汽油机缸内成分和温度分布对可控自燃着火燃烧的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控自燃着火(CAI)燃烧具有同时改善发动机的燃油经济性和NOX排放的优势。但由于CAI为混合气压缩自燃着火,缺少像传统汽油机的点火时刻或柴油机的喷油时刻那样控制着火的直接手段,给燃烧控制带来很大挑战。本文针对全可变气门机构汽油机,研究缸内成分和温度的不均匀分布及其对CAI自燃的影响规律,探索控制CAI着火及燃烧的一种有效手段,这对CAI燃烧应用具有重要意义。
     本文以一台配备全可变气门机构的单缸汽油机为对象,基于KIVA-3V软件,采用动网格技术建立了带有进、排气道的四气门汽油机计算模型,采用Shell模型和特征时间燃烧模型计算着火和燃烧过程。采用多循环模拟汽油机CAI燃烧过程,降低了仿真结果对初始条件和边界条件的敏感性。利用实验结果验证了着火延迟的有效性,在不同工况下的模型预测的CA10、CA50、CA90与实验结果误差在1-2度曲轴转角范围内。为了定量描述缸内废气和温度分布特征,采用统计学中的标准差概念定义了“不均匀度”来表征不均匀分布的程度。
     通过CFD仿真,研究了排气门关闭时刻、进气门开启时刻和进气门升程控制对缸内流动、废气分布和温度分布的影响。研究表明,在CAI燃烧可运行的范围内,可以通过进气门开启时刻和升程的调节,实现缸内不均匀度的控制。推迟进气门开启时刻和升高进气门升程都可以使缸内不均匀度增大,但是进气门开启时刻的控制作用在小废气率下无效,而进气门升程的控制作用在整个CAI运行范围内的废气率下均有效。随着废气率的增大,缸内废气不均匀度和温度不均匀度都有增大的趋势。
     通过CFD仿真,研究了废气和温度分布不均匀度对CAI着火和燃烧的影响规律。结果表明,缸内废气率和平均温度相同时,温度不均匀度可以有效控制着火时刻,但对燃烧持续期的影响较小。在本文研究范围内(缸内废气率为32%~85%),温度的不均匀度越大,着火时刻越早。因此,可以通过对温度不均匀度的控制来控制着火时刻。
     为了验证缸内分布不均匀性对着火燃烧的影响,本文针对单缸发动机,通过控制进气门相位,产生进气前回流,在缸内形成一定的废气和温度不均匀分布。通过CFD揭示了其分布特征;通过单缸机试验,研究了其着火特性。研究表明,进气前回流使缸内高废气率区和高温区分离,促进了小负荷的自燃着火,从而验证了缸内温度和废气分布不均匀性对自燃着火的控制作用。本研究也为实现CAI燃烧向小负荷的拓展提供了新思路。
Controlled auto-ignition (CAI) combustion has the advantage in fuel economyand NOx emissions for engines. However, there is no direct ignition control in CAIengines, as the spark in gasoline engines or the fuel injection in diesel engines, whichis a great challenge for combustion control. The present paper explores the method tocontrol CAI auto-ignition through adjusting in-cylinder components and temperaturedistribution based on a fully variable valve technology. That is significant to thepractical application of CAI combustion.
     A gasoline engine model with four vavles and intake and exhaust ports is built inKIVA-3V. The Shell model is used to simulate the auto ignition, and thecharacteristic time model is used to simulate the combustion process. Multi-cyclesimulation is applied to reduce the sensitivity of the results in the initial conditionsand the boundary conditions. The validity of ignition delay is validated. The errors ofCA10, CA50and CA90of the simulation results and the experimental results arebetween1-2degrees crank angle. The "inhomogeneity" is defined as the standarddeviation to quantify the in-cylinder residual gas fraction (RGF) and temperaturedistributions.
     The effects of exhaust valve closing (EVC) timing, intake valve opening (IVO)timing and intake valve lift (IVL) on the in-cylinder flow, RGF and temperaturedistributions are studied by CFD simulation. The inhomogeneity of residual gas andtemperature has a wide range of variation under CAI mode, and the inhomogeneitycontrol can be achieved through the adjustment of both intake valve open timing andintake valve lift. The in-cylinder inhomogeneity increases with the intake valve opentiming delaying and intake valve lift increasing. However, the intake valve opentiming control strategy is only effective when applied to high in-cylinder RGF cases,whereas the intake valve lift control strategy is effective in controlling the in-cylinderinhomogeneity under the whole CAI range. The inhomogeneity of RGF andtemperature increases as the RGF increases.
     The abilities of the in-cylinder RGF and temperature distribution to control CAIignition and combustion processes are investigated by CFD simulations. The resultsshow that the temperature inhomogeneity can effectively control the CAI ignition timing with the same in-cylinder RGF and average temperature. However, thestratification of the RGF and temperature caused by the valve strategies is not strongeenough to influence the CAI combustion duration. The CAI auto-ignition timingadvances with the temperature inhomogeneity increasing in a wide range of the32%~85%RGF. Therefore, the auto-ignition timing can be controlled by thetemperature inhomogeneity.
     In order to validate the effects of the in-cylinder distribution on ignition andcombustion, the intake backflow is introduced by controlling the intake valve timing,which could lead to some RGF and temperature inhomogeneities. The distribution isrevealed through CFD simulation and the ignition characteristic is researched viasingle-cylinder gasoline engine experiments. The results show that the hightemperature zone and high RGF zone are separated by intake backflow, which is aadvantage for the ignition in low loads. A new concept for the realization of CAIcombustion in low load is provided.
引文
[1]Onishi, S., Jo, S., Shoda, K., Jo, P. et al., Active Thermo-AtmosphereCombustion (ATAC)-A New Combustion Process for Internal Combustion Engines,SAE Paper,1979,790501.
    [2]R. H. Thring, Homogeneous Charge Compression Ignition (HCCI) Engines,SAE Paper,1989,892068.
    [3]Najt P. M., Foster D. E., Compression-ignited homogeneous chargecombustion.SAE Paper,1983,830264.
    [4]Aaron Oakley, Hua Zhao and Nicos Ladommatos, Experimental Studies onControlled Auto-ignition (CAI) Combustion of Gasoline in a4-Stroke Engine, SAEPaper,2001,2001-01-1030.
    [5]Aaron Oakley, Hua Zhao, and Nicos Ladommatos,Dilution Effects on theControlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels,Brunel University, SAE Paper,2001,2001-01-3606.
    [6]Jialin Yang, Todd Culp and Thomas Kenney, Development of a GasolineEngine System Using HCCI Technology-The Concept and the Test Results, SAEPaper,2002,2002-01-2832.
    [7]Jialin Yang and Thomas Kenney, Robustness and Performance Near theBoundary of HCCI Operating Regime of a Single-Cylinder OKP Engine, SAE Paper,2006,2006-01-1082.
    [8]Joel Martinez-Frias, Salvador M. Aceves, Daniel Flowers et al, HCCI EngineControl by Thermal Management, SAE Paper,2000,2000-01-2869.
    [9]Giran Haraldsson, Per Tunest, Bengt Johansson, Jari Hyvnen, HCCIClosed-Loop Combustion Control Using Fast Thermal Management, SAE Paper,2004,2004-01-0943.
    [10]周龙保,内燃机学,北京:机械工业出版社,1999.97~99.
    [11]Magnus Christensen, Anders Hultqvist et al., Demostrating the Multi FuelCapability of a Homogeneous Charge Compression Ignition Engine with VariableCompression Ratio, SAE Paper,1999,1999-01-3679.
    [12]G ran Haraldsson, Closed-Loop Combustion Control of a Multi CylinderHCCI Engine using Variable Compression Ratio and Fast Thermal Management,[PhD Thesis], Brunel University, September2004.
    [13]Jari Hyv nen, G ran Haraldsson and Bengt Johansson, Supercharging HCCIto Extend the Operating Range in a Multi-Cylinder VCR-HCCI Engine,SAE Paper,2003,2003-01-3214.
    [14]Aaron Oakley, Hua Zhao, and Niscos Ladommatos, Dilution Effects on theControlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels,SAE Paper,2001,2001-01-3606.
    [15]Tanet, A., Volker, S., An Investigation Into the Effect of Fuel Compositionon HCCI Combustion Characteristics, SAE Paper,2002,2002-01-2830.
    [16]Nicolas, J., Xavier, M., Pierre, D., Engine and Fuel Related Issues ofGasoline CAI (Controlled Auto-Ignition) Combustion, SAE Paper,2003,2003-01-1856.
    [17]Olsson, J., Johansson, B., Closed Loop Control of an HCCI Engine, SAEPaper,2001,2001-01-1031.
    [18]Jacques Lavy, Jean-Charles Dabadie, Christian Angelberger et al, InnovativeUltra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines:the4-SPACE Project, SAE Paper,2000,2000-01-1837.
    [19]R. Flierl and M. Klüting, the Third Generation of Valvetrains–New FullyVariable Valvetrains for Throttle-Free Load Control, SAE Paper,2000,2000-01-1227.
    [20]N. Kaahaaina, et al., Use of Dynamic Valving to Achieve Residual–Affected Combustion, SAE Paper,2001,2001-01-0549.
    [21]Florence Duffour, Franck Vangraefschèpe, Vincent Knop and Loic deFrancqueville, Influence of the Valve-lift Strategy in a CAI Engine using ExhaustGas Re-Breathing–Part1: Experimental Results and3D Analysis, SAE Paper,2009,2009-01-0299.
    [22]A. Fuerhapter, W.F. Piock, G.K. Fraidl, CSI-Controlled Auto Ignition-theBest Solution for the Fuel Consumption-Versus Emission Trade off? SAE Paper,2003,2003-01-0754.
    [23]Wolters, P., Salber, W., Geiger, J., Duesmann, M. et al. Controlled AutoIgnition Combustion Process with an Electromechanical Valve Train[C]. SAE Paper,2003,2003-01-0032.
    [24]O. Lang,W. Salber and J. Hahn, S. Pischinger, K. Hortmann and C. Bücker,Thermodynamical and Mechanical Approach Towards a Variable Valve Train forthe Controlled Auto Ignition Combustion Process, SAE Paper,2005,2005-01-0762.
    [25]Philipp Adomeit, Andreas Sehr, Rolf Weinowski et al, Operation Strategiesfor Controlled Auto Ignition Gasoline Engines, SAE Paper,2009,2009-01-0300.
    [26]J.Willand, R-G. Nieberding, G. Vent, C. Enderle, The KnockingSyndrome-Its Cure and Its Potential, SAE Paper,1998,982483.
    [27]George Kontarakis, Nick Collings and Tom Ma, Demonstration of HCCIUsing a Single Cylinder Four-stroke SI Engine with Modified Valve Timing, SAEPaper,2000,2000-01-2870.
    [28]Jian Li, Hua Zhao, Nicos Ladommatos, Research and Development ofControlled Auto-Ignition (CAI)Combustion in a4-Stroke Multi-Cylinder GasolineEngine, SAE Paper,2001,2001-01-3608.
    [29]Shigeo Yamamoto, Takahiro Satou and Motoki Ikuta, Feasibility Study ofTwo-stage Hybrid Combustion in Gasoline Direct Injection Engines, SAEPaper,2002,2002-01-0113.
    [30]Andre Kulzer, Jean-Pierre Hathout, Christina Sauer et al, Multi-ModeCombustion Strategies with CAI for a GDI Engine, SAE Paper,2007,2007-01-0214.
    [31]Zhi Wang, Jian-Xin Wang, Shi-Jin Shuai and Qing-Jun Ma,Effects of SparkIgnition and Stratified Charge on Gasoline HCCI Combustion With Direct Injection,SAE Paper,2005,2005-01-0137.
    [32]J. W. G. Turner, G. Pitcher, P. Burke, The HOTFIRE Homogeneous GDI andFully Variable Valve Train Project-An Initial Report, SAE Paper,2006,2006-01-1260.
    [33]U.S. Department of Energy, Energy Efficiency and Renewable Energy Officeof Transportation Technologies, Homogeneous Charge Compression Ignition (HCCI)Technology-A Report to the U.S. Congress,April2001.
    [34]Fuquan (Frank) Zhao, Thomas W. Asmus, Dennis N. Assanis, et al.,Homogenous Charge Compression Ignition (HCCI) Engine: Key Research andDevelopment Issues, Society of Automotive Engineers,2002.
    [35]Christensen, M., Johansson, B., Influence of mixture quality onpremixed-charge compression ignition gasoline engine, SAE Paper,1998,982454.
    [36]Rudolf H.Stanglmaier et al., Homogeneous Charge CompressionIgnition(HCCI):Benefits, Compromises, and Future Engines Applications, SAEPaper,1999,1999-01-3682.
    [37]Yap, D., Megaritis, A., Wyszynsky, M., Effect of inlet valve timing onboosted gasoline HCCI with residual gas trapping, SAE Paper,2005,2005-01-2136.
    [38]Milovanovic, N., Chen, R., Influence of Variable Valve Timing Strategy onthe control of a Homogeneous Charge Compression Ignition (HCCI) Engine, SAEPaper,2004,2004-01-1899.
    [39]Morikawa, H., Ishibashi, Y., An experimental approach to the controlledauto-ignition, SAE Paper,2007,2007-01-0173.
    [40]Ohyama, Y. Simultaneous Control of Air/Fuel Ratio and Intake, ExhaustValve Timing for HCCI Operation, SAE Paper,2003,2003-01-1084.
    [41]Nebojsa Milovanovic, Dave Blundell, Stephen Gedge and Jamie Turner,Lotus Engineering, SI-HCCI-SI Mode Transition at Different Engine OperatingConditions, SAE Paper,2005,2005-01-0156.
    [42]J.Stokes, T.H.Lake,R.D.Murphy et al., Gasoline Engine Operation withTwin Mechanical Variable Lift (TMVL) Valvetrain, SAE Paper,2005,2005-01-0752.
    [43]Alasdair Cairns and Hugh Blaxill, The Effects of Combined Internal andExternal Exhaust Gas Recirculation on Gasoline Controlled Auto-ignition, SAE Paper,2005,2005-01-0133.
    [44] Lucien Koopmans, Hans Str m, Staffan Lundgren, et al., Demonstrating aSI-HCCI-SI Mode Change on a Volvo5-Cylinder Electronic Valve Control Engine,SAE Paper,2003,2003-01-0753.
    [45]Johan Bengtsson, Closed-Loop Control of HCCI Engine Dynamics:[Ph.D.thesis], Sweden; Lund Institute of Technology,2004.
    [46]Petter Strandh, Johan Bengtsson, Rolf Johansson, etal. Cycle-to-cycleControl of a Dual-Fuel HCCI Engine, SAE Paper,2004,2004-01-0941.
    [47]A. Fuerhapter, W.F. Piock, G.K. Fraidl, CSI-Controlled Auto Ignition–theBest Solution for the Fuel Consumption-Versus Emission Trade off? SAE Paper,2003,2003-01-0754.
    [48]周能辉,汽油HCCI发动机闭环反馈控制的研究:[博士学位论文],天津;天津大学,2007.
    [49]Su W H, Huang H Z, Development and calibration of a reduced chemicalkinetic model of n-heptane for HCCI engine combustion, Fuel,2005,84(9):1029-1040.
    [50]Magnus C, Bengt J, Patrik E, Homogeneous charge compression ignition(HCCI) using isooctane ethanol and natural gas–a comparison with spark ignitionoperation. SAE Paper,1997,972874.
    [51]L X C, Cheng W, Ji L B, et al, The effects of exhaust gas recirculation andcetane number improver on the gasoline homogeneous charge compression ignitionengines, Combustion Science and Technology,2006,178(8):1237-1249.
    [52]Yao M F, Zheng Z Q, Zhang B, et al, The effect of PRF fuel octane numberon HCCI operation. SAE Paper,2004,2004-01-2992.
    [53] Richter, M., Engstrom, J., Franke, A., Alden, M., Hultqvist, A., andJohansson, B., The Influence of Charge Inhomogeneity on the HCCI CombustionProcess, SAE Paper,2000,2000-01-2868.
    [54]Hultqvist, A., Christensen, M., Johansson, B., Richter, M., Nygren, J., Hult,J., and Alden, M., The HCCI Combustion Process in a Single Cycle-High-Speed FuelTracer LIF and Chemiluminescence Imaging, SAE Paper,2002,2002-01-0424.
    [55]Graf, N., Gronki, J., Schulz, C., Baritaud, T., Cherel, J., Duret, P., and Lavy,J., In-Cylinder Combustion Visualization in an Auto-Igniting Gasoline Engine usingFuel Tracer-and Formaldehyde-LIF Imaging, SAE Paper,2001,2001-01-1924.
    [56]Collin, R., Nygren, J., Richter, M., Alden, M., Hildingsson, L., andJohansson, B., Simultaneous OH-and Formaldehyde-LIF Measurements in an HCCIEngine, SAE Paper,2003,2003-01-3218.
    [57]Thirouard, B., Cherel, J., and Knop, V., Investigation of Mixture QualityEffect on CAI Combustion, SAE Paper,2005,2005-01-0141.
    [58]Reuss, D. and Sick, V., Inhomogeneities in HCCI Combustion: An ImagingStudy, SAE Paper,2005,2005-01-2122.
    [59]Hultqvist, A., Christensen, M., Johansson, B., Franke, A., Richter, M., andAlden, M., A Study of the Homogeneous Charge Compression Ignition CombustionProcess by Chemiluminescence Imaging, SAE Paper,1999,1999-01-3680.
    [60]Kumano, K. and Iida, N., Analysis of the Effect of Charge Inhomogeneity onHCCI Combustion by Chemiluminescence Measurement, SAE Paper,2004,2004-01-1902.
    [61]Sj berg M., Dec J.E., An investigation of the relationship between measuredintake temperature, BDC temperature, and combustion phasing for premixed and DIHCCI engines. SAE paper,2004,2004-01-1900.
    [62]Sj berg, M., Dec, J.E., and Cernansky, N.P., Potential of ThermalStratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCIEngines, Based on Multi-Zone Modeling and Experiments, SAE Paper,2005,2005-01-0113.
    [63]Dec J., Hwang W., Sj berg M., An investigation of thermal stratification inHCCI engines using chemiluminescence imaging. SAE Paper,2006,2006-01-1518.
    [64]Chialva, A.P., Analysis of Intake Charge Temperature and EGR StratificationEffects on HCCI Combustion,[MS Thesis], Department of Mechanical Engineering,University of Wisconsin–Madison,2006.
    [65]Kakuho, A., Nagamine, M., Amenomori, Y., Urushihara, T., and Itoh, T.,In-Cylinder Temperature Distribution Measurement and its Application to HCCICombustion, SAE Paper,2006,2006-01-1202.
    [66]Sj berg, M., Dec, J.E., and Hwang, W., Thermodynamic and ChemicalEffects of EGR and Its Constituents on HCCI Autoignition, SAE Paper,2007,2007-01-0207.
    [67]Zhao H, Peng Z, Williams J, et al, Understanding the effects of recycledburnt gases on the controlled autoignition (CAI) combustion in four-stroke gasolineengines, SAE Paper,2001,2001-01-3607.
    [68]Sankaran R, Im H G, Effects of mixture inhomogeneity on the auto-ignitionof reactants under HCCI environment, The42ndAmerican Institute of Aeronauticsand Astronautics, Aerospace Sciences Meeting and Exhibit,2004:10701-10708.
    [69] Yi Yang, John E. Dec, Nicolas Dronniou, and Magnus Sj berg. TailoringHCCI heat-release rates with partial fuel stratification: Comparison of two-stage andsingle-stage-ignition fuels. Proceedings of the Combustion Institute2011;33:3047-3055.
    [70] B. Thirouard, and J. Cherel. Nature of CAI combustion and air/fuel ratiostratification effects. Oil&Gas Science and Technology–Rev. IFP2006;61(1):95-119.
    [71] R. E. Herold, J. M. Krasselt, D. E. Foster, J. B. Ghandhi, D. L. Reuss, and P.M. Najt. Investigations into the Effects of Thermal and Compositional Stratificationon HCCI Combustion–Part II: Optical Engine Results. SAE paper2009-01-1106,2009.
    [72] Vincent Knop, Lo c de Francqueville, Florence Duffour, and FranckVangraefschèpe. Influence of the Valve-lift Strategy in a CAI Engine usingExhaust Gas Re-Breathing-Part2: Optical Diagnostics and3D CFD Results. SAEpaper2009-01-0495,2009.
    [73] Seungmok Choi, Joonwon Lim, Minyoung Ki, Kyoungdoug Min, andHoimyung Choi. Analysis of Cyclic Variation and the Effect of Fuel Stratification onCombustion Stabilityin a Port Fuel Injection (PFI) CAI Engine. SAE paper2009-01-0670,2009.
    [74]Christensen, M. and Johansson, B., Influence of Mixture Quality onHomogeneous Charge Compression Ignition, SAE Paper,1998,982454.
    [75]Marriott, C.D. and Reitz, R.D., Experimental Investigation of Direct InjectionGasoline for Premixed Compression Ignited Combustion Phasing Control, SAE Paper,2002,2002-01-0418.
    [76]Urishihara, T., Hiraya, K., Kakuhou, A., and Itoh, T., Expansion of HCCIOperating Region by the Combination of Direct Fuel Injection, Negative ValveOverlap, and Internal Fuel Reformation, SAE Paper,2003,2003-01-0749.
    [77]Aroonsrisopon, T., Werner, P., Waldman, J.O., Sohm, V., Foster, D.E.,Morikawa, T., and Iida, M., Expanding the HCCI Operation with the ChargeStratification, SAE Paper,2004,2004-01-1756.
    [78]Dec, J.E. and Sj berg, M., Isolating the Effects of Fuel Chemistry onCombustion Phasing in an HCCI Engine and the Potential of Fuel Stratification forIgnition Control, SAE Paper,2004,2004-01-0557.
    [79]Amano, T., Morimoto, S., and Kawabata, Y., Modeling of the Effect ofAir/Fuel Ratio and Temperature Distribution on HCCI Engines, SAE Paper,2001,2001-01-1024.
    [80]Girard, J.W., Dibble, R.W., Flowers, D.L., and Aceves, S.M., AnInvestigation of the Effect of Fuel-Air Mixedness on the Emissions from an HCCIEngine, SAE Paper,2002,2002-01-1758.
    [81]Sj berg, M., Edling, L., Eliassen, T., Magnusson, L, and Angstr m, H., GDIHCCI: Effects of Injection Timing and Air Swirl on Fuel Stratification, Combustion,and Emissions Formation, SAE Paper,2002,2002-01-0106.
    [82]Dec, J.E. and Sj berg, M., A Parametric Study of HCCI Combustion–theSources of Emissions at Low Loads and the Effects of GDI Fuel Injection, SAE Paper,2003,2003-01-0752.
    [83]Li, Y., Zhao, H., Brouzos, N., and Ma, T., Effects of Injection Timing onMixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector, SAEPaper,2006,2006-01-0206.
    [84]Sj berg, M. and Dec, J.E., Smoothing HCCI Heat-Release Rates UsingPartial Fuel Stratification with Two-State Ignition Fuels, SAE Paper,2006,2006-01-0629.
    [85]De Zilwa, S. and Steeper, R., Predicting Emissions from HCCI EnginesUsing LIF Imaging, SAE Paper,2005,2005-01-3747.
    [86]陈韬,低温高效汽油机燃烧技术全工况运行机理的实验研究,[博士学位论文],天津大学,2010。
    [87]Iverson, R.J., The Effects of Intake Charge Stratification on HCCICombustion, MES Thesis, Depertment of Mechanical Engineering, UniversityofWisconsin–Madison,2004.
    [88]Herold, R.E., Foster, D.E., Ghandhi, J.B., Iverson, R.J., Eng, J.A., and Najt,P.M., Fuel Unmixedness Effects in a Gasoline Homogeneous Charge CompressionIgnition Engine, Int. J. Engine Res.,2007,8(3):241-257.
    [89]Han Z, Reitz R D, Claybaker P J, Rutland C J, et al, Modelling the effects ofintake flow structure on fuel/air mixing in a direct-injected spark-ignition engine,SAE Paper,1996,961192.
    [90]Hessel R P, and Rutland C J, Intake flow modeling in a four stroke dieselusing KIVA3, AIAA paper,1993,2893-2952.
    [91]Amsden A A, KIVA-3: A KIVA Program with blocked-structured mesh forcomplex geometries, Los Alamos National Laboratory Report,1993, No.LA-12503-MS.
    [92]Amsden A A, O’Rourke P J, et al, KIVA-Ⅱ: A computer program forchemically reactive flows with sprays, Los Alamos National Laboratory Report,1989,No. LA-11560-MS.
    [93]O’Rourke P J, and Amsden A A, The Tab method for numerical calculationof spray droplet breakup, SAE Paper,1987,872089.
    [94]Launder B E, and Spalding D B, The numerical computation of turbulentflows, Comp. Methods in Appl. Mech. And Eng.,1974,3:269-289.
    [95]Yakhot V, and Orszag S A, Renormalization group analysis ofturbulence-basic theory, J. Sci. Comput.,1986,1:3-51.
    [96]Han Z, and Reitz R D, Turbulence modeling of internal combustion enginesusing RNG κ-ε model, Combustion Science and Technology,1995,106:267.
    [97]Papageorgakis G, and Assanis D N, Optimising gaseous fuel-air mixing indirect injection engines using an RNG basedκ-ε model, SAE Paper,1998,980135.
    [98]Han Z, and Reitz R D, A temperature wall function formulation forvariable-density turbulent flows with application to engine convection heat transfermodeling, International Journal of heat and mass transfer,1997,40:613-625.
    [99]Aceves S M, et al, A sequential fluid–mechanic chemical kinetic model ofpropane HCCI combustion, SAE Paper,2001,2001-01-1027.
    [100]Aceves S M, et al, A decoupled model of detailed fluid mechanics followedby detailed chemical kinetics for prediction of Iso-Octane HCCI combustion, SAEPaper,2001,2001-01-3612.
    [101]Westbrook, C K, Warnatz J, and Pitz W J, A detailed chemical kineticreaction mechanism for the oxidation of iso-octane and n-heptane over an extendedtemperature range and its application to analysis of engine knock,22ndInternationalSymposium on Combustion,1988:893-901.
    [102]Halstead M, Prothero A, and Quinn C P, The autoignition of hydro-carbonfuels at high temperatures and pressures-fitting of a mathematical model, Combustionand Flame,1977,30:45-60.
    [103]Benson S W, The kinetics and thermochemistry of chemical oxidation withapplication to combustion and flames, Prog. Energy and Combust. Sci.,1981,7:125.
    [104]Kong S C, Han Z, and Reitz R D, The development and application of adiesel ignition and combustion model for multidimensional engine simulation, SAEPaper,1995,950278.
    [105]Abraham J, Bracco F V, and Reitz R D, Comparisons of computed andmeasured premixed charge engine combustion, Combust. And Flame,1985,60:309-322.
    [106]Cao L, Zhao H, Jiang X, and Kalian N, Understanding the influence ofvalve timings on controlled autoignition combustion in a four-stroke port fuelinjection engine, IMechE Part D: Journal of Automobile Engineering,2005,219:807-823.
    [107]Kuo T W, and Reitz R D, Three-dimensional computations of combustion inpremixed-charge and direct-injected two-stroke engines, SAE Paper,1992,920425.
    [108]Kong S C, Ayoub N, and Reitz R D, Modeling combustion in compressionignition homogeneous charge engines, SAE Paper,1992,920512.
    [109]Bowman C T, Kinetics of pollutant formation and destruction in combustion,Prog. Energy Combust. Sci.,1975,1:33-45.
    [110]Heywood, J B, Internal combustion engine fundamentals, McGraw-HillBook Company, ISBN0-07-100499-8,1988:574.
    [111]Hiroyasu H, and Nishida K, Simplified three-dimensional modeling ofmixture formation and combustion in a DI diesel engine, SAE Paper,1989,890269.
    [112]Nagle J, and Strickland-Constable R F, Oxidation of carbon between1000-2000C, Proc. Of the fifth carbon conf.,1962,1:154.
    [113]Rutland C J, Echhause J, Hampson G, et al, Toward predictive modeling ofdiesel engine intake flow, combustion, and emission, SAE Paper,1994,941897.
    [114]Aceves, S M, et al., A multi-zone model for prediction of HCCI combustionand emissions, SAE Paper,2000,2000-01-0327.
    [115]Babjimopoulos A, Assanis D, and Fiveland S, An approach for modelingthe effects of gas exchange processes on HCCI combustion and its application inevaluating variable valve timing control strategies, SAE Paper,2002,2002-01-2829.
    [116]Babajimopoulos A, Lavoie G, and Assanis D, Modeling HCCI combustionwith high levels of residual gas fraction-a comparison of two VVA strategies, SAEPaper,2003,2003-01-3220.
    [117]Juneja H, Ra Y, and Reitz R D, Optimization of injection rate shape usingactive control of fuel injection, SAE Paper,2004,2004-01-0530.
    [118]Kong S C, and Reitz R D, Multidimensional modeling of diesel ignition andcombustion using a mutlistep kinetics model, ASME, Journal of Engineering for GasTurbines and Power,1993,115:781-790.
    [119]Griffiths J F, and Barnard J A, Flame and Combustion, Third edition,Blackie Academic&Professional, ISBN0-7514-0199-4,1995:200.
    [120]Curran H J, Guffuri P, et al., A comprehensive modeling study of iso-octaneoxidation, Combustion and Flame,2002,129:253-280.
    [121]秦静,可控自燃汽油机燃烧过程及其控制的研究:[博士学位论文],天津;天津大学,2006。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700