacing. The study found that the falling wavelength of the oval-shaped tube is smaller than that of the circular tube by6.66%. The film thickness increases with the increase of Reynolds number and decreases with increasing the intertube spacing with a larger effect at the top of tube. The numerical results are in good agreement with the exper-imental results. The empirical correlations including the intertube spacing for the falling film wavelength and minimum film thickness were obtained for the circular and oval-shaped tube.
     The falling film evaporator is designed and heat transfer experiments are carried out under the conditions of single row tubes and tube bundle, respectively. The sur-face heat transfer coefficients outside the tubes are obtained by separating the overall heat transfer coefficient. Special curved surface of oval-shaped tube is experimentally proved to be an effective method for heat transfer enhancement. Compared with the circular tube, the surface heat transfer coefficients increase for the oval-shaped tubes of13.4-16.1%and11.9%-13.6%under the conditions of single row tubes and tube bundle, respectively. When water is used as the working medium, within200
引文
[1]W. Graves. Water:The Power, Promise, and Turmoil of North America's Fresh Water[M]. National Geographic Society,1993.
    [2]童金忠.海水淡化现状分析及投融资模式创新机制探讨[J].中国建设信息(水工业市场),2011.2:016.
    [3]毛申允.我国华北地区的水危机和海水淡化的市场前景[J].电站辅机,2008,29(1):1-8.
    [4]G Leitner. Seawater conversion, Byproduct of Power[J]. Proceedings of American Power Conference,1960,22:
    [5]V. Slesarenko. Thermal desalination of sea water in thin film-plants[J]. Desalination,1983, 45(2):295-302.
    [6]M. Al-Shammiri and M. Safar. Multi-effect distillation plants:state of the art[J]. Desalination, 1999,126(1):45-59.
    [7]I.-Y. Chen. Heat Transfer Analysis of a Falling-Film Horizontal Tube Evaporator[D]. D.E., The University of Wisconsin, Milwaukee,1984.
    [8]S. A. and Z. A. Heat transfer in a laminar flow of a liquid film on a horizontal cylinder[C]. Proceedings 5th international heat transfer Conference, Tokyo, Japan,1974, Paper FC 2.9: 90-93.
    [9]P. J. P. Liu. The evaporating falling film on horizontal tubes[D]. PhD Thesis, University of Wisconsin-Madison, Masison, WI,1975.
    [10]L. S. Fletcher, V. Sernas and W. H. Parken. Evaporation heat transfer coefficients for thin sea water films on horizontal tubes[J]. Industrial & Engineering Chemistry Process Design and Development,1975,14(4):411-416.
    [11]L. S. Fletcher, V. Semas and L. S. Galowin. Evaporation from thin water films on horizontal tubes[J]. Industrial & Engineering Chemistry Process Design and Development,1974,13(3): 265-269.
    [12]D. Moalem and S. Sideman. Theoretical analysis of a horizontal condenser-evaporator tube[J]. International Journal of Heat and Mass Transfer,1976,19(3):259-270.
    [13]J. W. H. Parken and L. S. Fletcher, An experimental and analytical inverstigation of heat transfer to thin water films on horizontal tubes, in Report No. UVA/5-26078/MAE77/101. 1977, University of Virginia, VA.
    [14]M. C. Chyu, A. E. Bergles and F. Mayinger. Enhancement of horizontal tube spray film evaporators[J]. Heat Transfer,1982,6:275-280.
    [15]K. Chun and R. Seban. Heat transfer to evaporating liquid films[J]. Journal of Heat Transfer, 1971,93(4):391-396.
    [16]M. C. Chyu and A. E. Bergles. An analytical and experimental study of falling-film evaporation on a horizontal tube[J]. Journal of Heat Transfer,1987,109:983-990.
    [17]Y. Fujita and M. Tsutsui. Experimental and analytical study of evaporation heat transfer in falling films on horizontal tubes[C].10th international Heat Transfer Conference, Brighton, 1994,6:175-180.
    [18]X. Zeng, M.-C. Chyu and Z. H. Ayub. Evaporation heat transfer performance of nozzle-sprayed ammonia on a horizontal tube[J]. ASHRAE Trans,1995,101(1):136-149.
    [19]V. Gnielinski. New equations for heat and mass-transfer in turbulent pipe and channel flow[J]. International Chemical Engineering,1976,16(2):359-368.
    [20]S. A. Moeykens, J. E. Kelly and M. B. Pate. Spray evaporation heat transfer performance of R-123 in tube bundles[J]. ASHRAE Transactions.,1996,102(2):259-272.
    [21]S. A. Moeykens and M. B. Pate. Effect of Lubricant on Spray Evaporation Heat Transfer Performance of R-134 a and R-22 in Tube Bundles[J]. ASHRAE Trans,1996,102(1): 410-426.
    [22]S. A. Moeykens, W. W. Huebsch and M.B. Pate. Heat Transfer of R-134 a in Single-Tube Spray Evaporation Including Lubricant Effects and Enhanced Surface ResultsfJ]. ASHRAE Trans,1995,101(1):111-123.
    [23]S. A. Moeykens. Heat transfer and fluid flow in spray evaporators with application to reducing refrigerant inventory[D].9503583, Iowa State University, United States-Iowa,1994.
    [24]S. A. Moeykens and M. B. Pate. The Effects of Nozzle Height and Orifice Size on Spray Evaporation Heat Transfer Performance for a Low-Finned, Triangular-Pitch Tube Bundle with R-134a[J]. ASHRAE Trans,1995,101:420-433.
    [25]J. R. Thome. Falling film evaporation:State-of-the-art review of recent work[J]. Journal of Enhanced Heat Transfer,1999,6(2-4):263-277.
    [26]解利听.水平管降膜蒸发海水淡化过程研究[J].天津大学,博士学位论文,2002:41-53.
    [27]L. H. Chien and C. H. Cheng. A predictive model of falling film evaporation with bubble nucleation on horizontal tubes[J]. HVAC&R Research,2006,12(1):69-87.
    [28]X. Wang, M. He, K. Lv, H. Fan, et al. Effects of Liquid Supply Method on Falling-Film Mode Transitions on Horizontal Tubes[J]. Heat Transfer Engineering,2012,34(7):562-579.
    [29]白健美,马虎根,李长生,罗忠.水平管束低压降膜蒸发换热特性研究[J].流体机械, 2010,38(2):4.
    [30]L. S. Fletcher, V. Sernas and W. H. Parken. Evaporation heat transfer coefficients for thin sea water films on horizontal tubes[J]. Industrial & Engineering Chemistry, Process Design and Development,1975,14(4):411-416.
    [31]W. H. J. Parken. Heat transfer to thin water films on horizontal tubes[D]. PhD Thesis, Rutgers University,1975.
    [32]W. H. Parken and L. S. Fletcher. Heat transfer in thin liquid films flowing over horizontal tubes[C]. Proc 7th int Heat Transfer Conference, Munich, Germany,1982,4:415-420.
    [33]E. Ganic and M. Roppo. An experimental study of falling liquid film breakdown on a horizontal cylinder during heat transfer[J]. Journal of Heat Transfer,1980,102:342.
    [34]M. C. Chyu. Falling film evaporation on horizontal tubes with smooth and structured surfaces[D]. Iowa State University,1984.
    [35]M. C. Chyu and A. Bergles. Horizontal-Tube Falling-Film Evaporation With Structured Surfaces[J]. Journal of Heat Transfer,1989,111(2):518-224.
    [36]J. Mitrovic. Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film[C]. Proceedings of the 8th International Heat Transfer Conference, San Francisco,1986,4:1949-1956.
    [37]V. G. Rifert, V. I. Podberezny, J. V. Putilin, J. G Nikitin, et al. Heat transfer in thin film-type evaporator with profile tubes[J]. Desalination,1989,74:363-372.
    [38]R. Armbruster and J. Mitrovic. Heat transfer in falling film on a horizontal tube[J]. ASME-PUBLICATIONS-HTD,1995,314:13-22.
    [39]R. Armbruster and J. Mitrovic. Evaporative cooling of a falling water film on horizontal tubes[J]. Experimental Thermal and Fluid Science,1998,18(3):183-194.
    [40]X. Hu. The intertube falling-film modes:Transition, hysteresis, and effect on heat transfer[D]. PhD Thesis, University of Illinois at Urbana-Champaign, United State-Illinois,1995.
    [41]X. Hu and A. M. Jacobi. The intertube falling film:Part 2-Mode effects on sensible heat transfer to a falling liquid film[J]. Journal of Heat Transfer,1996,118(3):626-633.
    [42]J. T. Rogers, S. S. Goindi and M. Lamari. Turbulent falling film flow and heat transfer on horizontal tube[C]. Proceedings of the national heat transfer conference, Portland,1995,12, [ASME HTD-vol.314]:3-12.
    [43]J. V. Putilin, V. Podberezny and V. Rifert. Evaporation heat transfer in liquid films flowing down horizontal smooth and longitudinally profiled tubes[J]. Desalination,1996,105(1-2): 165-170.
    [44]Z. H. Liu and J. Yi. Enhanced evaporation heat transfer of water and R-11 falling film with the roll-worked enhanced tube bundle[J]. Experimental Thermal and Fluid Science,2001, 25(6):447-455.
    [45]Z. H. Liu, Q. Z. Zhu and Y. M. Chen. Evaporation heat transfer of falling water film on a horizontal tube bundle[J], Heat Transfer-Asian Research,2002,31(1):42-55.
    [46]L. Xu, M. R. Ge, S. C. Wang and Y. X. Wang. Heat-transfer film coefficients of falling film horizontal tube evaporators[J]. Desalination,2004,166(1-3):223-230.
    [47]Li Xu, Shiyong Wang, Shichang Wang, Yuxin Wang. Studies on heat-transfer film coefficients inside a horizontal tube in falling film evaporators[J]. Desalination,2004, 166(1-3):215-222.
    [48]G. Ribatski. An experimental study on flow characteristics of a liquid film falling on a vertical column of horizontal tubes[C]. Proceedings of the 11th Brazilian Congress of Thermal Sciences and Engineering(ENCIT), Curitiba, Brazil,2006.
    [49]M. M. Awad and E. S. R. Negeed. Enhancement of evaporation of falling liquid film on horizontal tube bundles[C]. International Water Technology Conference(IWTC12), Alexandria, Egypt,2008.
    [50]B. Ruan, A. M. Jacobi and L. Li. Effects of a countercurrent gas flow on falling-film mode transitions between horizontal tubes[J]. Experimental Thermal and Fluid Science,2009, 33(8):1216-1225.
    [51]L. P. Yang and S. Q. Shen. Experimental study of falling film evaporation heat transfer outside horizontal tubes[J]. Desalination,2008,220(1-3):654-660.
    [52]W. Li, X.-Y. Wu, Z. Luo, S.-c. Yao, et al. Heat transfer characteristics of falling film evaporation on horizontal tube arrays[J]. International Journal of Heat and Mass Transfer, 2011,54(9-10):1986-1993.
    [53]W. Li, X.-Y. Wu, Z. Luo and R. L. Webb. Falling water film evaporation on newly-designed enhanced tube bundles[J]. International Journal of Heat and Mass Transfer,2011,54(13-14): 2990-2997.
    [54]M. W. Shahzad, A. Myat, W. G. Chun and K. C. Ng. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator[J]. Applied Thermal Engineering,2013,50(1):670-676.
    [55]L. Snajdarek, P. Kracik, M. Lisy and J. Pospisil. The falling liquid film heat transfer outside horizontal tubes[J]. Advances in Fluid Mechanics and Heat & Mass Transfer,2012,3(1): 237-240.
    [56]Yongqing He, Qincheng Bi, Jiacan Zhang, Hao Hou. Experimental Study on the Heat Transfer Characteristics of an Evaporating Falling Film on a Horizontal Plain Tube[J]. Heat Transfer Engineering,2011,32(11-12):936-942.
    [57]崔海亭,彭培英.强化传热新技术及其应用[M].北京:化学工业出版社,2006.
    [58]过增元,黄素逸.场协同原理与强化传热新技术[M].中国电力出版社,2004.
    [59]A. E. Bergles. ExHFT for fourth generation heat transfer technology[J]. Experimental Thermal and Fluid Science,2002,26(2):335-344.
    [60]L.-H. Chien and R. Webb. A parametric study of nucleate boiling on structured surfaces, Part I:Effect of tunnel dimensions[J]. Journal of Heat Transfer,1998,120(4):1042-1048.
    [61]L.-H. Chien and R. Webb. A parametric study of nucleate boiling on structured surfaces, part Ⅱ:Effect of pore diameter and pore pitch[J]. Journal of Heat Transfer,1998,120(4): 1049-1054.
    [62]M. C. Chyu and A. E. Bergles. Enhancement of horizontal tube spray film evaporators by structured surfaces[J]. Adv Enhanced Heat Transfer,1985,43:39-47.
    [63]M. C. Chyu and A. Bergles. Horizontal-tube falling-film evaporation with structured surfaces[J]. Journal of Heat Transfer,1989,111(2):518-524.
    [64]X. Zeng, M. Chyu and Z. Ayub. Characteristic Study of Sprayed Fluid Flow in a Tube Bundle[J].ASHRAE Trans,1994,100(1):63-72.
    [65]C. Sabin and H. Poppendiek. Film evaporation of ammonia over horizontal round tubes[C]. 1978.
    [66]J. F. Roques and J. R. Thome. Falling films on arrays of horizontal tubes with R-134a, Part Ⅰ: Boiling heat transfer results for four types of tubes[J]. Heat Transfer Engineering,2007, 28(5):398-414.
    [67]J. F. Roques and J. R. Thome. Falling films on arrays of horizontal tubes with R-134a, Part II: Flow visualization, onset of dryout, and heat transfer predictions[J]. Heat Transfer Engineering,2007,28(5):415-434.
    [68]G. Wang, Y. Tan, S. Wang and N. Cui. A Study of Spray Falling Film Boilng on Horizontal Mechanically Made Porous Surface Tubes[J]. Journal of Chemical Industry and Engineering (China),1990,1:425-432.
    [69]H. Kuwahara, A. Yasukawa, W. Nakayama and T. Yanagida. Evaporative heat transfer from horizontal enhanced tubes in thin film flow[J]. Heat Transfer-Jpn Res,1990,19:83-97.
    [70]M. Habert. Falling film evaporation on a tube bundle with plain and enhanced tubesfD]. ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE,2009.
    [71]J. F. Roques. Falling Film Evaporation on a single tube and on a tube bundle.[D]. PhD thesis, Laboratory of Heat and Mass Transfer, Lausanne, Switzerland,2004.
    [72]Y. Tan, G Wang, S. Wang and N. Cui. An experimental research on spray falling film boiling on the second generation mechanically made porous surface tubes[C]. Proceedings ninth international heat transfer conference, Jerusalem,1990,6:269-273.
    [73]R. L. Webb and C. Pais. Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries[J]. International Journal of Heat and Mass Transfer,1992, 35(8):1893-1904.
    [74]R. Conti. Experimental investigation of horizontal tube ammonia film evaporators with small temperature differentials[J]. Proceedings 5th ocean thermal energy conversion (OTEC), Miami Beach, FL,1978.
    [75]李艳,张书超,梅宁,赵杰.水平螺旋槽管降膜流动和传热特性研究[J].热科学与技术,2011,10(2):
    [76]武雅洁,梅宁,李艳.水平螺旋槽管壁面液膜传热特性的研究[J].中国海洋大学学报(自然科学版),2005,35(1):167-172.
    [77]武雅洁,梅宁,丁寿滨,陆虹涛等.水平螺旋槽管壁面液膜传热特性的研究--流体性质对液膜厚度的影响[J].热科学与技术,2005,4(1):20-23.
    [78]武雅洁.水平螺旋槽管壁面降液膜传热特性的研究[D].青岛:中国海洋大学,2005.
    [79]王欣,梅宁,陆建辉.水平螺旋槽管壁面液膜特性的研究[J].热科学与技术,2004,3(1):29-33.
    [80]王欣.水平螺旋槽管壁面液膜特性的研究[D].中国海洋大学,2003.
    [81]A. M. I. Mohamed. Experimental study of heat transfer and flow characteristics of liquid falling film on a horizontal fluted tube[J]. Heat and Mass Transfer,2010,46(8-9):841-849.
    [82]Mei-xia Wang, Cun-fang Liu, Xin-guang Wang, Bin Zhao. Study on the falling film absorption outside smooth and enhanced tubes[J]. Journal of Hydrodynamics,2006,18(4): 405-410.
    [83]J. Darabi, M. M. Ohadi and S. V. Dessiatoun. Augmentation of thin falling-film evaporation on horizontal tubes using an applied electric field[J]. Journal of Heat Transfer-Transactions of the Asme,2000,122(2):391-398.
    [84]J. Darabi, M. Ohadi and S. Desiatoun. Falling film and spray evaporation enhancement using an applied electric field[J]. Journal of Heat Transfer,2000,122(4):741-748.
    [85]A. M. I. Mohamed. Flow behavior of liquid falling film on a horizontal rotating tube[J]. Experimental Thermal and Fluid Science,2007,31(4):325-332.
    [86]J. Mitrovic. Flow structures of a liquid film falling on horizontal tubes[J]. Chemical Engineering & Technology,2005,28(6):684-694.
    [87]H.-s. Chung, K. Wusiman, S.-s. Kim, B. Nasan, et al. Liquid film falling behaviour on horizontal circular cylinder[J]. Journal of Central South University,2012,19(5):1353-1358.
    [88]X. Wang, P. Hrnjak, S. Elbel, A. Jacobi, et al. Flow Modes and Mode Transitions for Falling Films on Flat Tubes[J]. Journal of Heat Transfer,2012,134(2):021801.
    [89]W. Leilei, Y. Shijun, W. Shuzhong and Y. Xiaojing. Experimental Research on Falling Film Flow Model Transformation of Horizontal Tube Bundle[J]. Building Seience,2010,26(10): 318-322.
    [90]J. F. Roques and J. R. Thome. Falling Im transitions between droplet, column, and sheet flow modes on a vertical array of horizontal 19 fpi and 40 fpi fllow-nned tubes[J]. Heat Transfer Engineering,2003,24(6):40-45.
    [91]D. Jung, Y. Kim, Y. Ko and K. Song. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants[J]. International Journal of Refrigeration,2003,26(2):240-248.
    [92]H. Honda, S. Nozu and Y. Takeda. Flow characteristics of condensate on a vertical column of horizontal low finned tubes[J].1987:
    [93]J. F. Roques, V. Dupont and J. R. Thome. Falling film transitions on plain and enhanced tubes[J]. Journal of Heat Transfer-Transactions of the Asme,2002,124(3):491-499.
    [94]M. habert, G. Ribatski and J. R. Thome. Experimental study on falling film flow pattern map and intercolumn distance with R-236fa[C]. ECI international conference on boiling heat teansfer spoleto,2006:121,122,127.
    [95]D. Gstoehl and J. Thome. Visualization of R-134a flowing on tube arrays with plain and enhanced surfaces under adiabatic and condensing conditions[J]. Heat Transfer Engineering, 2006,27(10):44-62.
    [96]X. Hu and A. Jacobi. The intertube falling film:Part 1-Flow characteristics, mode transitions, and hysteresis[J]. Journal of Heat Transfer,1996,118(3):616-625.
    [97]G. Ribatski and A. M. Jacobi. Falling-film evaporation on horizontal tubes-a critical review[J]. International Journal of Refrigeration,2005,28(5):635-653.
    [98]R. E. Bellman and R. Pennington. Effects of surface tension and viscosity on Taylor instability[J]. Quart. Appl. Math.,1954:151-162.
    [99]X. Hu and A. M. Jacobi. Departure-site spacing for liquid droplets and jets falling between horizontal circular tubes[J]. Experimental Thermal and Fluid Science,1998,16:322-331.
    [100]D. Gstohl. Heat Transfer and Flow Visualization of Falling Film Condensation on Tube Arrays with Plain and Enhanced Surfaces[D]. PhD thesis, Lausanne, Switzerland,2004.
    [101]D. Yung, J. J. Lorenz, E. N. Ganic. Vapor/liquid interaction and entrainment in falling film evaporators[J]. Journal of Heat Transfer,1980,102:20-25.
    [102]D. Maron-Moalem, S. Sideman and A. E. Dukler. Dripping characteristics in a horizontal tube film evaporator[J]. Desalination,1978,27(2):117-127.
    [103]J. H. Lienhard, P. T. Y. Wong. The dominant unstable wavelength and minimum heat flux during film boiling on a horizontal cylinder[J]. Journal of Heat Transfer,1964,86:220-226.
    [104]R.-Q. Li and R. Harris. On the dominant unstable wavelength during film boiling on a horizontal cylinder of small diameter[J]. Journal of Heat Transfer,1993,115(2):498-501.
    [105]D. Gstoehl, J. Roques, P. Crisinel and J. Thome. Measurement of falling film thickness around a horizontal tube using a laser measurement technique[J]. Heat Transfer Engineering, 2004,25(8):28-34.
    [106]何茂刚,范华亮,王小飞,吕凯.水平管外降膜流动的膜厚测量和数值模拟[J].西安交通大学学报,2010,44(9):
    [107]Xiaofei Wang, Maogang He, Hualiang Fan, Ying Zhang. Measurement of falling film thickness around a horizontal tube using laser-induced fluorescence technique[J]. Journal of Physics:Conference Series,2009,147(1):012039.
    [108]侯昊,毕勤成,马红.水平管降膜厚度分布特性及对传热的影响[J].西南交通大学学报,2012,46(6):1013-1018.
    [109]侯昊,毕勤成,马红.水平管降膜厚度的电导探针测量方法[J].沈阳工业大学学报,2011,33(4):476-480.
    [110]H. Hou, Q. C. Bi, H. Ma and G Wu. Distribution characteristics of falling film thickness around a horizontal tube[J]. Desalination,2012,285(0):393-398.
    [111]Li Xu, Shichang Wang, Yuxin Wang, Yi Ling. Flowing state in liquid films over horizontal tubes[J]. Desalination,2003,156(1-3):101-107.
    [112]许莉,凌毅.水平管外壁液膜流动状态及其对传热的影响[J].化工学报,2002,53(006):555-559.
    [113]F. A. Jafar, G R. Thorpe and O. F. Turan. Liquid Film Falling on Horizontal Circular Cylinders[C]. AFMC 16th Australasian Fluid Mechanics Conference, Gold Coast, Queensland, Australia,2007.
    [114]F. A. Jafar, G. R. Thorpe and O. F. Turan. Falling Film Transition and Heat Transfer on Horizontal Circular Cylinders[C].17th Australasian Fluid Mechanics Conference, Auckland, New Zealand,2010.
    [115]F.-d. Sun, S.-l. Xu and Y.-c. Gao. Numerical simulation of liquid falling film on horizontal circular tubes[J]. Frontiers of Chemical Science and Engineering,2012,6(3):322-328.
    [116]R. Abraham and A. Mani. Effect of flame spray coating on falling film evaporation for multi effect distillation system[J]. Desalination and Water Treatment,2013,51(4-6):822-829.
    [117]A. Mani, R. Abraham and L. S. S. Prakash-Kumar. CFD studies on falling film modes in tube bundles in multi-effect distillation (MED) system[C]. National Conference on Water Purification Technologies and Management, Mumbai, InDACON,8-9 February,2012.
    [118]E. Ganic and D. Getachew, Effects of surface condition and working fluid on liquid film breakdown during heat transfer[C].1986,4:1931-1936.
    [119]V. Przulj and E. Ganic. Breakdown of Subcooled Falling Liquid Film on Horizontal Tube[C]. Proc.2nd World Conf. on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics,1991,1:792-799.
    [120]U. Gross. Falling film evaporation inside a closed thermosyphon[C]. International Heat Transfer Conference, Brighton, England,1994,7:443-448.
    [121]Y. Fujita and M. Tsutsui. Experimental investigation of falling film evaporation on horizontal tubes[J]. Heat Transfer-Japanese Research,1998,27(8):609-618.
    [122]J. R. Thome. Wolverine engineering databook III[M]. Wolverine www.wlv.com,2006.
    [123]W. M. Rohsenow, J. P. Hartnett and E. N. Ganic. Handbook of heat transfer fundamentals: Chapter 12-Thin-Film Heat Transfer[M]. New York:McGraw-Hill,1985.
    [124]H. Louahlia-Gualous and L. El Omari. Local heat transfer for the evaporation of a laminar falling liquid film on a cylinder:Experimental, numerical, and inverse heat conduction analysis[J]. Numerical Heat Transfer Part a-Applications,2006,50(7):667-688.
    [125]H. Louahlia-Gualous, L. El Omari, P. K. Panday and E. Artioukhine. Experimental analysis of the local heat transfer coefficient of failing film evaporation with and without co-current air flow velocity[J]. Heat and Mass Transfer,2005,41(12):1066-1076.
    [126]H. Louahlia-Gualous, E. Artioukhine and P. K. Panday. The inverse estimation of the local heat transfer coefficient in falling film evaporation[J]. Inverse Problems in Science and Engineering,2004,12(1):29-43.
    [127]J. Lorenz and D. Yung. A note on combined boiling and evaporation of liquid films on horizontal tubes[J]. J. Heat Transfer,1979,101:178-180.
    [128]J. Lorenz and D. Yung. Analysis of heat transfer in horizontal tube falling film evaporators[J]. NASA STI/Recon Technical Report N,1978,78:33399.
    [129]G. Danilova, V. Burkin and V. Dyundin. Heat transfer in spray-type refrigerator evaporators [J]. Heat Transfer-Soviet Research,1976,8(6):105-113.
    [130]W. H. Parken, L. S. Fletcher, J. C. Han and V. Sernas. Heat transfer through falling film evaporation and boiling on horizontal tubes[J]. Journal of Heat Transfer,1990,112(3): 744-750.
    [131]V. Sernas. Heat transfer correlation for subcooled water films on horizontal tubes[J]. Journal of Heat Transfer,1979,101(1):176-178.
    [132]W. Owens. Correlation of thin film evaporation heat transfer coefficients for horizontal tubes[M].1978.
    [133]El-Sayed R Negeed, Mostafa M Awad. Experimental study of falling film evaporation on horizontal tube bundle for a desalination unit[J]. International Journal of Nuclear Desalination,2010,4(1):1-17.
    [134]X. Zeng, M. C. Chyu and Z. H. Ayub. Evaporation heat transfer performance of nozzle-sprayed ammonia on a horizontal tube[J]. ASHRAE Transactions.,1996,101: 136-149.
    [135]W. M. Rohsenow and C. Y. Choi. Heat, mass and momentum transfer[M]. Englewood Cliffs: Prentice-Hall, Inc.,1961.
    [136]W. Minkowycz and E. Sparrow. Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion[J]. International Journal of Heat and Mass Transfer,1966,9(10):1125-1144.-
    [137]G. Kocamustafaogullari. Two-fluid modeling in analyzing the interfacial stability of liquid film flows[J]. International Journal of Multiphase Flow,1985,11(1):63-89.
    [138]Y. Fujita, M. Tsutsui and Z. Z. Zhou. Evaporation heat transfer of falling films on horizontal tube-Part 2, Experimental study[J]. Heat transfer. Japanese research,1995,24(1):17-31.
    [139]A. B. Berezin and V. L. Podberezny. Investigations of heat transfer in a film horizontal tube evaporator for sea water[C]. Proceedings 6th international symposium fresh water from the sea,1978,2.
    [140]S. A. Moeykens and M. B. Pate. Spray evaporation heat transfer of R-134 A on plain tubes[J]. ASHRAE Transactions.,1994,100(2):173-184.
    [141]I. H. Newson. Heat transfer characteristics of horizontal tube multiple effect (HTME) evaporators-possible enhanced tube profiles[C]. Proceedings 6th international symposium fresh water from the sea,1978,2:113-124.
    [142]L. Yang, S. Shen, H. Hu and X. Chen. Thermal analysis of internal condensation process in a horizontal tube of falling film evaporation[J]. Desalination and Water Treatment,2010, 24(1-3):101-108.
    [143]J. J. Lorenz and D. Yung. combined boiling and evaporation of liquid films on horizontal tubes[C]. Proceedings 5th Ocean Thermal Energy Conversion conference, Miami Beach, FL,1978.
    [144]S. Moeykens. Effects of Surface Enhancement, Film-Feed Supply Rate, and Bundle Geometry on Spray Evaporation Heat Transfer Performance[J]. ASHRAE Trans,1995, 101(2):408-419.
    [145]X. Zeng, M.-C. Chyu and Z.H. Ayub. Ammonia spray evaporation heat transfer performance of single low-fin and corrugated tubes[J]. ASHRAE Trans,1998,104(1A):185-196.
    [146]V. G. Rifert, J. V. Putilin and V. L. Podbereznyi. Evaporation heat transfer in liquid films flowing down horizontal smooth and longitudinaly profiled tubes[J]. Journal of Enhanced Heat Transfer,2001,8(2):91-97.
    [147]V. Rifert, V. Podberezny, J. V. Putilin, J. G. Nikitin, et al. Heat transfer in thin film-type evaporator with profile tubes[J]. Desalination,1989,74:363-372.
    [148]L. B. Yan, H. X. Li, B. Guo, Y. Q. Zhang, et al. Experimental Study of Falling Film on the Outside of Horizontal Tube[C].6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, Xi'an, China,2010,1207:238-243.
    [149]F. Adams, G. Broughton and A. Conn. A horizontal film-type cooler:film coefficients of heat transmissions[J]. Industrial & Engineering Chemistry,1936,28(5):537-541.
    [150]M. C. Chyu, X. Zeng and Z. H. Ayub. Nozzle-Sprayed Flow Rate Distribution on a Horizontal Tube Bundle[J]. ASHRAE Transactions-American Society of Heating Refrigerating Airconditioning Engin,1995,101(2):443-453.
    [151]R. Rana, V. Charan and H. Varma. Heat and mass transfer from a horizontal tube of an evaporative heat dissipator[J]. International Journal of Heat and Mass Transfer,1986,29(4): 555-562.
    [152]S. S. Kutateladze. Fundamentals of heat transfer[M]. London:Edward Arnold,1963:307.
    [153]N. V. Zazuli. Investigation of Heat Transfer with Vapor Condensation in Vertical Tubes[C]. in Heat Transfer and Thermal Modelling (in Russian), Izd. Akad. Nauk SSSR, Moscow, 1959:278-296.
    [154]S. Sideman and D. Moalem. Performance improvement of horizontal evaporator-condenser desalination units[C]. Proceedings 5th international symposium on fresh water from the sea, 1976,2:315-324.
    [155]R. A. Seban. Transport to falling-films[C]. Proceedings 6th international heat transfer conference, Totonto,1978,6:417-428.
    [156]D. Ouldhadda, A. I. Idrissi and M. Asbik. Heat transfer in non-Newtonian falling liquid film on a horizontal circular cylinder[J]. Heat and Mass Transfer,2002,38(7):713-721.
    [157]J. Rogers. Laminar falling film flow and heat transfer characteristics on horizontal tubes[J]. The Canadian Journal of Chemical Engineering,1981,59(2):213-222.
    [158]B. Spindler. Linear stability of liquid films with interfacial phase change[J]. International Journal of Heat and Mass Transfer,1982,25(2):161-173.
    [159]S. Jani. AL2O3-WATER NANOFLUID FALLING-FILM FLOW AND HEAT TRANSFER CHARACTERISTICS ON A HORIZONTAL CIRCULAR TUBE[J]. Journal of Enhanced Heat Transfer,2013,20(3):
    [160]S. Jani and M. Amini. Heat Transfer Analysis of Falling Film Evaporation on a Horizontal Elliptical Tube[J]. Journal of Heat Transfer,2012,134:064505.
    [161]M. Abyaneh and M. H. Saidi. Laminar Falling Film Flow of Aqueous Li Br Solution on a Horizontal Elliptical Tube[J]. International Journal of Fluid Mechanics Research,2013, 40(4):
    [162]M. Mittermaier, P. Schulze and F. Ziegler. A numerical model for combined heat and mass transfer in a laminar liquid falling film with simplified hydrodynamics[J]. International Journal of Heat and Mass Transfer,2014,70:990-1002.
    [163]H. Schlicting. Boundary-layer theory[M].7th ed. New York:McGraw-Hill,1979.
    [164]H. Miyazaki and E. Silberman. Flow and heat transfer on a flat plate normal to a two-dimensional laminar jet issuing from a nozzle of finite height[J]. International Journal of Heat and Mass Transfer,1972,15(11):2097-2107.
    [165]E. Sparrow and L. Lee. Analysis of flow field and impingement heat/mass transfer due to a nonuniform slot jet[J]. Journal of Heat Transfer,1975,97(2):191-197.
    [166]阮并璐,刘广彬,赵远扬,李连生.制冷系统中水平管降膜式蒸发器内部流动数值模拟[J].西安交通大学学报,2008,42(3):5.
    [167]C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1):201-225.
    [168]D. Gao, N. B. Morley and V. Dhir. Numerical simulation of wavy falling film flow using VOF method[J]. Journal of Computational Physics,2003,192(2):624-642.
    [169]J. K. Min and I. S. Park. Numerical study for laminar wavy motions of liquid film flow on vertical wall[J]. International Journal of Heat and Mass Transfer,2011,54(15):3256-3266.
    [170]D. B. Kothe, R. C. Mjolsness and M. D. Torrey. RIPPLE:A computer program for incompressible flows with free surfaces[M]. LA-12007-MS, Los Alamos National Laboratory,1991.
    [171]J. Brackbill, D. B. Kothe and C. Zemach. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2):335-354.
    [172]T. Takamasa and K. Kobayashi. Measuring interfacial waves on film flowing down tube inner wall using laser focus displacement meter[J]. Int. J. Multiphase Flow,2000,26: 1493-1507.
    [173]姜波.振动强化传热机理分析及新型振动传热组件实验研究[D].博士论文,山东大 学,2010.
    [174]G. Kocamustafaogullari and I. Chen. Falling film heat transfer analysis on a bank of horizontal tube evaporator[J]. AlChE journal,1988,34(9):1539-1549.
    [175]A. Agunaoun, A. Daif, M. Grisenti and R. Barriol. Transfert de chaleur dans un film tombant autour d'un cylindre horizontal[J]. The Canadian Journal of Chemical Engineering,1994, 72(6):961-965.
    [176]X. L. Lei and H. X. Li. Numerical Simulation of the Behavior of Falling Films on Horizontal Plain Tubes[C]. AIP Conference Proceedings,2010,1207:998-1003.
    [177]何茂刚,王小飞,张颖.水平管降膜蒸发器管外液体流动研究及膜厚的模拟计算[J].热科学与技术,2007,6(4):319-325.
    [178]邱庆刚,陈金波.水平管降膜蒸发器管外液膜的数值模拟[J].动力工程学报,2011,31(5):357-361,374.
    [179]M. Asbik, O. Ansari and B. Zeghmati. Numerical study of boundary layer transition in flowing film evaporation on horizontal elliptical cylinder[J]. Heat and Mass Transfer,2005, 41(5):399-410.
    [180]J. R. Thome. Engineering data book III[M]. Chapter 14,2004.
    [181]王书中.水平管束降膜动力学与界面吸收性能实验研究[D].博士论文,天津大学,2007.
    [182]吕凯,王小飞,张颖,何茂刚.水平蒸发管管间相邻液柱分离间距测量田.化工学报,2012,63(3):740-745.
    [183]Q. G Qiu and J. B. Chen. Numerical simulation of film formation on horizontal-tube falling film evaporators [J]. Dongli Gongcheng Xuebao(Journal of Chinese Society of Power Engineering),2011,31(5):357-361,374.
    [184]Lincong. LUO, Guanmin. ZHANG, Jihong. PAN and Maocheng. TIAN. Flow and heat transfer characteristics of falling water film on horizontal circular and non-circular cylinders[J]. Journal of Hydrodynamics, Ser. B,2013,25(3):404-414.
    [185]J. Rogers and S. Goindi. Experimental laminar falling film heat transfer coefficients on a large diameter horizontal tube[J]. The Canadian Journal of Chemical Engineering,1989, 67(4):560-568.
    [186]F. A. Jafar, G. R. Thorpe and O. F. Turan. Liquid Film Falling on Horizontal Plain Cylinders: Numerical Study of Heat Transfer in Unsaturated Porous Media[J]. International Journal for Computational Methods in Engineering Science and Mechanics,2014,15(2):101-109.
    [187]任显龙.横管降膜蒸发传热实验研究[D].大连理工大学,大连,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700