艾萨炉顶吹熔池流动与传热过程数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代冶金工艺的发展,大们迫切需要了解和描述冶金过程中存在的各种流体流动现象。但冶金工业的高温环境使得直接测量存在很大困难,难以获得足够可靠的流场信息和数据。计算流体力学(Computational Fluid Dynamics)是近代流体力学、数值数学和计算机科学相结合的产物,数值模拟和计算机实验是其基本特征。随着计算机技术和相关软件的飞速发展,CFD技术为深入研究冶金过程中流体流动现象提供了一种新的方法和可能。
     富氧顶吹强化熔炼技术的核心是通过顶吹喷枪的浸没式搅拌实现熔池内三相间的快速传热传质过程,从而取得显著的节能减排成效。但一味强调高强化熔炼将导致熔炉炉衬寿命低、喷枪等关键设备磨损严重,不当的吹喷操作甚至会引起泡沫渣等严重事故。因此利用CFD技术对熔池熔炼喷吹搅拌的传热传质过程进行数值模拟研究,探讨喷吹速度、深度对熔池内流型的影响以及熔池喷溅对炉壁的破坏作用是十分必要的。本文以云南省A公司铜艾萨炉顶吹熔池热态搅拌过程为研究对象,主要从计算流体力学模拟仿真以及水模型实验两个方面进行了以下几方面的研究工作:
     首先通过在VOF理论框架中综合考虑了两相表面张力和壁而函数的影响,实现了单气泡在粘性流体中的自由上浮、单液滴自由下落冲击自由液面、多气泡在液面下的上浮及融合等非稳态三维数值模拟和水模型实验;在此基础上,利用RNG型κ-ε双方程模型和Geo-Reconstruct几何重构法实现了两相界面上的非稳态流动与传热的耦合,建立起二维顶吹熔池的多相流流动一传热耦合模型,得到顶吹气泡长大、上浮及破裂等行为对搅拌效果的影响规律;最后将以上二维顶吹模型拓展至三维空间,结合高质量的三维艾萨炉炉体网格,建立等比例艾萨炉浸没式顶吹熔池的热态数学模型,得到艾萨炉三维顶吹热态熔池的温度场、流场等计算结果,对比了流量及喷枪插入深度对熔池搅拌效果以及炉内温度场分布影响,得到对实际生产具有理论指导意义的优化操作参数。
     通过以上模拟及实验研究,从多相流流态角度完成水下气泡自由上升的形变机理分析,认为气泡上下表面压力差与气泡边界共同作用下产生的向上的射流是导致气泡发生底部凹陷形变并最终分裂的主要因素,从仿真模拟和水模型实验两个方面得出单气泡自由上浮的速度变化和形变规律。将本文的各工况的边界条件及计算结果进行无量纲处理,经归纳总结发现:在中等的雷诺数范围(5     在艾萨炉堂内,顶吹气流量对熔池搅拌效果以及炉内温度场分布影响的敏感度要大于喷枪插入深度的影响。大流量对熔池的搅拌更剧烈,炉膛内温度上升得比较均匀。而喷枪插入深度加大会引起靠近壁面的温升加快,炉膛内中心与近壁面区域的温度分布相差较大,不利于延长炉衬寿命,因此大流量、较浅的插入深度有利于取得最佳的搅拌效果。考虑到本文的计算过程没有包含气泡在高温下的瞬间膨胀现象所带来的巨大搅动能,综合生产实际和理论计算结果,艾萨炉喷枪最佳气体流速应控制在12-15m/s,插入渣层深度与熔池深度的比应控制在0.03~0.08之间。
     对于本文所得到的三维非稳态的流动、传热耦合计算结果说,关键截而物理量的加权平均值及标准方差值同三维立体物理场结合分析的方法仃助于更准确地描述模拟过程所反映的规律性。等值面与特定截面物理量加权平均法可作为判定三维瞬态多相流混合程度的评价方法。
With the development of modern metallurgical craft, people need to understand and describe all kinds of fluids flow's phenomenon during the metallurgical course urgenly. But it is difficult to measure directly for high-temperature environment in metallurgical industry, and get enough information and data about flowing field reliably. Computational Fluid Dynamics is the product which combine with Modern Hydrodynamics、Value Mathematics and Computer Science, its essential feature is numerical simulation and computer experiment. With the rapid development of computer technology and relevant software, CFD technology have offered a new method and possibility for research fluid flow phenomenon in metallurgy process thoroughly.
     Core strengthening smelting technology of TSL is the rapid process of heat and mass transfer through immersion top blown lance stirring bath three phases, so as to achieve significant energy-saving effect. But blindly emphasizes high intensified smelting will lead smelting furnace lining life of low, spray gun and other key equipment wear, improper injection operation even serious accidents caused by the slag foaming. Numerical simulation study on heat and mass transfer process and the use of CFD technology to the molten pool smelting blowing stirring, to investigate the effect of injection speed, depth of the bath flow and bath splash damage to the furnace wall is very necessary. In this paper, taking A company of Yunnan copper lsasmelt furnace top blown bath hot mixing process as the research object, mainly from the two aspects of computational fluid dynamics simulation and water model experiment was carried out to study the work of the following aspects:
     First, through in the VOF theory framework of two phase surface tension and wall function is considered, to achieve a single bubble in a viscous fluid, free floating single droplet free falling impact free surface, three dimensional numerical simulation of unsteady multi bubble floatation and fusion in the liquid, and the results are verified with the classical literature and the water model experiment phenomenon, for further study of bubble laid solid foundation in the process of strengthening stirring strong nonlinear behavior rules. After completing the above simulation behavior of single bubble and single of droplet, using the RNG κ-ε model and Geo-Reconstruct geometry reconstruction method to achieve the coupling unsteady flow and heat transfer of two-phase interface, establish two-dimensional top blown bath of multiphase flow and heat transfer coupled model, and compare the results with the classic paper and water model experiment phenomenon was verified, and obtains the influence law of top blowing bubbles, floating and fracture behavior of the stirring effect; The above two top model is extended to3D space, combined with3D ISA furnace body mesh with high quality, building thermal model top blown bath ratio ISA submerged, using the QUICK discretization scheme and based on the pressure implicit splitting operator (Pressure Implicit with Splitting of Operators) pressure velocity coupling scheme to ensure stable and convergence process, get ISA3D blown hot bath temperature field, flow field calculation results, compared to the flow rate and nozzle depth mixing effect and the temperature field in the furnace the effect of the distribution of the bath, get the optimization of operating parameters with theoretical guidance for practical production;
     From the angle of multiphase flow deformation mechanism of bubble free finish rising water, that the difference between the upper and lower surface of bubbles and bubble boundary under the action of the upward jet is the main factor leading to bubble bottom sag deformation and eventually split, the changes of velocity and deformation rule of the single bubble free floating from the two aspects of the simulation simulation and water model experiment. The condition of the boundary conditions and calculation results into the corresponding dimensionless number, the summary of findings:in the middle range of Reynolds number (5     The effects that the quantity of flow affects the temperature distribution are more sensitive than gun insertion depth. Large flow stirring on the bath is more intense, the temperature rise was more uniform way in bore. While the nozzle depth increase can cause the near wall temperature rise speed, road bore center and near wall region of the temperature difference between the larger, is not conducive to prolong the life of furnace lining.
     For the calculation of unsteady three-dimensional flow, heat transfer, the key section of physical quantity weighted average value and standard deviation of the same three-dimensional physical field combining with the analysis method helps to more accurately describe the regularity reflected simulation process. The equivalent surface and the specific section physical quantity weighted average method can be used to determine the three-dimensional transient multiphase flow evaluation method of mixing degree.
引文
[1]http://news.hexun.com/2012-06-25/142788492.html.
    [2]包桂蓉.直立埋入式喷枪的传热模型及优化设计[J].昆明理工大学学报,2002,27(1):78-82.
    [3]娄文涛,张邦琪,施哲.艾萨炉水模型内气泡运动的模拟[J].中国有色冶金,2010,2(1):48-53.
    [4]徐建新,王华,王仕博等.贫化电炉喷射流场气泡羽流数值模拟[J].工业加热,2008,37(6):43-47.
    [5]付江,王华.艾萨熔池熔炼的应用与优化[J].工业加热2007,36(1):35-40.
    [6]刘树红,吴玉林.应用流体力学[M].北京:清华大学出版社,2006.3.
    [7]http://gongxue.cn/xuexishequ/ShowArticle.asp?ArticleID=33264
    [8]John D.Anderson, JR.计算流体力学入门[M].北京:清华大学出版社,2002.4.
    [9]http://www.5dcad.cn/html/soft/2021.html.
    [10]http://www.afwing.com/intro/f15/2.htm.
    [11]William Kays. Michael Crawford, Bernhard Weigand.对流传热与传质(第四版)[M].北京:高等教育出版社,2007.7.
    [12]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.5.
    [13]温正,石良辰,任毅如.Fluent流体计算应用教程[M].北京:清华大学出版社,2009.1.
    [14]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.6.
    [15]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.2.
    [16]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.7.
    [17]Peter Liovic, Murray Rudman, Jong-Leng Liow. Numerical modelling of free surface flows in metallurgical vessels[J]. Applied Mathematical Modelling,2002, 26:113-140.
    [18]Mahesh T. Dhotre, Brian L. Smith. CFD simulation of large-scale bubble plumes: Comparisons against experiments[J]. Chemical Engineering Science.2007,62: 6615-6630.
    [19]A. Valencia, M. Rosales, R. Paredes, et al. Numerical and experimental investigation of the fluid dynamics in a Teniente type copper converter[J]. International Communications in Heat and Mass Transfer,2006,33:302-310.
    [20]A.Valencia, R.Paredes, M.Rosales, et al. Fluid dynamics of submerged gas injection into liquid in a model of copper converter[C]. International Communications in Heat and Mass Transfer,2004,1(31):21-30.
    [21]G. G. Krishna Murthy, S. P. Mehrotra, A. Ghosh. Experimental investigation of mixing phenomena in a gas stirred liquid bath[J]. Metallurgical Transactions B, 1988,19:839-850.
    [22]Basil U. N. Igwe, S. Ramachandran, J. C. Fulton. Jet Penetration and Liquid Splash in Submerged Gas Injection[J]. Metallurgical Transactions,1973: 1887-1894.
    [23]何庆林,萧泽强.吹气搅拌熔池内轴对称循环流速度场的计算(Ⅰ)—流场的物理模型及数模边界条件的确定[J].东北工学院学报,1986,7(2):8-12.
    [24]朱苗勇,田郁夫,邹宗树,等.冶金反应器内王维流动模拟计算软件及应用[J].东北大学学报,1994,15(6):618-622.
    [25]彭世恒,程乃良,杨卫宏,等.CFD技术在分析连铸中间包中冶金过程的应用[C].2000年应用计算流体力学国际会议论文集(ACFD 2000,beijing),2000:616-620.
    [26]詹树华,欧俭平,萧泽强.底吹气连铸中间包内气液两相流的数值模拟[J]..过程工程学报,2005,5(3):233-240.
    [27]彭一川,韩旭,萧泽强.气粉流喷吹熔池的通用数学模型[J].钢铁研究,1997,(5):15-18.
    [28]詹树华,萧泽强.熔池浸入式侧吹下气液两相流流动状态的三维数值计算[C].熔池侧吹氧技术的开发、应用和研究论文集,2004.
    [29]解茂昭,韩薇,刘红,等.液态金属熔体中气泡运动特性数值模拟[J].大连理工大学学报,2006,46(3):340-344.
    [30]刘红,解茂昭,李科,等.液态金属熔池中气泡—液体两相湍流的数值模拟 研究[J].计算力学学报,2007,24(5):669-673.
    [31]刘红,解茂昭,王德庆.液态金属中气体射流过程数值模拟研究[J].大连理工大学学报,2007,47(5):652-656.
    [32]李小明,王冶,毕勤成,等.气泡在不同液体中上升速度的实验研究[J].西安交通大学学报,2003,37(9):971-978.
    [33]卢作伟,崔桂香,张兆顺.气泡在液体中运动过程的数值模拟[J].计算力学学报,1997,14(2):125-132.
    [34]王卫京,毛在砂.气液两相搅拌槽内气泡直径的数值模拟[J].大连大学学报,2006,27(2):31-34.
    [35]Sourabh V. Apte, Krishnan Mahesh, Michael Gorokhovski, et al. Stochastic modeling of atomizing spray in a complex swirl injector using large eddy simulation[C]. Proceedings of the Combustion Institute,2009,32:2257-2266
    [36]E. Schneider, A. Maltsev, A. Sadiki, et al. Study on the potential of BML-approach and G-equation concept-based models for predicting swirling partially premixed combustion systems:URANS computations[J]. Combustion and Flame, 2008,152:548-572.
    [37]朱苗勇,肖泽强.吹氩钢包内钢液流速的实际测定和理论计算[J].钢铁,1995,30(7):18-22.
    [38]朱苗勇,汉田郁夫,肖泽强.吹氩精炼钢包内三维流动和混合现象的研究[J].金属学报,1995,31(8):346-352.
    [39]Chen Fang, Carlos Hidrovo, Fu-min Wang, et al.3-D numerical simulation of contact angle hysteresis for microscale two phase flow[J]. International Journal of Multiphase Flow,2008,34:690-705.
    [40]Arash Sarhangi Fard, Navid M. Famili, Patrick D. Anderson. A new adaptation of mapping method to study mixing of multiphase flows in mixers with complex geometries[C]. Computers and Chemical Engineering,2008,32:1471-1481.
    [41]Yong Zhao, Hsiang Hui Tan, Baili Zhang. A High-Resolution Charac-teristics-Based Implicit Dual Time-Stepping VOF Method for Free Surface Flow Simulation on Unstructured Grids[J]. Journal of Computational Physics,2002, 183:233-273.
    [42]R. A. Hartunian, W.R. Sears. On the instability of small gas bubbles moving uniformly in various liquids[J]. Fluid Mech,1957,3:27-47.
    [43]J. K. Walters, J. F. Davidson. The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The two-dimensional bubble[J]. Fluid Mech,1962,12: 408-417.
    [44]J. K. Walters, J. F. Davidson. The initial motion of a gas bubble formed in an inviscid liquid. Part 2. The three dimensional bubble and the toroidal bubble[J]. Fluid Mech,1963,17:321-336.
    [45]P. P. Wegener, J. Y. Parlange. Spherical-cap bubbles, Ann. Rev[J]. Fluid Mech, 1973,5:79-100.
    [46]D. Bhaga, M. E. Weber. Bubbles in viscous liquid:shapes, wakes and velocities[J]. Fluid Mech,1981,105:61-85.
    [47]Jinsong hua, Jing Lou. Numerical simulation of bubble rising in viscous liquid[J]. Journal of Computational Physics,2007,222:769-795.
    [48]C.W. Hirt, B.D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Comput Phys,1981,39:201-225.
    [49]S. Osher, J. A. Sethian. Fronts propagating with curvature dependant speed: algorithm based on Hamilton-Jacobi formulations[J]. Comput Phys,1988,79: 12-49.
    [50]B. J. Daly. A technique for including surface tension effect in hydrodynamics calculation[J]. Comput. Phys,1969,4:97-117.
    [51]J. Hoang, M. A. Reuter, R. Matusewicz, et al. Top submerged lance direct zinc smelting[J]. Minerals Engineering,2009,22:742-751.
    [52]Jong-Leng Liow. Quasi-equilibrium bubble formation during top-submerged gas injection[C]. Chemical Engineering Science,2000,55:4515-4524.
    [53]Nazmul Huda, J. Naser, G. Brooks, et al. Matusewicz. CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances[J]. Metallurgical And Materials Transactions B,2010,41:35-50.
    [54]Swapna S. Rabha, VivekV. Buwa. Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids[J]. Chemical Engineering Science, 2010,65:527-537.
    [55]Jinsong Hua, Jing Lou. Numerical simulation of bubble rising in viscous liquid[J]. Journal of Computational Physics,2007,222:769-795.
    [56]Y. Alhendal, A. Turan, Wael I. A. Aly. VOF Simulation of Marangoni Flow of Gas Bubbles in 2D-axisymmetric Column[J]. Procedia Computer Science,2010,1: 673-680.
    [57]鞠花,陈刚,李国栋,等.静水中上升气泡沿倾斜壁面的运动特性试验研究[J].水动力学研究与进展A辑,2011,26(3):327-332.
    [58]徐炯,王彤,杨波,等.静止水下气泡运动特性的测试与分析[J].水动力学研究与进展A辑,2008,23(6):709-714.
    [59]Dijkhuizen W, Van Sint, Annaland M. et al. Numerical and experimental investi-gation of the lift force on single bubbles[J]. Chemical Engineering Science,2010,65(3):1274-1287.
    [60]陈斌.高黏度流体中上升气泡的直接数值模拟[J].工程热物理学报,2006,27(2):255-258.
    [61]许联峰,陈刚,李建中,等.气液两相流中气泡运动速度场的PIV分析与研究[J].实验力学,2002,17(4):458-463.
    [62]RABHA S, BUWA V. Volume-of-fluid (VOF) simula-tions of rise of single/ multiple bubbles in sheared liquids[J]. Chemical Engineering Science,2010, 65(1):527-537.
    [63]李彦鹏,白博峰.环状气泡动力学数值模型[J].水动力学研究与进展A辑,2006,21(5):660-666.
    [64]何丹,李彦鹏,刘艳艳.初始形状对浮升气泡动力特性的影响[J].西安交通大学学报,2011,45(1):43-47.
    [65]张淑君,吴锤结.气泡之间相互作用的数值模拟[J].水动力学研究与进展A辑,2008,23(6):681-686.
    [66]Zhao Yu, Liang-Shih Fan. An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation[C]. Journal of Computational Physics,2009,228:6456-6478.
    [67]Yong Li, Jianping Zhang, Liang-Shih Fan. Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble coIumn[J]. Chemical Engineering Science,2000,55:4597-4609.
    [68]Joao Fernandes, Pedro F. Lisboa, Pedro C. Simoes, et al. Esteban Saatdjianb Application of CFD in the study of supercritical fluid extraction with structured packing:Wet pressure drop calculations[J]. Journal of Supercritical Fluids,2009, 50:61-68.
    [69]Vinay R. Gopala, Berend G. M. van Wachem. Volume of fluid methods for immiscible-fluid and free-surface flows[J]. Chemical Engineering Journal,2008, 141:204-221.
    [70]Eray Uzgoren, Rajkeshar Singh, Jaeheon Sim, et al. Computational modeling for multiphase flows with spacecraft application[J]. Progress in Aerospace Sciences. 2007,43:138-192.
    [71]刘炯天,张敏,刘焕彬,等.筛板充填浮选流体的速度场分布[J].中国矿业大学学报,2007,36(5):578-581.
    [72]Liuyan Lu, Steven R. Lantz, Zhuyin Ren, et al. Computationally efficient implementation of combustion chemistry in parallel PDF calculations[J]. Journal of Computational Physics,2009,228:5490-5525
    [73]Choeng Ryul Choi, Chang Nyung Kim. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler[J]. Fuel,2009,88:1720-1731.
    [74]R. McDermott, S.B. Pope. A particle formulation for treating differential diffusion in filtered density function methods[J]. Journal of Computational Physics,2007, 226:947-993.
    [75]Vinay R. Gopala, Berend GM. van Wachem. Volume of fluid methods for immiscible-fluid and free-surface flows[J]. Chemical Engineering Journal,2008, 141:204-221.
    [76]K. W. Chu, B. Wang, A. B. Yu, et al. CFD-DEM study of the effect of particle density distribution on the multiphase flow and performance of dense medium cyclone[J]. Minerals Engineering,2009,22:893-909.
    [77]E. Peirano, S. Chibbaro, J. Pozorski, et al. Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows[J]. Progress in Energy and Combustion Science,2006,32:315-371.
    [78]张亚宾,张云鹏,李占金,等.水压爆破的数值模拟[J].河北理工大学学报(自然科学版),2007,29(4):1-4.
    [79]Daniel Lorstad, Laszlo Fuchs. High-order surface tension VOF-model for 3D bubble flows with high density ratio[J]. Journal of Computational Physics,2004, 200:153-176.
    [80]Vivek V. Buwa, D. Gerlach, F. Durst, et al. Numerical simulations of bubble formation on submerged orifices:Period-1and period-2 bubbling regimes[C]. Chemical Engineering Science,2007,62:7119-7132.
    [81]Hui Gao, Han-Yang Gu, Lie-Jin Guo. Numerical study of stratified oil-water two-phase turbulent flow in a horizontal tube[C]. International Journal of Heat and Mass Transfer,2003,46:749-754.
    [82]Daniel Fuster, Anne Bague, Thomas Boeck, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[C]. International Journal of Multiphase Flow,2009,35:550-565.
    [83]M. J. Ketabdari, M. R. H. Nobari, M. Moradi Larmaei. Simulation of waves group propagation and breaking in coastal zone using a Navier-Stokes solver with an improved VOF free surface treatment[J]. Applied Ocean Research,2008,30: 130-143.
    [84]K. W. Chu, B. Wang, A. B. Yu, et al. CFD-DEM modelling of multiphase flow in dense medium cyclones[J]. Powder Technology,2009,193:235-247.
    [85]M. Seifollahi, E. Shirani, N. Ashgriz. An improved method for calculation of interface pressure force in PLIC-VOF methods[J]. European Journal of Mechanics B/Fluids,2008,27:1-23.
    [86]杨玟,周力行,李荣先,等.气泡—液体多股射流二阶矩两相湍流模型的模拟[J].工程热物理学报,2002,23(2):231-234.
    [87]马天宝,工静,宁建国.一种VOF与PIC耦合多物质界面处理算法及其在侵彻问题一中的应用[J].中国科学(G辑),2009,39(9):1185-1194.
    [88]王志东,汪德爟.VOF方法中自由液面重构的方法研究[J].水动力学研究与 进展,2003,18(1):52-56.
    [89]Daniel Lorstad, Laszlo Fuchs. High-order surface tension VOF-model for 3D bubble flows with high density ratio[J]. Journal of Computational Physics.2004, 200:153-176.
    [90]张健,方杰,范波芹.VOF方法理论与应用综述[J].水利水电科技进展,2005,25(2):67-70.
    [91]赵学辉,刘春江,吕晓龙.粘性液体中气泡流体力学特性的模拟研究[J].天津工业大学学报,2007,26(4):28-31.
    [92]吴伟,邹宗树,李永祥,等.复吹转炉钢-渣间容量传质系数的水-油模型[J].特殊钢,2004,25(2):19-21.
    [93]詹树华,欧俭平,赖朝彬,等.2种浸入式侧吹模式下的熔池搅拌现象[J].中南大学学报(自然科学版),2005,36(1):50-54.
    [94]马霞,李建中,魏文礼,等.气泡羽流的数值模拟[J].西安理工大学学报,2007,17(1):86-89.
    [95]王为术,徐维晖,翟肇江,等.PISO算法的实现及与SIMPLE, SIMPLER, SIMPLEC算法收敛性的比较[J].华北水利水电学院学报,2007,28(4):33-36.
    [96]党政,席光,王尚锦.PISO算法在求解方柱绕流非定常尾迹中的应用[J].工程热物理学报,1999,20(3):317-321.
    [97]刘卫东,王振国,周进.采用二阶迎风格式的PISO算法研究[J].航空动力学报,1998,13(1):81-84.
    [98]王彤,谷传纲,杨波,等.非定常流动计算的PISO算法[J].水动力学研究与进展,2003,18(2):233-239.
    [99]卢作伟,崔桂香,张兆顺.气泡在液体中运动过程的数值模拟[J].计算力学学报,1997,14(2):125-133.
    [100]吴锤结,李霞.三维气泡与自由表面相互作用的直接数值模拟[J].固体力学学报,2006,27:13-109.
    [101]张淑君,吴锤结,王惠民.单个三维气泡运动的直接数值模拟[J].河海大学学报(自然科学版),2005,33(5):534-537.
    [102]廖斌,陈善群.基于CLSVOF方法的三维单个上升气泡运动的数值模拟[J].水动力学研究与进展,2012,27(3):275-283.
    [103]Grace J R, Wairegi T, Nguyen T H. Shapes and Velocities of Single Drops and Bubbles Moving Freely Through Immiscible Liquids[J]. Trans. Instn. Chem. Engrs,1976,54:167-173.
    [104]Jinsong Hua, Jing Lou. Numerical simulation of bubble rising in viscous liquid[J]. Journal of Computational Physics,2007,222:769-795
    [105]Peter Liovic, Murray Rudman, Jong-Leng Liow. Numerical modelling of free surface flows in metallurgical vessels[J]. Applied Mathematical Modelling, 2002,26:113-140.
    [106]Vivek V. Buwa, D. Gerlach, F. Durst, et al. Numerical simulations of bubble formation on submerged orifices:Period-1 and period-2 bubbling regimes[J]. Chemical Engineering Science,2007,62:7119-7132.
    [107]蒋炎坤.水下气泡群运动特性及其三维数值模拟研究[J].武汉理工大学学报,2005,27(4):72-74.
    [108]Daniel Lorstad, Laszlo Fuchs. High-order surface tension VOF-model for 3D bubble flows with high density ratio[J]. Journal of Computational Physics, 2004,200:153-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700