α-羰基金卡宾在杂环及杂原子化合物合成中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环和杂原子化合物是含有一个或一个以上氮、氧、硫和卤素等杂原子的有机化合物,他们不但广泛存在于生物碱、核酸、抗生素等具有生物活性的分子中,还是很多药物分子的重要组成片段。在温和反应条件下,用易得的原料高效、原子经济、选择性的合成它们是有机化学的一个重要任务。
     均相金催化是当今有机化学领域研究的热点课题之一。金是一种特殊的Lewis酸,Furstner教授将其定义为π-酸。π-酸可以高效活化π-键使其与多种亲核试剂反应,进而发生σ键迁移重排和环异构化反应。含有亲核性氧的氧化剂是均相金催化反应中一类非常重要的亲核试剂;亚砜、硝酮、环氧化物、硝基化合物、氨基氮氧化物和吡啶/喹啉氮氧化物都属于这种氧化剂。在均相金催化反应中,氧化剂的氧原子亲核进攻金活化的炔基产生的α-羰基金卡宾中间体具有非常高的反应活性,可以发生多种宫能团转化反应。
     本文主要研究金催化分子间氧化炔基生成的α-羰基金卡宾中间体在杂环和杂原子化合物合成中的应用,研究工作包括以下四个部分:
     1.本文发展了一种金催化分子间氧化炔丙醇化合物合成3-氧杂环丁酮类化合物的通用方法。反应机理包括金催化分子间氧化炔基生成α-羰基金卡宾及卡宾分子内O-H键插入。3-氧杂环丁酮是一种在药物研发领域有着非常重要作用的四元含氧杂环化合物,本文以丙炔醇为初始原料,利用金催化氧化反应以较好的产率一步合成该化合物。该方法利用金催化氧化炔烃形成α-羰基金卡宾中间体代替使用危险的α-重氮羰基化合物生成卡宾,反应过程不需进行无水无氧处理,操作及后处理简便。
     2.本文探索了一种金催化分子间氧化炔丙基磺酰胺化合物高效合成手性3-氮杂环丁酮类化合物的方法。反应机理包括金催化分子间氧化炔基生成α-羰基金卡宾及卡宾N-H键插入环化。叔丁基亚磺酰基先作为手性试剂,被氧化后生成的叔丁基磺酰基又作为后续反应中氨基的保护基,避免额外的保护基保护/脱保护步骤。叔丁基磺酰胺可以用三氟甲烷磺酸温和脱去。
     3.本文建立了一种通过金催化氧化末端炔烃生成a-羰基金卡宾中间体与腈反应生成2,5-二取代嗯唑的新方法,首次实现了α-羰基金卡宾中间体参与的分子间反应。总反应是一个末端炔烃,腈,氮氧化物氧原子进行[2+2+1]环加成反应。腈在反应中不仅作为反应物,还作为溶剂。该反应的反应条件极其温和,官能团兼容性强。对于复杂的或昂贵的腈类化合物,以1mol%BrettPhosAuNTf2作为催化剂,仅需要3当量腈在无溶剂条件下反应,以较为理想产率获得目标化合物。
     4.我们研究了意外发现的金催化分子间氧化末端炔烃生成α-羰基金卡宾中间体捕获溶剂卤原子生成α-氯/溴代甲基酮的反应。该反应可以用于一步合成α-氯/溴代甲基酮。从反应情况,推测α-羰基金卡宾中间体的亲电性和α-羰基银卡宾中间体相当,弱于α-羰基铑卡宾中间体。
Heterocycles and heteroatom compounds are the molecules possessing one or more heteroatom(s) such as nitro, oxygen, sulfur, halogen and so on. They are not only found in alkaloids, nucleic acids, antibiotics, and other biologically active molecules but also the essential components of many drugs. Efficient, atom-economic, and selective constructions of heterocyle compounds from readily available starting materials under mild conditions remain an important task in synthetic chemistry.
     Gold-mediated homogeneous catalysisis is one of the hot topics in the organic chemistry. Gold compounds are rather unique soft Lewis acids which have been termed by Furstner as π-acid. The π-acid can activate π bonds for reactions with arange of nucleophiles, leading to sigmatropic rearrangements, migrations, and cycloisomerizations. A particularly important class of nucleophiles is an oxidant that possesses a nucleophilic oxygen and can formally deliver the oxygen atom during the reaction, and this type of gold-catalyzed alkyne oxidation has been proposed to generate a reactive a-oxo gold carbene intermediate, which would undergo an array of versatile transformations. Studies in this area use tethered oxidants such as sulfoxide, nitrone, epoxide, nitro, amine N-oxide and pyridine/quinoline N-oxides as external oxidants to achieve intermolecular alkyne oxidation.
     Recent years, we also have some studies in reactive a-oxo gold carbene intermediate, as shown in the following4parts:
     (1) A general solution for the synthesis of various oxetan-3-ones has been developed. This reaction uses readily available propargylic alcohols as substrates and proceeds without the exclusion of moisture or air ("open flask"). Notably, oxetan-3-one, a highly valuable substrate for drug discovery, can be prepared in one step from propargyl alcohol in a fairly good yield. Mechanistically, reactive a-oxo gold carbenes are generated as intermediates through intermolecular alkyne oxidation and subsequent intramolecular O-H insertion. This safe and efficient generation of gold carbenes offers a potentially general entry into a-oxo metal carbene chemistry without using hazardous diazo ketones.
     (2) A practical and flexible synthesis of chiral azetidin-3-ones has been developed. The key reaction is a gold-catalyzed oxidative cyclization of chiral N-propargylsulfonamides. Mechanistically, reactive a-oxo gold carbenes are generated as intermediates through intermolecular alkyne oxidation and subsequent intramolecular N-H insertion. The use of tert-butylsulfonyl as the protecting group takes advantage of the chiral tert-butylsulfinimine chemistry and avoids additional unnecessary deprotection and protection steps. Moreover, the Bus group can be easily removed from the azetidine ring under acidic conditions.
     (3) The first efficient intermolecular reaction of gold carbene intermediates generated via gold-catalyzed alkyne oxidation has been realized using nitriles as both the reacting partner and the reaction solvent, offering a generally efficient synthesis of2,5-disubstituted oxazoles with broad substrate scope. The overall reaction is a [2+2+1] annulation of a terminal alkyne, a nitrile, and an oxygen atom from an oxidant. The reaction conditions are exceptionally mild, and a range of functional groups are easily tolerated. With complex and/or expensive nitriles, only3equiv could be sufficient to achieve serviceable yields in the absence of any solvent and using only1mol%BrettPhosAuNTf2as the catalyst.
     (4) We have reported a surprising halide abstraction by a-gold carbenes generated via gold-catalyzed intermolecular oxidation of terminal alkynes. Synthetically useful chloro/bromom ethyl ketones can be prepared in one-step from terminal alkynes. The strong electrophilicity of the gold carbene intermediates reveals that gold in general is less effective in back bonding than rhodium but perhaps similar to Ag.
引文
[1]M C Gimeno, A Laguna. Comprehensive Coordination Chemistry II, Vol.5, Elsevier, Oxoford.2004:911-1145.
    [2]Schwemberger W, Gordon W. Chem. Zentralbl.1935,106,514
    [3]Norman R O C, Parr W J E, Thomas C B. The reactions of alkynes, cyclopropanes, and benzene derivatives with gold(III). J. Chem. Soc, Perkin Trans.1 1976,1983-1987.
    [4]Arcadi A. Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chem. Rev.2008,108,3266-3325.
    [5]Skouta R, Li C-J. Gold-catalyzed reactions of C-H bonds. Tetrahedron 2008,64, 4917-4938.
    [6]Toste F, Shapiro N. A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions. Synlett 2010,5,675-691.
    [7]Zhang L, Sun J, Kozmin S A. Gold and Platinum Catalysis of Enyne Cycloisomerization. Adv. Synth. Catal.2006,348,2271-2296.
    [8]Zhang L, Wang S, Zhang G. Gold-Catalyzed Reaction of Propargylic Carboxylates via an Initial 3,3-Rearrangement. Synlett 2010,5,692-706.
    [9]Li Z, Brouwer C, He C. Gold-Catalyzed Organic Transformations. Chem. Rev. 2008,108,3239-3265.
    [10]de Haro T, Nevado, C. On Gold-Mediated C-H Activation Processes. Synthesis 2011,2011,2530-2539.
    [11]Gorin D J, Sherry B D, Toste F D. Ligand Effects in Homogeneous Au Catalysis. Chem. Rev.2008,108,3351-3378.
    [12]Hashmi A S K. Gold-Catalyzed Organic Reactions. Chem. Rev.2007,107, 3180-3211.
    [13]Jimenez-Nunez E S, Echavarren A M. Gold-Catalyzed Cycloisomerizations of Enynes:A Mechanistic Perspective. Chem. Rev.2008,108,3326-3350.
    [14]Corma A, Leyva-Perez A, Sabater M J. Gold-Catalyzed Carbon-Heteroato m Bond-Forming Reactions. Chem. Rev.2011,111,1657-1712.
    [15]Gorin D J, Toste F D. Relativistic effects in homogeneous gold catalysis. Nature 2007,446,395-403.
    [16]Leyva-Perez A, Corma A. Similarities and Differences between the "Relati vistic" Triad Gold, Platinum, and Mercury in Catalysis. Angew. Chem. Int. Ed.2012,51,614-635.
    [17]Yanagisawa A. Acid Catalysis in Modern Organic Synthesis 2008,987-1018.
    [18]Yamamoto Y. From σ-to π-Electrophilic Lewis Acids. Application to Selective Organic Transformations. J. Org. Chem.2007,72,7817-7831.
    [19]Fiirstner A, Davies P W. Catalytic Carbophilic Activation:Catalysis by Platinum and Gold π Acids. Angew. Chem. Int. Ed.2007,46,3410-3449.
    [20]Dewar M. Bull. Soc. Chim. Fr.1951,18,79
    [21]Hashmi A S K, Hutchings G J. Gold Catalysis. Angew. Chem. Int. Ed.2006,45, 7896-7936.
    [22]Frenking G, Frohlich N. The Nature of the Bonding in Transition-Metal Compounds. Chem. Rev.2000,700,717-774.
    [23]Dedieu A. Theoretical Studies in Palladium and Platinum Molecular Chemistry. Chem. Rev.2000,100,543-600.
    [24]Pyykko P. Theoretical Chemistry of Gold. Angew. Chem. Int. Ed.2004,43, 4412-4456.
    [25]Pyykko P. Theoretical Chemistry of Gold Ⅱ. Inorg. Chim. Acta 2005,358, 4113-4130.
    [26]Pyykko P. Theoretical Chemistry of Gold Ⅲ. Chem. Soc. Rev.2008,37, 1967-1997.
    [27]Baenziger N, Bennett W, Soborofe D. Chloro(triphenylphosphine) gold (Ⅰ). Acta Crystallogr. B 1976,32,962-963.
    [28]Bongers N, Krause N. Golden Opportunities in Stereoselective Catalysis. Angew. Chem. Int. Ed.2008,47,2178-2181.
    [29]Hamilton G L, Kang E J, Mba M, et al. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 2007,317,496-499.
    [30]Hashmi A S K. Homogeneous gold catalysts and alkynes:A successful liaison. Gold Bull.2003,36,3-9.
    [31]Hashmi A S K. New and Selective Transition Metal Catalyzed Reactions of Allenes. Angew. Chem. Int. Ed.2000,39,3590-3593.
    [32]Krause N, Winter C. Gold-Catalyzed Nucleophilic Cyclization of Functionalized Allenes:A Powerful Access to Carbo- and Heterocycles. Chem. Rev.2011,111,1994-2009.
    [33]Zhang G, Cui L, Wang Y, et al. Homogeneous Gold-Catalyzed Oxidative Carboheterofunctionalization of Alkenes. J. Am. Chem. Soc.2010,132, 1474-1475.
    [34]Kobayashi S, Kakumoto K, Sugiura M. Transition Metal Salts-Catalyzed Aza-Michael Reactions of Enones with Carbamates. Org. Lett.2002,4, 1319-1322.
    [35]Yang C G, He C. Gold(Ⅰ)-Catalyzed Intermolecular Addition of Phenols and Carboxylic Acids to Olefins. J. Am. Chem. Soc.2005,127,6966-6967.
    [36]Brown T J, Dickens M G, Widenhoefer R A. Syntheses, X-ray Crystal Structures, and Solution Behavior of Monomeric, Cationic, Two-Coordinate Gold(Ⅰ) π-Alkene Complexes. J. Am. Chem. Soc.2009,131,6350-6351.
    [37]Irikura K K, Goddard W A. Energetics of Third-Row Transition Metal Methylidene Ions MCH2+(M= La, Hf, Ta, W, Re, Os, Ir, Pt, Au). J. Am. Chem. Soc.1994,116,8733-8740.
    [38]Gorin D J, Davis N R, Toste F D. Gold(I)-Catalyzed Intramolecular Acetylenic Schmidt Reaction. J. Am. Chem. Soc.2005,127,11260-11261.
    [39]Nakanishi W, Yamanaka M, Nakamura E. Reactivity and Stability of Organocopper(Ⅰ), Silver(Ⅰ), and Gold(Ⅰ) Ate Compounds and Their Trivalent Derivatives. J. Am. Chem. Soc.2005,127,1446-1453.
    [40]Komiya S, Kochi J K. Electrophilic cleavage of organogold complexes with acids. The mechanism of the reductive elimination of dialkyl(aniono)gold(Ⅲ) species. J. Am. Chem. Soc.1976,98,7599-7607.
    [41]Komiya S, Albright T A, Hoffmann R, et al. Reductive elimination and isomerization of organogold complexes. Theoretical studies of trialkylgold species as reactive intermediates. J. Am. Chem. Soc.1976,98,7255-7265.
    [42]Gonzalez-Arellano C, Corma A, Iglesias M, et al. Gold (Ⅰ) and (Ⅲ) catalyze Suzuki cross-coupling and homocoupling, respectively. J. Catal.2006,238, 497-501.
    [43]Gonzalez-Arellano C, Abad A, Corma A, et al. Catalysis by Gold(Ⅰ) and Gold(Ⅲ):A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angew. Chem. Int. Ed. 2007,46,1536-1538.
    [44]Han J, Liu Y, Guo R. Facile Synthesis of Highly Stable Gold Nanoparticles and Their Unexpected Excellent Catalytic Activity for Suzuki-Miyaura Cross-Coupling Reaction in Water. J. Am. Chem. Soc.2009,131,2060-2061.
    [45]Zhang G, Peng Y, Cui L, et al. Gold-Catalyzed Homogeneous Oxidative Cross-Coupling Reactions. Angew. Chem. Int. Ed.2009,48,3112-3115.
    [46]Peng Y, Cui L, Zhang G, et al. Gold-Catalyzed Homogeneous Oxidative C-O Bond Formation:Efficient Synthesis of 1-Benzoxyvinyl Ketones.J. Am. Chem. Soc.2009,131,5062-5063.
    [47]Marion N, Ramon R N S, Nolan S P. [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. J. Am. Chem. Soc.2008,131, 448-449.
    [48]Xiao J, Li X. Gold a-Oxo Carbenoids in Catalysis:Catalytic Oxygen-Atom Transfer to Alkynes. Angew. Chem. Int. Ed.2011,50,7226-7236.
    [49]Yeom H-S, Lee J-E, Shin S. Gold-Catalyzed Waste-Free Generation and Reaction of Azomethine Ylides:Internal Redox/Dipolar Cycloaddition Cascade. Angew. Chem. Int. Ed.2008,47,7040-7043.
    [50]Yeom H-S, Lee Y, Jeong J, et al. Stereoselective One-Pot Synthesis of 1-Aminoindanes and 5,6-Fused Azacycles Using a Gold-Catalyzed Redox-Pinacol-Mannich-Michael Cascade. Angew. Chem. Int. Ed.2010,49, 1611-1614.
    [51]Chen D, Song G, Jia A, et al. Gold-and Iodine-Mediated Internal Oxygen Transfer of Nitrone-and Sulfoxide-Functionalized Alkynes. J. Org. Chem.2011, 76,8488-8494.
    [52]Asao N, Sato K, Yamamoto Y. AuBr3-catalyzed cyclization of o-(alkynyl)nitrobenzenes. Efficient synthesis of isatogens and anthranils. Tetrahedron Lett.2003,44,5675-5677.
    [53]Jadhav A M, Bhunia S, Liao H-Y, et al. Gold-Catalyzed Stereoselective Synthesis of Azacyclic Compounds through a Redox/[2+2+1] Cycloaddition Cascade of Nitroalkyne Substrates. J. Am. Chem. Soc.2011,133,1769-1771.
    [54]Mukherjee A, Dateer R B, Chaudhuri R, et al. Gold-Catalyzed 1,2-Difunctionalizations of Aminoalkynes Using Only N-and O-Containing Oxidants.J. Am. Chem. Soc.2011,133,15372-15375.
    [55]Cui L, Peng Y, Zhang L. A Two-Step, Formal [4+2] Approach toward Piperidin-4-ones via Au Catalysis. J. Am. Chem. Soc.2009,131,8394-8395.
    [56]Noey E L, Luo Y, Zhang L, et al. Mechanism of gold(I)-catalyzed rearrangements of acetylenic amine-N-oxides:computational investigations lead to a new mechanism confirmed by experiment. J. Am. Chem. Soc.2012,134, 1078-1084.
    [57]Cui L, Zhang G, Peng Y, et al. Gold or No Gold:One-Pot Synthesis of Tetrahydrobenz[b]azepin-4-ones from Tertiary N-(But-3-ynyl)anilines. Org. Lett. 2009,11,1225-1228.
    [58]Yang R, Schulman S G. Extraordinary hyperconjugation of the methyl group in the S1 state of 8-methylquinoline. Luminescence 2001,16,129-133.
    [59]Coperet C, Adolfsson H, Khuong T-A V, et al. A Simple and Efficient Method for the Preparation of Pyridine N-Oxides. J. Org. Chem.1998,63,1740-1741.
    [60]Ye L, Cui L, Zhang G, et al. Alkynes as Equivalents of a-Diazo Ketones in Generating a-Oxo Metal Carbenes:A Gold-Catalyzed Expedient Synthesis of Dihydrofuran-3-ones. J. Am. Chem. Soc.2010,132,3258-3259.
    [61]Lu B, Li C, Zhang L. Gold-Catalyzed Highly Regioselective Oxidation of C-C Triple Bonds without Acid Additives:Propargyl Moieties as Masked α,β-Unsaturated Carbonyls. J. Am. Chem. Soc.2010,132,14070-14072.
    [62]Wang Y, Ji K, Lan S, et al. Rapid Access to Chroman-3-ones through Gold-Catalyzed Oxidation of Propargyl Aryl Ethers. Angew. Chem. Int. Ed. 2012,5/,1915-1918.
    [63]Bhunia S, Ghorpade S, Huple D B, et al. Gold-Catalyzed Oxidative Cyclizations of cis-3-En-1-ynes To Form Cyclopentenone Derivatives. Angew. Chem. Int. Ed. 2012,51,2939-2942.
    [64]Qian D, Zhang J. A gold(i)-catalyzed intramolecular oxidation-cyclopropanation sequence of 1,6-enynes:a convenient access to [n.1.0]bicycloalkanes. Chem. Commun.2011,47,11152-11154.
    [65]Shapiro N D, Toste F D. Rearrangement of Alkynyl Sulfoxides Catalyzed by Gold(I) Complexes. J. Am. Chem. Soc.2007,129,4160-4161.
    [66]Li G, Huang X, Zhang L. Platinum-Catalyzed Formation of Cyclic-Ketone-Fused Indoles from N-(2-Alkynylphenyl)lactams. Angew. Chem. Int. Ed.2008,47,.346-349.
    [67]Xu H, Zhang W, Shu D, et al. Synthesis of Cyclobutenes by Highly Selective Transition-Metal-Catalyzed Ring Expansion of Cyclopropanes. Angew. Chem. Int. Ed.2008,47,8933-8936.
    [68]Li C-W, Pati K, Lin G-Y, et al. Gold-Catalyzed Oxidative Ring Expansions and Ring Cleavages of Alkynylcyclopropanes by Intermolecular Reactions Oxidized by Diphenylsulfoxide. Angew. Chem. Int. Ed.2010,49,9891-9894.
    [69]Hashmi A S K, Buhrle M, Salathe R, et al. Gold Catalysis:Synthesis of 3-Acylindenes from 2-Alkynylaryl Epoxides. Adv. Synth. Catal.2008,350, 2059-2064.
    [70]Lin G-Y, Li C-W, Hung S-H, et al. Diversity in Gold- and Silver-Catalyzed Cycloisomerization of Epoxide-Alkyne Functionalities. Org. Left.2008,10, 5059-5062.
    [71]Trost B M, Krische M J. Transition Metal Catalyzed Cycloisomerizations. Synlett 1998,01,1-16.
    [72]Lloyd-Jones G C. Mechanistic aspects of transition metal catalysed 1,6-diene and 1,6-enyne cycloisomerisation reactions. Org. Biomol. Chem.2003,1, 215-236.
    [73]Trost B M, Toste F D, Pinkerton A B. Non-Metathesis Ruthenium-Catalyzed C-C Bond Formation. Chem. Rev.2001,101,2067-2096.
    [74]Aubert C, Buisine O, Malacria M. The Behavior of l,n-Enynes in the Presence of Transition Metals. Chem. Rev.2002,102,813-834.
    [75]Carson C A, Kerr M A. Heterocycles from cyclopropanes:applications in natural product synthesis. Chem. Soc. Rev.2009,38,3051-3060.
    [76]Ojima I, Tzamarioudaki M, Li Z, et al. Transition Metal-Catalyzed Carbocyclizations in Organic Synthesis. Chem. Rev.1996,96,635-662.
    [77]Zeni G, Larock R C. Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry. Chem. Rev.2004,104,2285-2310.
    [78]Zhang M. Construction of Heterocycle Scaffolds via Transition Metal-Catalyzed sp2 C-H Functionalization. Adv. Synth. Catal.2009,351,2243-2270.
    [79]Doyle M P, Duffy R, Ratnikov M, et al. Catalytic Carbene Insertion into C-H Bonds. Chem. Rev.2009,110,704-724.
    [80]Davies H M L, Morton D. Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev.2011,40,1857-1869.
    [81]Doyle M P, Anthony M M, Tao Y. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds:From Cyclopropanes to Ylides, Wiley, New York,1998.
    [82]Dejaegher Y, Kuz'menok N M, Zvonok A M, et al. The Chemistry of Azetidin-3-ones, Oxetan-3-ones, and Thietan-3-ones. Chem. Rev.2001,102, 29-60.
    [83]Pons M, Simons S S. Facile, high-yield synthesis of spiro C-17-steroidal oxetan-3'-ones. J. Org. Chem.1981,46,3262-3264.
    [84]Rowland A T, Bennett P J, Shoupe T S. Synthesis and characterization of ring-B cholestane-3-oxetanones. J. Org. Chem.1968,33,2426-2436.
    [85]Marshall J R, Walker J. Experiments on the synthesis of simple C-substituted derivatives of dihydroxyacetone. J. Chem. Soc.1952,467-475.
    [86]Berezin G H. U.S. Patent 3.297.719,1967; Chem. Abstr.1967,67,21807s.
    [87]Wuitschik G, Rogers-Evans M, Muller K, et al. Oxetanes as Promising Modules in Drug Discovery. Angew. Chem.2006,118,7900-7903.
    [88]Burkhard J A, Wagner B, Fischer H, et al. Synthesis of Azaspirocycles and their Evaluation in Drug Discovery. Angew. Chem. Int. Ed.2010,49,3524-3527.
    [89]Wuitschik G, Rogers-Evans M, Miiller K, et al. Oxetanes as Promising Modules in Drug Discovery. Angew. Chem. Int. Ed.2006,45,7736-7739.
    [90]Li D B, Rogers-Evans M, Carreira E M. Synthesis of Novel Azaspiro[3.4]octanes as Multifunctional Modules in Drug Discovery. Org. Lett. 2011,13,6134-6136.
    [91]Burkhard J A, Guerot C, Knust H, et al. Synthesis and Structural Analysis of a New Class of Azaspiro[3.3]heptanes as Building Blocks for Medicinal Chemistry. Org. Lett.2010,12,1944-1947.
    [92]Wuitschik G, Rogers-Evans M, Buckl A, et al. Spirocyclic Oxetanes:Synthesis and Properties. Angew. Chem. Int. Ed.2008,47,4512-4515.
    [93]Burkhard J A, Wuitschik G, Rogers-Evans M, et al. Oxetanes as Versatile Elements in Drug Discovery and Synthesis. Angew. Chem. Int. Ed.2010,49, 9052-9067.
    [94]Wuitschik G, Carreira E M, Wagner B, et al. Oxetanes in Drug Discovery: Structural and Synthetic Insights. J. Med. Chem.2010,53,3227-3246.
    [95]Ducruix A, Pascard C, David S, et al. Crystal and molecular structure of a carbohydrate-derived oxetan-3-one. Definitive evidence for a novel participation of a pyranose ring oxygen atom. J. Chem. Soc., Perkin Trans.2 1976,1678-1682.
    [96]Albert P, Marcus M Sa. Rhodium(II)-catalyzed intramolecular insertion reaction of multifunctional diazo compounds:synthesis of oxetan-3-one-2-carboxylate and other heterocycles.. Quim. Nova 1999,6,815-820.
    [97]Williams H D. U.S. Patent 3.317.329,1967
    [98]Kozikowski A P, Fauq A H. Synthesis of Novel Four-Membered Ring Amino Acids as Modulators of the-Methyl-D-Aspartate (NMDA) Receptor Complex. Synlett 1991,11,783-784.
    [99]de Fremont P, Marion N, Nolan, S P. Cationic NHC-gold(I) complexes: Synthesis, isolation, and catalytic activity. J. Organomet. Chem.2009,694, 551-560.
    [100]Kobayashi J, Cheng J-F, Ishibashi M, et al. Penaresidin A and B, two novel azetidine alkaloids with potent actomyosin ATPase-activating activity from the Okinawan marine sponge Penares sp. J. Chem. Soc, Per kin Trans.1 1991, 1135-1137.
    [101]Ohshita K, Ishiyama H, Takahashi Y, et al. Synthesis of penaresidin derivatives and its biological activity. Biorg. Med. Chem.2007,15,4910-4916.
    [102]Alvi K A, Jaspars M, Crews P, et al. Penazetidine A, an alkaloid inhibitor of protein kinase C. Biorg. Med. Chem. Lett.1994,4,2447-2450.
    [103]Suzuki S, Isono K, Nagatsu J, et al. A New Antibiotic, Polyoxin A. J. Antibiot. 1965,18,131.
    [104]Isono K, Nagatsu J, Kawashima Y, et al. Studies on Polyoxins, Antifungal Antibiotics Part I. Isolation and Characterization of Polyoxins A and B. Agri. Biol. Chem.1965,29,848-854.
    [105]Yagil Y M M, Frasier L, Oizumi K, et al. Effects of CS-905, a novel dihydropyridine calcium channel blocker, on arterial pressure, renal excretory function, and inner medullary blood flow in the rat. Am. J. Hypertens.1994, 637-646.
    [106]Privitera M, Treiman D, Pledger G, et al. Dezinamide for partial seizures. Neurology 1994,44,1453-1453.
    [107]Johnson D N, Osman M A, Cheng L K, et al. Pharmacodynamics and pharmacokinetics of AHR-11748, a new antiepileptic agent, in rodents. Epilepsy Res.1990,5,185-191.
    [108]Isoda T, Yamamura I, Tamai S, et al. A practical and facile synthesis of azetidine derivatives for oral carbapenem, L-084. Chem. Pharm. Bull.2006,54, 1408-1411.
    [109]Dejaegher Y, Kuz'menok N M, Zvonok A M, et al. The Chemistry of Azetidin-3-ones, Oxetan-3-ones, and Thietan-3-ones. Chem. Rev.2002,102, 29-60.
    [110]Moore J A, Medeiros R W. Heterocyclic Studies. III. A Ring Closure Reaction of Diazoacetylpyrazolines. J. Am. Chem. Soc.1959,81,6026-6028.
    [111]Heck J V. U. S. Patent 4.529.597,1985; Chem. Abstr.1985,1103.
    [112]Pusino A, Saba A, Desole G, et al. Acetolysis of α'-sulfonamido α-chloro and α-diazo ketones. A convenient synthesis of 3-azetidinones. La Gazzetta chimica italiana 1985,115,33-36.
    [113]Hargrove W W S. African Patent 6.705.790,1968; Chem. Abstr.1969,70, 87550w
    [114]Hashmi A S K, Weyrauch J P, Frey W, et al. Gold Catalysis:Mild Conditions for the Synthesis of Oxazoles from N-Propargylcarboxamides and Mechanistic Aspects. Org. Lett.2004,6,4391-4394.
    [115]Cui L, Li C, Zhang L. A Modular, Efficient, and Stereoselective Synthesis of Substituted Piperidin-4-ols. Angew. Chem. Int. Ed.2010,49,9178-9181.
    [116]Wuts P G M, Greene T W, Greene's Protective Groups inOrganic Synthesis,4th ed.,, Wiley-Interscience, Hoboken, NJ,2007.
    [117]Sun P, Weinreb S M, Shang M. tert-Butylsulfonyl (Bus), a New Protecting Group for Amines.J. Org. Chem.1997,62,8604-8608.
    [118]Robak M T, Herbage M A, Ellman J A. Synthesis and Applications of tert-Butanesulfinamide. Chem. Rev.2010,110,3600-3740.
    [119]Ellman J A, Owens T D, Tang T P. N-tert-Butanesulfinyl Imines:Versatile Intermediates for the Asymmetric Synthesis of Amines. Ace. Chem. Res.2002, 55,984-995.
    [120]Gerstenberger B S, Lin J, Mimieux Y S, et al. Structural Characterization of an Enantiomerically Pure Amino Acid Imidazolide and Direct Formation of the β-Lactam Nucleus from an a-Amino Acid. Org. Lett.2008,10,369-372.
    [121]Kirmse W.100 Years of the Wolff Rearrangement. Eur. J. Org. Chem.2002,14, 2193-2256.
    [122]Fors B P, Watson D A, Biscoe M R, et al. A Highly Active Catalyst for Pd-Catalyzed Amination Reactions:Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides. J. Am. Chem. Soc.2008,130,13552-13554.
    [123]Mezailles N, Ricard L, Gagosz F. Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)imidate Complexes as New Highly Efficient and Air-Stable Catalysts for the Cycloisomerization of Enynes. Org. Lett.2005,7, 4133-4136.
    [124]Chen B -L, Wang B, Lin G -Q. Highly Diastereoselective Addition of Alkynylmagnesium Chlorides to N-tert-Butanesulfinyl Aldimines:A Practical and General Access to Chiral a-Branched Amines. J. Org. Chem.2009,75, 941-944.
    [125]Turchi I J, Dewar M J S. Chemistry of oxazoles. Chem. Rev.1975,75,389-437.
    [126]Lipshutz B H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev.1986,86,795-819.
    [127]Jin Z, Li Z, Huang R. Muscarine, imidazole, oxazole, thiazole, Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep.2002,19,454-476.
    [128]Lewis J R. Amaryllidaceae, Sceletium, imidazole, oxazole, thiazole, peptide and miscellaneous alkaloids. Nat. Prod. Rep.2002,19,223-258.
    [129]Jin Z. Muscarine, imidazole, oxazole, and thiazole alkaloids. Nat. Prod. Rep. 2011,25,1143-1191.
    [130]Davyt D, Serra G. Thiazole and Oxazole Alkaloids:Isolation and Synthesis. Mar. Drugs 2010,8,2755-2780.
    [131]Rudi A. Stein Z, Green S, et al. Phorbazoles A D, novel chlorinated phenylpyrrolyloxazoles from the marine sponge phorbas aff. clathrata. Tetrahedron Lett.1994,35,2589-2592.
    [132]Sinha R R M, Gehring A C, Milne J, et al. Thiazole and oxazole peptides: biosynthesis and molecular machinery. Nat. Prod. Rep.1999,16,249-263.
    [133]Hartmann-Thompson C, Keeley D L, Pollock K M, et al. One-and Two-Photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution, and on Surfaces. Chem. Mater.2008,20,2829-2838.
    [134]Narasimhan MJ Jr, Ganla VG. Pimprinine in the treatment of hyperkinetic diseases. Hindustan Antibiot. Bull.1967,9,138-143.
    [135]Koyama Y, Yokose K, Dolby L J. Isolation, characterization and synthesis of pimprinine, pimprinethine and pimprinaphine, metabolites of Streptover ticillium olivoreticuli. Agri. Biol. Chem 1981,45,1285-1287.
    [136]Barbachyn M R, Ford C W, Oxazolidinone Structure-Activity Relationships Leading to Linezolid. Angew. Chem. Int. Ed.2003,42,2010-2023.
    [137]Tomer I, Mishra R, Priyanka N K S, et al. Oxazole:The molecule of diverse biological and medicinal significance. J. Pharm. Res.2011,4,2975-2980.
    [138]Merkul E, Muller T J J. A new consecutive three-component oxazole synthesis by an amidation-coupling-cycloisomerization (ACCI) sequence. Chem. Commun. 2006,46,4817-4819.
    [139]Pan Y-M, Zheng F-J, Lin H-X, et al. Bransted Acid-Catalyzed Propargylation/Cycloisomerization Tandem Reaction:One-Pot Synthesis of Substituted Oxazoles from Propargylic Alcohols and Amides. J. Org. Chem. 2009,74,3148-3151.
    [140]Zhang J, Coqueron P-Y, Vors J-P, et al. Synthesis of 5-Amino-oxazole-4-c arboxylates from a-Chloroglycinates. Org. Lett.2010,12,3942-3945.
    [141]Lee J C, Song I-G. Mercury(II) p-toluenesulfonate mediated synthesis of oxazoles under microwave irradiation. Tetrahedron Lett.2000,41,5891-5894.
    [142]Webb M R, Donald C, Taylor R J K. A general route to the Streptomyces-derived inthomycin family:the first synthesis of (+)-inthomycin B. Tetrahedron Lett.2006,47,549-552.
    [143]Lee S, Yi K Y, Youn S J, et al. (2-Aryl-5-methylimidazol-4-ylcarbonyl) guanidines and (2-aryl-5-methyloxazol-4-ylcarbonyl)guanidines as NHE-1 inhibitors. Biorg. Med. Chem. Lett.2009,19,1329-1331.
    [144]Epple R, Cow C, Xie Y, et al. Novel Bisaryl Substituted Thiazoles and Oxazoles as Highly Potent and Selective Peroxisome Proliferator-Activated Receptor 8 Agonists. J. Med. Chem.2009,53,77-105.
    [145]Yuji Oikawa T Y, Kunihiko Mohri, Osamu Yonemitsu. Synthesis of Pimprinine and Related Oxazolylindole Alkaloids from N-Acyl Derivatives of Tryptamine and Tryptophari Methyl Ester by DDQ Oxidation. Heterocycles 1979,12, 1457-1462.
    [146]Erian A, Sherif S, Gaber H. The Chemistry of a-Haloketones and Their Utility in Heterocyclic Synthesis. Molecules 2003,8,793-865.
    [147]De Kimpe·N, Verhe R. The Chemistry of a-Haloketones, a-Haloadehydes, and a-Haloimines, Wiley, New York 1999.
    [148]Kende A S. The Favorskii Rearrangement of Haloketones. In Organic Reactions, John Wiley & Sons, Inc.2004.
    [149]Guijarro D, Yus M. The Favorskii Rearrangement:Synthetic Applications.
    [150]Rogelio R, William R D Jr. The Reformatsky reaction in organic synthesis. Recent advances. Tetrahedron 2004,60,9325-9374.
    [151]Thomas G, de Chimie P. Medicinal Chemistry:An Introduction. John Wiley: 2000.
    [152]Dobrota C, Fasci D, Hadade N D, et al. Glycine Fluoromethylketones as SENP-Specific Activity Based Probes. ChemBioChem 2012,13,80-84.
    [153]Prakash G K S, Ismail R, Garcia J, et al.α-Halogenation of carbonyl compounds: halotrimethylsilane-nitrate salt couple as an efficient halogenating reagent system. Tetrahedron Lett.2011,52,1217-1221.
    [154]Sengupta S, Raoa G V, Dubeyb P. Synthesis and biological evaluation of novel oxalamido derivatives as caspase-3 inhibitors. Indian J. Chem.2011,50, 901-905.
    [155]Gao G, Liu X, Pavlovsky A, et al. Identification of selective enzyme inhibitors by fragment library screening. J. Biomol. Screen.2010,15,1042-1050.
    [156]Perez D I, Palomo V, Perez C N, et al. Switching Reversibility to Irreversibility in Glycogen Synthase Kinase 3 Inhibitors:Clues for Specific Design of New Compounds. J. Med. Chem.2011,54,4042-4056.
    [157]Weiwer M, Bittker J A, Lewis T A, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett.2012,22,1822-1826.
    [158]Seehra J S, Jordan P M. Aminolevulinic Acid Dehydratase. Eur. J. Biochem. 1981,113,435-446.
    [159]Li N, Chu X, Liu X, et al. Probing the active site of rat porphobilinogen synthase using newly developed inhibitors. Bioorg. Chem.2009,37,33-40.
    [160]Dryjanski M, Kosley L L, Pietruszko R. N-tosyl-L-phenylalanine chloromethyl ketone, a serine protease inhibitor, identifies glutamate 398 at the coenzyme-binding site of human aldehyde dehydrogenase. Evidence for a second "naked anion" at the active site. Biochemistry.1998,37,14151-14156.
    [161]Kam C-M, Hudig D, Powers J C. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim. Biophys. Acta.2000,1477,307-323.
    [162]Roman G, Riley J G, Vlahakis J Z, et al. Heme oxygenase inhibition by 2-oxy-substituted 1-(1H-imidazol-l-y1)-4-phenylbutanes:Effect of halogen substitution in the phenyl ring. Biorg. Med. Chem.2007,15,3225-3234.
    [163]Gong L-L, Fang L-H, Peng J-H, et al. Integration of virtual screening with high-throughput screening for the identification of novel Rho-kinase I inhibitors. J. Biotechnol.2010,145,295-303.
    [164]Zhao H, Tang L, Wang X, et al. Structure of a snake venom phospholipase A2 modified by p-bromo-phenacyl-bromide. Toxicon 1998,36,875-886.
    [165]Carta A, Briguglio I, Piras S, et al. Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors. Bioorg. Med. Chem.2011,19, 7070-7084.
    [166]Arabaci G, Yi T, Fu H, et al. α-Bromoacetophenone derivatives as neutral protein tyrosine phosphatase inhibitors:structure-Activity relationship. Biorg. Med. Chem. Lett.2002,12,3047-3050.
    [167]Arabaci G, Guo X-C, Beebe K D, et al. α-Haloacetophenone Derivatives As Photoreversible Covalent Inhibitors of Protein Tyrosine Phosphatases. J. Am. Chem. Soc.1999,121,5085-5086.
    [168]Rodgers J D R, Darius J A, Argyrios G, et al. PCT Int. Appl.2005, WO 2005105814.
    [169]Martelletti A, Harald J, Dittgen J, et al. PCT Int. Appl.2010, WO 2010063422.
    [170]Kritikou C S, Kevin J. PCT Int. Appl.2010, WO 2010150100.
    [171]Ko Y H. U.S. Pat.20100197612,20110008418.
    [172]Imperiali B, Elvedin L, Gonzalez V, et al. PCT Int. Appl.2011, WO 2011025546.
    [173]Gupta A S, Hyman M, Alaoui J, et al. U.S. Pat. Appl. Publ.2011,20110319459
    [174]Garske A L S, Kevan M. PCT Int. Appl.2011, WO 2011153553.
    [175]Davis S C G, John H, Gray David R, et al. PCT Int. Appl.2004, WO 2004015132.
    [176]Conde R S M, Gil Ana, Perez F D, et al. PCT Int. Appl.2003, WO 2003055479
    [177]Bolea C. PCT Int. Appl.2010, WO 2010079239
    [178]Erian A W. Recent trends in the Chemistry of fluorinated five and six-membered heterocycles. J. Heterocycl. Chem.2001,38,793-808.
    [179]Clibbens D A, Nierenstein M. CLXV.-The action of diazomethane on some aromatic acyl chlorides. J. Chem. Soc., Trans.1915,107,1491-1494.
    [180]Wang X, Thottathil J K, Polniaszek R P. Preparation of α-Chloroketones by the Chloroacetate Claisen Reaction. Synlett 2000,2000,0902,0904.
    [181]Nebot J, Romea P, Urpi F 1, Stereoselective Synthesis of Highly Functionalized Structures from Lactate-Derived Halo Ketones. J. Org. Chem.2009,74, 7518-7521.
    [182]Finkielsztein L M, Aguirre J M, Lantano B, et al. ZnI2/NaCNBH3 as an Efficient Reagent for Regioselective Ring Opening of the Benzylic Epoxide Moiety. Synth. Commun.2004,34,895-901.
    [183]Gupta S, Mishra M, Sen N, et al. DbMDR:A Relational Database for Multidrug Resistance Genes as Potential Drug Targets. Chem. Biol. Drug Des.2011,78, 734-738.
    [184]Wang B G, Yu S C, Chai X Y, et al. Design synthesis and biological evaluation of 3-substituted triazole derivatives. Chin. Chem. Lett.2011,22,519-522.
    [185]Henise J C, Taunton J, Irreversible Nek2 Kinase Inhibitors with Cellular Activity. J. Med. Chem.2011,54,4133-4146.
    [186]Golebiewski W M, Gucma M. Applications of N-Chlorosuccinimide in Organic Synthesis. Synthesis 2007,23,3599,3619.
    [187]Arbuj S S, Waghmode S B, Ramaswamy A V. Photochemical a-bromination of ketones using N-bromosuccinimide:a simple, mild and efficient method. Tetrahedron Lett.2007,48,1411-1415.
    [188]Das B, Venkateswarlu K, Holla H, et al. Sulfonic acid functionalized silica:A remarkably efficient heterogeneous reusable catalyst for α-monobromination of carbonyl compounds using N-bromosuccinimide. J. Mol. Catal. A:Chem.2006, 253,107-111.
    [189]Dieter R K, Nice L E, Velu S E. Oxidation of α,β-enones and alkenes with oxone and sodium halides:A convenient laboratory preparation of chlorine and bromine. Tetrahedron Lett.1996,37,2377-2380.
    [190]Salama T A, Novak Z. N-Halosuccinimide/SiCl4 as general, mild and efficient systems for the a-monohalogenation of carbonyl compounds and for benzylic halogenation. Tetrahedron Lett.2011,52,4026-4029.
    [191]Doyle M P. Catalytic methods for metal carbene transformations. Chem. Rev. 1986,86,919-939.
    [192]Davies H M L, Beckwith R E J. Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid-Induced C-H Insertion. Chem. Rev.2003,103, 2861-2904.
    [193]Lee Y R, Jung Y U. Efficient synthesis of [small beta]-substituted [small alpha]-haloenones by rhodium(ii)-catalyzed and thermal reactions of iodonium ylides. J. Chem. Soc., Perkin Trans.1 2002,1309-1313.
    [194]Dias H V R, Browning R G, Polach S A, et al. Activation of Alkyl Halides via a Silver-Catalyzed Carbene Insertion Process. J. Am. Chem. Soc.2003,125, 9270-9271.
    [195]Urbano J, Braga A A C, Maseras F, et al. The Mechanism of the Catalytic Functionalization of Haloalkanes by Carbene Insertion:An Experimental and Theoretical Study. Organometallics 2009,28,5968-5981.
    [196]Pirrung M C, Zhang J, Lackey K, et al. Reactions of a Cyclic Rhodium Carbenoid with Aromatic Compounds and Vinyl Ethers. J. Org. Chem.1995,60, 2112-2124.
    [197]Lee Y R, Cho B S, Kwon H J. A convenient and efficient preparation of β-substituted a-haloenones from diazodicarbonyl compounds. Tetrahedron 2003, 59,9333-9347.
    [198]Muller P, Allenbach Y F, Bernardinelli G. On the Enantioselectivity of Tr ansition Metal-Catalyzed 1,3-Cycloadditions of 2-Diazocyclohexane-1,3-dion es. Helv. Chim. Acta 2003,86,3164-3178.
    [199]Marion N, Nolan S P. N-Heterocyclic carbenes in gold catalysis. Chem. Soc. Rev. 2008,57,1776.
    [200]Nolan S P. The Development and Catalytic Uses of N-Heterocyclic Carbene Gold Complexes. Acc. Chem. Res.2010,44,91-100.
    [201]Cheng X, Jiang X, Yu Y, et al. Efficient Synthesis of 3-Chloromethyl-2(5 H)-furanones and 3-Chloromethyl-5,6-dihydropyran-2-ones via the PdC12-Catalyzed Chlorocyclocarbonylation of 2,3-or 3,4-Allenols. J. Org. Chem. 2008,73,8960-8965.
    [202]Zhang G, Zhang L. Au-Containing All-Carbon 1,3-Dipoles:Generation and [3+2] Cycloaddition Reactions. J. Am. Chem. Soc.2008,130,12598-12599.
    [203]Frantz D E, Fassler R, Carreira E M. Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes. J. Am. Chem. Soc.2000,122,1806-1807.
    [204]Miller K A, Shanahan C S, Martin S F. The Pauson-Khand reaction as a new entry to the synthesis of bridged bicyclic heterocycles:application to the enantioselective total synthesis of (-)-alstonerine. Tetrahedron 2008,64, 6884-6900.
    [205]Lundkvist J R M, Ringdahl B, Hacksell U. Conformationally restricted an alogs of the muscarinic agent N-methyl-N-(1-methyl-4-pyrrolidino-2-butyny 1)acetamide. J. Med. Chem.1989,32,863-869.
    [206]McAlonan H, Stevenson P J. Asymmetric synthesis of S-(+)-4-amino-5-hex ynoic acid. Tetrahedron:Asymmetry 1995,6,239-244.
    [207]Hashmi A S K, Rudolph M, Siehl H-U, et al. Gold Catalysis:Deuterated Substrates as the Key for an Experimental Insight into the Mechanism and Selectivity of the Phenol Synthesis. Chem. Eur. J.2008,14,3703-3708.
    [208]Patterson A W, Ellman J A, Asymmetric Synthesis of a,a-Dibranched Propargylamines by Acetylide Additions to N-tert-Butanesulfinyl Ketimines. J. Org. Chem.2006,71,7110-7112.
    [209]Hamzik P J, Brubaker J D. Reactions of Oxetan-3-tert-butylsulfinimine for the Preparation of Substituted 3-Aminooxetanes. Org. Lett.2010,12,1116-1119.
    [210]Barrero A F, Herrador M M, Quilez del Moral J F, et al. Mild TiIII-and Mn/ZrIV-Catalytic Reductive Coupling of Allylic Halides:Efficient Synthesis of Symmetric Terpenes. J. Org. Chem.2007,72,2988-2995.
    [211]Tsuji Y, Kusui T, Kojima T, et al. Palladium-Complex-Catalyzed Cyanation of Allylic Carbonates and Acetates Using Trimethylsilyl Cyanide. Organometallics 1998,17,4835-4841.
    [212]Emziane M, Lhoste P, Sinou D. Epoxide-opening with trimethylsilyl cyanide catalyzed by tetraisopropyi orthotitanate. J. Mol. Catal.1988,49, L23-L25.
    [213]Oakdale J S, Boger D L. Total Synthesis of Lycogarubin C and Lycogalic Acid. Org. Lett.2010,12,1132-1134.
    [214]Keni M, Tepe J J. One-Pot Friedel-Crafts/Robinson-Gabriel Synthesis of Oxazoles Using Oxazolone Templates. J. Org. Chem.2005,70,4211-4213.
    [215]Huang X, Chen J-M. A Facile One-pot Synthesis of2,5-Disubstituted Oxazoles Using Poly[styrene(iodosodiacetate)]. Chin. J. Chem.2004,22,222-224.
    [216]Schuh K, Glorius F. A Domino Copper-Catalyzed C-N and C-O Cross-Coupling for the Conversion-of Primary Amides into Oxazoles. Synthesis 2007,15, 2297-2306.
    [217]Burkamp F, Fletcher S R. Preparation of 3-aminoalkylbenzo[b]thiophenes. J. Heterocycl. Chem.2002,39,1177-1187.
    [218]Ram R N, Manoj T P, Copper(Ⅰ)-Promoted Synthesis of Chloromethyl Ketones from Trichloromethyl Carbinols. J. Org. Chem.2008,73,5633-5635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700