功能化Mn掺杂ZnS量子点的合成及在生物传感和细胞成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于传统的有机荧光染料来说,量子点具有明显的优越性,包括宽而连续的激发光谱、窄而对称的发射光谱、精确可调的发射波长以及强的抗光漂白能力。随着量子点合成和表面功能化研究的发展,量子点在生物样品检测和成像中发挥着越来越重要的作用。本论文旨在合成功能化的Mn掺杂ZnS量子点用于生物样品检测和成像,并简要讨论了量子点与目标物相互作用的机理。主要研究内容如下:
     (1)发展了一种简便、快速合成高质量水溶性Mn掺杂ZnS量子点的方法,以带正电荷的聚乙烯亚胺为稳定剂,通过微波和超声波的协同作用合成粒径均匀的带正电荷的Mn掺杂ZnS量子点,该量子点对三磷酸鸟苷有高的选择性和灵敏度,能区别于三磷酸腺苷、三磷酸胞苷、三磷酸尿苷、二磷酸腺苷和一磷酸腺苷,为三磷酸鸟苷的检测提供了新方法。在pH7.2的条件下得到了量子点磷光增强值与三磷酸鸟苷浓度之间的线性关系,检出限为0.6μM。对不含三磷酸鸟苷和含有15μM三磷酸鸟苷体系的磷光差值平行测定11次的相对标准偏差为1.7%。聚乙烯亚胺包覆的Mn掺杂ZnS量子点对三磷酸鸟苷的响应在3分钟内就能达到稳定。此外,我们详细考察了聚乙烯亚胺包覆的Mn掺杂ZnS量子点的合成条件、检测过程中的pH值和检测过程中盐度的影响。最终,实现该探针对实际样品中三磷酸鸟苷的检测。结果表明,微波超声波辅助合成的聚乙烯亚胺包覆的Mn掺杂ZnS量子点是一种性能优良的光学探针。
     (2)采用超声波辅助法合成了具有优良光学性质的三磷酸腺苷包覆的Mn掺杂ZnS量子点,基于超分子Mg~(2+)-三磷酸腺苷-精氨酸三元体系,在Mg~(2+)存在的条件下,三磷酸腺苷包覆的Mn掺杂ZnS量子点实现了对精氨酸和甲基化精氨酸的快速、高选择性和高灵敏度检测。在量子点合成过程中,三磷酸腺苷作为配体可以增强量子点的水溶性和防止量子点聚集,并且保留三磷酸腺苷对目标物识别的特殊官能团。为了考察超声波辅助水相合成方法比传统合成方法的优势,将两种合成方法所得的三磷酸腺苷包覆的Mn掺杂ZnS量子点进行了对比,结果显示,超声波辅助水相合成法对比传统合成方法,不但合成时间短,而且合成量子点的光强比传统方法合成的量子点光强强2.3倍。此外,我们详细考察了三磷酸腺苷包覆的Mn掺杂ZnS量子点对精氨酸检测过程中紫外光谱、共振光散射光谱、磷光寿命和核磁信号的变化。考察了体系的pH值、缓冲溶液的浓度、量子点的浓度和Mg~(2+)的浓度对量子点响应信号的影响。通过实验条件的优化,三磷酸腺苷包覆的量子点在Mg~(2+)存在下对精氨酸和甲基化精氨酸的检测限为0.23μM。最终,实现该探针对实际样品中精氨酸和甲基化精氨酸的检测。
     (3)设计合成了具有优良性质和低毒的二氧化硅包覆硫离子富集的Mn掺杂ZnS量子点(SiO2-S2--Mn-ZnS)探针,实现了细胞内锌离子的原位成像。额外包入探针的硫离子使Mn掺杂的ZnS量子点表面产生悬空键,外加的锌离子与硫离子相互作用,消除了量子点表面由硫离子引起的悬空键,使得SiO2-S2--Mn-ZnS量子点的光谱增强。二氧化硅的包覆,不但增强了该探针的稳定性和生物相容性,而且在细胞成像过程中刺激了细胞对探针的内吞作用。该方法对Zn2+的检出限为80nM,线性范围在0.3~15μM,对不含锌离子和含有3μM锌离子体系的光强差值平行测定11次的相对标准偏差为1.2%。
Photoluminescence spectrometry is the technique of choice for biosensing andcell imaging owing to the apparent advantages of fluorescent probes over othermethods in virtue of sensitivity and convenience. Quantum dots (QDs) offer uniqueadvantages over organic dyes such as great photostability, high photoluminescenceefficiency, size-dependent emission wavelengths, broad excitation and sharp emissionprofiles, thus QDs have been widely explored for biosensing and cell imaging. Themain contents are summarized as follows:
     (1) Ultrasonic and microwave irradiation-assisted synthesis of PEI-capped Mn-dopedZnS QDs for selective detection of guanosine5’-triphosphate (GTP) wasinvestigated. Compared with fluorescent tags for biomolecules, Mn-doped ZnSQDs have many advantages, such as bright photoluminescence, broad ultraviolet,narrow emission, and high photostability. Application of ultrasonic andmicrowave technique for the synthesis of QDs is gaining importance. Theultrasonic and microwave technique gives several beneficial advantages such asrapid synthesis, formation of uniform crystals, homogeneous nucleation, facilemorphology control, energy efficiency and so on. Under the optimal conditions,the PEI-capped Mn-doped ZnS QDs gives excellent selectivity andreproducibility, and low detection limit (3s;0.6μM). The developedphosphorescence probe favors biolobical applications since the interference fromscattering light and autofluorescence is effecitively eliminated.
     (2) Ultrasonic assisted synthesis of adenosine triphosphate (ATP)-capped Mn-dopedMn-doped ZnS QDs for rapid, selective and sensitive detection of arginine andmethylated arginine based on the supramolecular Mg~(2+)-ATP-arginine ternarysystem was investigated. The ultrasonic approach was used for the synthesis ofATP-capped QDs because of its rapid, simple, low cost, and efficient merits. Thechoice of ATP as capping ligand in synthesis of functional QDs provided apowerful means of rationally controlling Mn-doped ZnS QDs properties. ATP could render Mn-doped ZnS QDs stable against aggregation and water soluble,and tetain the nucleotides structure needed to specially bind to its target. Thespecific binding of ATP-capped Mn-doped ZnS QDs in the presence of Mg~(2+)gave excellent selectivity and reproducibility (1.7%relative standard deviationfor11replicate detections of10μM arginine) and low detection limit (3s;0.23μM) of arginine.
     (3) Silica-coated S2--enriched Mn-doped ZnS quantum dots (SiO2-S-Mn-ZnS QDs)was developed for imaging intracellular Zn2+ions. Detection of intracellular Zn2+has gained great attention because of its biological significances. Here we showthe fabrication of SiO2-S-Mn-ZnS QDs by enriching S2-with a silica shell on thesurface of Mn-doped ZnS QDs via a sol-gel process for imaging intracellularZn2+ions. Mn-doped ZnS QDs were chosen because of excellentphotoluminescence properties and a nontoxic nature. The prepared probe offershigh sensitivity and selectivity for Zn2+at physiological pH by taking advantageof the surface defects of the SiO2-S-Mn-ZnS QDs. The developed probe gave agood linearity for the calibration plot (the recovered photoluminescence intensityof the SiO2-S-Mn-ZnS QDs against the concentration of Zn2+from0.3to15μM),excellent reproducibility (1.2%relative standard deviation for11replicatemeasurements of Zn2+at3μM), and low detection limit (3s;80nM Zn2+). TheSiO2-S-Mn-ZnS QDs showed negligible cytotoxicity, good sensitivity, andselectivity for Zn2+in a photoluminescence turn-on mode, being a promisingprobe for photoluminescence imaging of intracellular Zn2+.
引文
1《荧光分析法》许金钩,王尊本,主编,第三版,科学出版社,北京,2006.
    2Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: syntheses andspectroscopic properties. Chem. Rev.,2007,107,4891-4932.
    3田茂忠,彭孝军,樊江莉,氟硼二吡咯类阳离子荧光探针的研究进展,分析化学,2006,34,S283-S288.
    4Katerinopoulos, H. E. The coumarin moiety as chromophore of fluorescent ionindicators in biological systems. Curr. Pharm. Design,2004,10,3835-3852.
    5马文辉,彭孝军,徐群,香豆素类荧光传感器,化学进展,2007,19,1258-1266.
    6葛凤燕,闫喜龙,潘慧英,荧光素类探针在生物分析中的研究进展,分析化学,2005,33,1199-1204.
    7颜范勇,陈立功,闫喜龙,罗丹明类荧光染料的合成及应用.化学进展,2006,18,252-261.
    8Kim, H. N.; Lee, M. H.; Kim, H. J. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev.,2008,37,1465-1472.
    9Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Synthesis and applications ofrhodamine derivatives as fluorescent probes. Chem. Soc. Rev.,2009,38,2410-2433.
    10袁跃华,田茂忠,冯峰,罗丹明类阳离子荧光探针,化学进展,2010,22,1929-1939.
    11Murphy, C. J. Optical sensing with quantum dots. Anal. Chem.2002,74,520A-526A.
    12徐海娥,闫翠娥。水溶性量子点的制备及应用。化学进展,2005,17,800-808.
    13Dai, Q. Q.; Li, D. M.; Chang, J. J.; Song, Y. L.; Kan, S. H.; Chen, H. Y.; Zou, B.; Xu,W. Q.; Xu, S. P.; Liu, B. B.; Zou, G. T. Facile synthesis of magic-sized CdSe and CdTenanocrystals with tunable existence periods. Nanotechnology,2007,18,405-603.
    14Seo, H.; Kim, S. W. In situ synthesis of CdTe/CdSe core-shell quantum dots. Chem.Mater.2007,19,2715-2717.
    15Carbone, L.; Kudera, S.; Carlino, E.; Parak, W. J.; Giannini, C.; Cingolani, R.; Manna,L. Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid.J. Am. Chem. Soc.2006,128,748-755.
    16Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Low-temperature synthesis ofoil-soluble CdSe, CdS, and CdSe/CdS core-shell nanocrystals by using variouswater-soluble anion precursors. J. Phys. Chem. C,2007,111,5661-5666.
    17Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmüller, A.; Weller, H. Synthesis andcharacterization of a size series of extremely small thiol-stabilized CdSe nanocrystals.J. Phys. Chem. B,1999,103,3065-3069.
    18Bao, H. B.; Gong, Y. J.; Li, Z.; Gao, M. Y. Enhancement effect of illumination on thephotoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescentCdTe/CdS core-shell structure. Chem. Mater.2004,16,3853-3859.
    19Fillion, H.; Luche, J.-L. Synthetic organic sonochemistry, ed. Plenum Press, New York,1998, p.91.
    20Xia, B.; Lenggoro, I. W.; Okuyama, K. Synthesis of CeO2nanoparticles bysalt-assisted ultrasonic aerosol decomposition. J. Mater. Chem.2001,11,2925.
    21Ge, J.-P.; Li, Y.-D. Ultrasonic synthesis of nanocrystals of metal selenides andtellurides. J. Mater. Chem.,2003,13,911.
    22Xiao, J.; Xie, Y.; Tang, R.; Chen, M.; Tian, X. Novel ultrasonically assisted templatedsynthesis of palladium and silver dendritic nanostructures. Adv. Mater.,2001,13,1887.
    23Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M.Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat.,2003,2,630-638.
    24Aswathy, R. G.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Near-infrared quantum dotsfor deep tissue imaging. Anal. Bioanal. Chem.,2010,397,1417-1435.
    25Tavares, A. J.; Chong, L.; Petryayeva, E.; Algar, W. R.; Krull, U. J. Quantum dots ascontrast agents for in vivo tumor imaging: progress and issues. Anal. Bioanal. Chem.,2011,399,2331-2342.
    26Wang, C.; Gao, X.; Su, X. In vitro and in vivo imaging with quantum dots. Anal.Bioanal. Chem.,2010,397,1397-1415.
    27Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dotbioconjugates for imaging, labelling and sensing. Nat. Mater.2005,4,435-446.
    28Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271,933-937.
    29Klostranec, J. M.; Chan, W. C. W. Quantum dots in biological and biomedical research:recent progress and present challenges. Adv. Mater.2006,18,1953-1964.
    30Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science2008,319,1776-1779.
    31Swafford, L. A.; Weigand, L. A.; Bowers II, M. J.; McBride, J. R.; Rapaport, J. L.;Watt, T. L.; Dixit, S. K.; Feldman, L. C. Homogeneously alloyed CdSxSe1-xnanocrystals: synthesis, characterization, and composition/size-dependent band gap. J.Am. Chem. Soc.2006,128,12299-12306.
    32Piven, N.; Susha, A. S.; D blinger, M. Aqueous synthesis of alloyed CdSexTe1-xnanocrystals. J. Phys. Chem. C2008,112,15253-15259.
    33Bailey, R. E.; Nie, S. M. Alloyed semiconductor quantum dots: tuning the opticalproperties without changing the particle size. J. Am. Chem. Soc.2003,125,7100-7106.
    34Jiang, W.; Singhal, A.; Zheng, J.; Wang, C.; Chan, W. C. W. Optimizing the synthesisof red-to near-IR-emitting CdS-capped CdTexSe1-xalloyed quantum dots forbiomedical imaging. Chem. Mater.2006,18,4845-4854.
    35Franzl, T.; Müller, J.; Klar, T. A.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller,H. CdSeTe nanocrystals band-edge versus Te-related emission. J. Phys. Chem. C2007,111,2974-2979.
    36Kuno, M.; Higginson, K. A.; Qadri, S. B.; Yousuf, M.; Lee, S. H.; Davis, B. L.;Mattoussi, H. Molecular clusters of binary and ternary mercury chalcogenides:colloidal synthesis, characterization, and optical spectra. J. Phys. Chem. B2003,107,5758-5767.
    37Lan, G. Y.; Lin, Y. W.; Huang, Y. F.; Chang, H. T. Photo-assisted synthesis of highlyfluorescent ZnSe(S) quantum dots in aqueous solution. J. Mater. Chem.2007,17,2661-2666.
    38Li, C.; Nishikawa, K.; Ando, M.; Enomoto, H.; Murase, N. Synthesis of Cd-freewater-soluble ZnSe1-xTexnanocrystals with high luminescence in the blue region. J.Colloid Interface Sci.2008,321,468-476.
    39Bang, J. H.; Suh, W. H.; Suslick K. S. Quantum dots from chemical aerosol flowsynthesis: preparation, characterization, and cellular imaging. Chem. Mater.2008,20,4033-4038.
    40Korgel, B. A.; Monbouquette, H. G. Controlled synthesis of mixed core and layered(Zn,Cd)S and (Hg,Cd)S nanocrystals within phosphatidylcholine vesicles. Langmuir2000,16,3588-3594.
    41Sun, H. Z.; Zhang, H.; Ju, J.; Zhang, J. H.; Qian, G.; Wang, C. L.; Yang, B.; Wang, Z.Y. One-step synthesis of high-quality gradient CdHgTe nanocrystals: a prerequisite toprepare CdHgTe-polymer bulk composites with intense near-infraredphotoluminescence. Chem. Mater.2008,20,6764-6769.
    42Regulacio, M. D.; Han, M.-Y. Composition-tunable alloyed semiconductornanocrystals. Acc. Chem. Res.2010,43,621-630.
    43Ouyang, J. Y.; Ratcliffe, C. I.; Kingston, D.; Wilkinson, B.; Kuijper, J.; Wu, X. H.;Ripmeester, J. A.; Yu, K. Gradiently alloyed ZnxCd1-xS colloidal photoluminescentquantum dots synthesized via a noninjection one-pot approach. J. Phys. Chem. C2008,112,4908-4919.
    44Zheng, Y. G.; Yang, Z. C.; Ying, J. Y. Aqueous synthesis of glutathione-capped ZnSeand Zn1-xCdxSe alloyed quantum dots. Adv. Mater.2007,19,1475-1479.
    45Protière, M.; Reiss, P. Highly luminescent Cd1-xZnxSe/ZnS core/shell nanocrystalsemitting in the blue-green spectral range. Small2007,3,399-403.
    46Liu, F. C.; Cheng, T. L.; Shen, C. C.; Tseng, W. L.; Chiang, M. Y. Synthesis ofcysteine-capped ZnxCd1-xSe alloyed quantum dots emitting in the blue-green spectralrange. Langmuir2008,24,2162-2167.
    47李步洪,张镇西等。量子点在生物学中的研究进展。激光生物学报,2006,15,214-220.
    48Delehanty, J. B.; Bradburne, C. E.; Susumu, K.; Boeneman, K.; Mei, B. C.; Farrell, D.;Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H.; Medintz, I. L. Spatiotemporalmulticolor labeling of individual cells using peptide-functionalized quantum dots andmixed delivery techniques. J. Am. Chem. Soc.,2011,133,10482-10489.
    49Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization ofmonodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater.Sci.2000,30,545-610.
    50徐丽,刘明明,严拯宇。量子点的制备及其在生物医药领域中的应用。药学进展,2008,32,168-172.
    51Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. The use of luminescent quantumdots for optical sensing. Trends in Analytical Chemistry,2006,25,207-218.
    52Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J.Am. Chem. Soc.1993,115,8706-8715.
    53Chen, H.-Y.; Chen, T.-Y.; Son, D. H. Measurement of energy transfer time in colloidalMn-doped semiconductor nanocrystals. J. Phys. Chem. C,2010,114,4418-4423.
    54Zheng, J.; Ji, W.; Wang, X.; Ikezawa, M.; Jing, P.; Liu, X.; Li, H.; Zhao, J.; Masumoto,Y. Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controllingdiffusion of Mn ions into the ZnS shell. J. Phys. Chem. C,2010,114,15331-15336.
    55Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel,A.; Eychmüller, A.; Rakovich, Y. P.; Donegan, J. F. Aqueous synthesis of thiol-cappedCdTe nanocrystals: State-of-the-art. J.Phys. Chem. C,2007,111,14628-14637.
    56Yuan, Z.; Ma, Q.; Zhang, A.; Cao, Y.; Yang, J.; Yang, P. Synthesis of highlyluminescent CdTe/ZnO core/shell quantum dots in aqueous solution. J. Mater. Sci.,2012,47,3770-3776.
    57Wang, C.; Gao, X.; Ma, Q.; Su, X. Aqueous synthesis of mercaptopropionic acidcapped Mn2+-doped ZnSe quantum dots. J. Mater. Chem.,2009,19,7016-7022.
    58Shao, P.; Zhang, Q.; Li, Y.; Wang, H. Aqueous synthesis of color-tunable and stableMn2+-doped ZnSe quantum dots. J. Mater. Chem.,2011,21,151-156.
    59Liu, J.; Wei, X.; Qu, Y.; Cao, J.; Chen, C.; Jiang, H. Aqueous synthesis andbio-imaging application of highly luminescent and low cytotoxicity Mn2+-doped ZnSenanocrystals. Materials Letters,2011,65,2139-2141.
    60Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski,A.; Eychmüller, A.; Weller, H., Thiol-capping of CdTe nanocrystals: an alternative toorganometallic synthetic routes. J. Phys. Chem. B,2002,106,7177-7185.
    61Rogach, A. L.; Katsikas, L.; Kornowski, A.; Su, D.; Eychmueller, A.; Weller, H.Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Berichte derBunsengesellschaft fur Physikalische Chemie,1996,100,1772-1778.
    62Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis of water-solubleZnS: Mn2+nanocrystals by using mercaptopropionic acid as stabilizer. J. Mater. Chem.,2003,13,1853-1857.
    63李春喜,王子镐。超声技术在纳米材料制备中的应用。化学通报,2001,5,268-271.
    64陈洪杰,李志伟,陶小军,吴志申,张治军。超声波在纳米材料制备中的应用。化学研究,2005,16,104-112.
    65Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M. W. Sonochemical synthesisof amorphous iron. Nature,1991,353,414-416.
    66Crum, L. A.; Mason, T. J.; Reisse, J.; et al. Sonochemistry and sonolum inescence.Kluwer publishers dordrecht, Netherlands,1999,291-320.
    67Murcia, M. J.; Shaw, D. L.; Woodruff, H.; Naumann, C.A.; Young, B. A.; Long, E.C.Facile sonochemical synthesis of highly luminescent ZnS-shelled CdSe quantum dots.Chem. Mater.2006,18,2219-2225.
    68Liu, B.; Ren, T.; Zhang, J.-R.; Chen, H.-Y.; Zhu, J.-J.; Burda, C.Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water.Electrochem. Commun.2007,9,551-557.
    69Menezes, F. D.; Galembeck, A.; Junior, S. A. New methodology for obtaining CdTequantum dots by using ultrasound. Ultrasonics Sonochemistry,2011,18,1008-1011.
    70Wang, C.; Zhang, H.; Zhang, J.; Li, M.; Sun, H.; Yang, B. Application of ultrasonicirradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shellnanocrystals. J. Phys. Chem. C,2007,111,2465-2469.
    71Zhu, J. J.; Zhou, M. G.; Xu, J. Z.; et al. Preparation of CdS and ZnS nanoparticles usingmicrowave irradiation. Material Letters,2001,47,25-29.
    72Yang, H. M.; Huang, C. G.; Su, X. H.; et al. Microwave assisted synthesis andluminescent properties of pure and doped ZnS nanoparticles. J. Alloys. Compd,2005,402,274-277.
    73Li, L.; Qian, H. F.; Ren, J. C. Rapid synthesis of highly luminescent CdTe nanocrystalsin the aqueous phase by microwave irradiation with controllable temperature. Chem.Commun.2005,528-530.
    74He, Y.; Sai, L. M.; Lu, H. T.; et al. Microwave-assisted synthesis of water-dispersedCdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem.Mater.,2007,19,359-365.
    75Ma, J.; Tai, G.; Guo, W. Ultrasound-assisted microwave preparation of Ag-doped CdSnanoparticles. Ultrasonics Sonochemistry,2010,17,534-540.
    76董微,量子点的制备及在生物标记中的应用。东北大学博士学位论文,2009.
    77Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection. Science,1998,281,2016-2018.
    78孙聆东,付雪峰,钱程等。水热法合成CdS/ZnO核壳结构纳米微粒。高等学校化学学报,2001,22,879-882.
    79Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec,F. V.; Bawendi, M. G. Self-assemble of CdSe-ZnS quantum dot bioconjugates using anengineered recombinant protein. J. Am. Chem. Soc.,2000,122,12142-12150.
    80Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. Programmed assembley of DNAfunctionalized quantum dots. J. Am. Chem. Soc.,1999,121,8122-8123.
    81Pathal, S.; Choi, S. K.; Amheim, N.; Thompson, M. E. Hydroxylated quantum dots asluminescent probes for in situ hybridization. J. Am. Chem. Soc.,2001,123,4103-4104.
    82Bhang, S. H.; Won, N.; Lee, T.-J.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H.-S.;Sung, Y.-E.; Hahn, S. K.; Kim, B.-S.; Kim, S. Hyaluronic acid-quantum dot conjugatesfor in vivo lymphatic vessel imaging. ACS Nano,2009,3,1389-1398.
    83Choi, J. H.; Chen, K. H.; Strano, M. S. Aptamer-capped nanocrystal quantum dots: anew method for label-free protein detection. J. Am. Chem. Soc.,2006,128,15584-15585.
    84Levina, L.; Sukhovatkin, V.; Musikhin, S.; Cauchi, S.; Nisman, R.; Bazett-Jones, D. P.;Sargent, E. H. Efficient infrared-emitting PbS quantum dots grown on DNA and stablein aqueous solution and blood plasma. Adv. Mater.,2005,17,1854-1857.
    85Green, M.; Smyth-Boyle, D.; Harries, J.; Taylor, R. Nucleotide passivated cadmiumsulfide quantum dots. Chem. Commun.,2005,4830-4832.
    86Hinds, S.; Taft, B. J.; Levina, L.; Sukhovatkin, V.; Dooley, C. J.; Roy, M. D.; MacNeil,D. D.; Sargent, E. H.; Kelley, S. O. Nucleotide-directed growth of semiconductornanocrystals. J. Am. Chem. Soc.,2006,128,64-65.
    87Freeman, R.; Finder, T.; Willner, I. Multiplexed analysis of Hg2+and Ag+ions bynucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gateoperations. Angew. Chem. Int. Ed.,2009,48,7818-7821.
    88Gattás-Asfura, K. M.; Leblanc, R. M. Peptide-coated CdS quantum dots for the opticaldetection of copper(II) and silver(I). Chem. Commun.,2003,2684-2685.
    89Shang, Z. B.; Hu, S.; Wang, Y.; Jin, W. J. Interaction of β-cyclodextrin-capped CdSequantum dots with inorganic anions and cations. Luminescence,2011,26,585-591.
    90Chen, J. L.; Zheng, A. F.; Gao, Y.; He, C.; Wu, G.; Chen, Y.; Kai, X.; Zhu, C.Functionalized CdS quantum dots-based luminescence probe for detection of heavyand transition metal ions in aqueous solution. Spectrochimica Acta Part A,2008,69,1044-1052.
    91严拯宇,庞代文,邵秀芬,胡育筑。量子点荧光淬灭法测定中药饮片中的微量铜。中国药科大学学报,2005,3,230-233.
    92Zheng, A. F.; Chen, J. L. Aqueous phase preparation of CdTe nanorods and itsapplication in recognition of Cu2+ions. Journal of Inorganic Materials,2009,24,251-254.
    93Lai, S. J.; Chang, X. J.; Fu, C. Cadmium sulfide quantum dots modified by chitosan asfluorescence probe for copper ion determination. Microchimica Acta,2009,165,39-44.
    94Zhang, Y. H.; Zhang, H. S.; Guo, X. F.; Wang, H. L-Cysteine-coated CdSe/CdScore-shell quantum dots as selective fluorescence probe for copper(II) determination.Microchemical Journal,2008,89,142-147.
    95王柯敏,王益林,李朝辉等. CdTe量子点荧光淬灭法测定铜离子的研究.湖南大学学报(自然科学版),2005,32,1-5.
    96Chen, Y.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal.Chem.,2002,74,5132-5138.
    97Chan, Y.-H.; Chen, J.; Liu, Q.; Wark, S. E.; Son, D. H.; Batteas, J. D. Ultrasensitivecopper(II) detection using plasmon-enhanced and photo-brightened luminescence ofCdSe quantum dots. Anal. Chem.,2010,82,3671-3678.
    98Xia, Y.; Zhu, C. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots fornear-infrared fluorescent sensing of copper(II). Analyst,2008,133,928-932.
    99Fernández-Argüelles, M. T.; Jin, W. J.; Costa-Fernández, J. M.; Pereiro, R.;Sanz-Medel, A. Surface-modified CdSe quantum dots for the sensitive and selectivedetermination of Cu(II) in aqueous solutions by luminescent measurements. AnalyticaChimica Acta,2005,549,20-25.
    100Cao, Z.; Gu, Z.; Zeng, J.-L.; Liu, J.-H.; Deng, Q.; Fan, J.-B.; Xiang, J.-N. A novelfluorescent probe for copper ions based on polymer-modified CdSe/CdS core/shellquantum dots. Analytical Sciences,2011,27,643-647.
    101Shen, Y.; Li, L.; Lu, Q.; Ji, J.; Fei, R.; Zhang, J.; Abdel-Halim, E. S.; Zhu, J.-J.Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2quantum dotsand their application in the detection of Cu(II). Chem. Commun.,2012,48,2222-2224.
    102Mei, Y.-L.; Wang, H.-S.; Li, Y.-F.; Pan, Z.-Y.; Jia, W.-L. Electochemiluminescence ofCdTe/CdS quantum dots with triproprylamine as coreactant in aqueous solution at alower potential and its application for highly sensitive and selective detection of Cu2+.Electroanalysis,2010,22,155-160.
    103Chen, S.; Zhang, X.; Zhang, Q.; Hou, X.; Zhou, Q.; Yan, J.; Tan, W. CdSe quantumdots decorated by mercaptosuccinic acid as fluorescence probe for Cu2+. Journal ofluminescence,2011,131,947-951.
    104Wang, H.; Sun, L.; Li, Y.; Fei, X.; Sun, M.; Zhang, C.; Li, Y.; Yang, Q. Layer-by-layerassembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probefor sensitive sensing of Cu2+ions. Langmuir,2011,27,11609-11615.
    105Wang, G.-L.; Dong, Y.-M.; Li, Z.-J. Metal ion (silver, cadmium and zinc ions) modifiedCdS quantum dots for ultrasensitive copper ion sensing. Nanotechnology,2011,22,1-7.
    106Koneswaran, M.; Narayanaswamy, R. L-cysteine-capped ZnS quantum dots basedfluorescence sensor for Cu2+ion. Sensors and Actuators B,2009,139,104-109.
    107Wang, J.; Zhou, X.; Ma, H.; Tao, G. Diethyldithiocarbamate functionalized CdSe/CdSquantum dots as a fluorescent probe for copper ion detection. Spectrochimica Acta PartA,2011,81,178-183.
    108Xie, H.-Y.; Liang, J.-G.; Zhang, Z.-L.; Liu, Y.; He, Z.-K.; Pang, D.-W. LuminescentCdSe-ZnS quantum dots as selective Cu2+probe. Spectrochimica Acta Part A,2004,60,2527-2530.
    109Liang, G.-X.; Liu, H.-Y.; Zhang, J.-R.; Zhu, J.-J. Ultrasensitive Cu2+sensing bynear-infrared-emitting CdSeTe alloyed quantum dots. Talanta,2010,80,2172-2176.
    110Ai, X. P.; He, Z. K.; Pang, D. W. Functionalized CdSe quantum dots as selective silverion chemodosimeter Jian-Gong Liang. Analyst,2004,129,619-622.
    111Zhang, X. J.; Wang, G. F. Luminescent CuS nanotubes as silver ion probes.Spectrochimicaacta part a molecular and biomolecular spectroscopy,2009,72,1071-1075.
    112Wang, J. H.; Wang, H. Q.; Zhang, H. L.; et al. Purification of denatured bovine serumalbumin coated CdTe quantum dots for sensitive detection of silver(I) ions. Anal.Bioanal. Chem.,2007,388,969-974.
    113Chen, J. L.; Zhu, C.-Q. Functionalized cadmium sulfide quantum dots as fluorescenceprobe for silver ion determination. Analytical Chimica Acta,2005,546,147-153.
    114Mandal, A.; Dandapat, A.; De, G. Magic sized ZnS quantum dots as a highly sensitiveand selective fluorescence sensor probe for Ag+ions. Analyst,2012,137,765-772.
    115Pendyala, N. B.; Koteswara Rao, K. S. R. Efficient Hg and Ag ion detection withluminescent PbS quantum dots grown in poly vinyl alcohol and capped withmercaptoethanol. Colloids and Surfaces A: Physicochem. Eng. Aspects,2009,339,43-47.
    116Xia, Y.-S.; Cao, C.; Zhu, C.-Q. Two distinct photoluminescence responses of CdTequantum dots to Ag(I). Journal of Luminescence,2008,128,166-172.
    117Ingole, P. P.; Abhyankar, R. M.; Prasad, B. L. V.; Haram, S. K. Citrate-capped quantumdots of CdSe for the selective photometric detection of silver ions in aqueous solutions.Materials Science and Engineering B,2010,168,60-65.
    118Wang, J.; Liang, J.; Sheng, Z.; Han, H. A novel strategy for selective detection of Ag+based on the red-shift of emission wavelength of quantum dots. Microchim Acta,2009,167,281-287.
    119Zhang, B.-H.; Wu, F.-Y. Functionalized manganese-doped zinc sulfide core/shellquantum dots as selective fluorescent chemodosimeters for silver ion. Microchim Acta,2010,170,147-153.
    120Li, H.; Zhang, Y.; Wang, X. L-Carnitine capped quantum dots as luminescent probesfor cadmium ions. Sensors and Actuators B,2007,127,593-597.
    121Chen, J. L.; Gao, Y. C.; Guo, C.; Wu, G. H.; Chen, Y. C.; Lin, B. W. Facile synthesis ofwater-soluble and size-homogeneous cadmium selenide nanoparticles and theirapplication as a long-wavelength fluorescent probe for detection of Hg(II) in aqueoussolution. Spectrochimica Acta Part A-molecular and Biomolecular Spectroscopy,2008,69,572-579.
    122Shang, Z. B.; Wang, Y.; Jin, W. J. Triethanolamine-capped CdSe quantum dots asfluorescent sensors for reciprocal recognition of mercury(II) and iodide in aqueoussolution. Talanta,2009,78,364-369.
    123Cai, Z.-X.; Yang, H.; Zhang, Y.; Yan, X.-P. Preparation, characterization and evaluationof water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe fordetection of Hg(II) in aqueous solution. Analytica Chimica Acta,2006,559,234-239.
    124Nolan, E. M.; Lippard, S. J. Tools and tactics for the optical detection of mercuric ion.Chem. Rev.,2008,108,3443-3480.
    125Xia, Y.-S.; Zhu, C.-Q. Use of surface-modified CdTe quantum dots as fluorescentprobes in sensing mercury(II). Talanta,2008,75,215-221.
    126Chen, C. Y.; Cheng, C. T.; Lai, C. W.; Wu, P. W.; Wu, K. C.; Chou, P. T.; Chou, Y. H.;Chiu, H. T. Potassium ion recognition by15-crown-5functionalized CdSe/ZnSquantum dots in H2O. Chem. Commun.,2006,263-265.
    127Liu, M. M.; Xu, L.; Cheng, W. Q.; Zeng, Y.; Yan, Z. Y. Surface-modified CdS quantumdots as luminescent probes for sulfadiazine determination. Spectrochimica Acta PartA-molecular and Biomolecular Spectroscopy,2008,70,1198-1202.
    128Mohamed, A. E.; Zheng, Y.; Yu, H. H.; Ying, J. Y. Ultrasensitive Pb2+detection byglutathione-capped quantum dots. Anal. Chem.,2007,79,9452-9458.
    129Ruedas-Rama, M. J.; Hall, E. A. H. Azamacrocycle activated quantum dot for zinc iondetection. Anal. Chem.,2008,80,8260-8268.
    130Xu, H.; Miao, R.; Fang, Z.; Zhong, X. H. Quantum dot-based “turn-on” fluorescentprobe for detection of zinc and cadmium ions in aqueous media. Analytica ChimicaActa,2011,687,82-88.
    131Wu, C.-L.; Zhao, Y.-B. CdS quantum dots as fluorescence probes for the sensitive andselective detection of highly reactive Hse-ions in aqueous solution. Anal BioanalChem,2007,388,717-722.
    132Zhang, B.-H.; Wu, F.-Y.; Wu, Y.-M.; Zhan, X.-S. Fluorescent method for thedetermination of sulfide anion with ZnS:Mn quantum dots. J. Fluoresc.,2010,20,243-250.
    133Wang, Z.; Lu, M.; Wang, X.; Yin, R.; Song, Y.; Le, X. C.; Wang, H. Quantum dotsenhanced ultrasensitive detection of DNA adducts. Anal. Chem.,2009,81,10285-10289.
    134Xiang, D.-S.; Zeng, G.-P.; He, Z.-k. Magnetic microparticle-based multiplexed DNAdetection with biobarcoded quantum dot probes. Biosensors and Bioelectronics,2011,26,4405-4410.
    135Bailey, V. J.; Easwaran, H.; Zhang, Y.; Griffiths, E.; Belinsky, S. A.; Herman, J. G.;Baylin, S. B.; Carraway, H. E.; Wang, T.-H. MS-qFRET: A quantum dot-based methodfor analysis of DNA methylation. Genome Res.,2009,19,1455-1461.
    136Zhang, C.-Y.; Yeh, H.-C.; Kuroki, M. T.; Wang, T.-H. Single-quantum-dot-based DNAnanosensor. Nature materials,2005,4,826-831.
    137Wu, P.; Yan, X.-P. Ni2+-modulated homocysteine-capped CdTe quantum dots as aturn-on photoluminescent sensor for detecting histidine in biological fluids. Biosensorsand Bioelectronics,2010,26,485-490.
    138Cheng, W.; Yan, F.; Ding, L.; Ju, H.; Yin, Y. Cascade signal amplification strategy forsubattomolar protein detection by rolling circle amplification and quantum dots tagging.Anal. Chem.,2010,82,3337-3342.
    139Shi, L.; Rosenzweig, N.; Rosenzweig, Z. Luminescent quantum dots fluorescenceresonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.Anal. Chem.,2007,79,208-214.
    140Kim, Y.-P.; Oh, Y.-H.; Oh, E.; Ko, S.; Han, M.-K.; Kim, H.-S. Energy transfer-basedmultiplexed assay of proteases by using gold nanoparticle and quantum dot conjugateson a surface. Anal. Chem.,2008,80,4634-4641.
    141Xia, Z.; Xing, Y.; So, M.-K.; Koh, A. L.; Sinclair, R.; Rao, J. Multiplex detection ofprotease activity with quantum dot nanosensors prepared by intein-mediated specificbioconjugation. Anal. Chem.,2008,80,8649-8655.
    142Boeneman, K.; Mei, B. C.; Dennis, A. M.; Bao, G.; Deschamps, J. R.; Mattoussi, H.;Medintz, I. L. Sensing caspase3activity with quantum dot-fluorescent proteinassemblies. J. Am. Chem. Soc.,2009,131,3828-3829.
    143Zhang, W.; Wu, D.; Wei, J.; Xiao, G. A new method for the detection of the H5influenza virus by magnetic beads capturing quantum dot fluorescent signals.Biotechnol. Lett.,2010,32,1933-1937.
    144Kuo, Y.-C.; Wang, Q.; Ruengruglikit, C.; Yu, H.; Huang, Q. Antibody-conjugated CdTequantum dots for Escherichia coli detection. J. Phys. Chem. C,2008,112,4818-4824.
    145Hu, M.; Yan, J.; He, Y.; Lu, H.; Weng, L.; Song, S.; Fan, C.; Wang, L. Ultrasensitive,multiplexed detection of cancer biomarkers directly in serum by using a quantumdot-based microfluidic protein chip. ACS Nano,2010,4,488-494.
    146Wagner, M. K.; Li, F.; Li, J.; Li, X.-F.; Le, X. C. Use of quantum dots in thedevelopment of assays for cancer biomarkers. Anal. Bioanal. Chem.,2010,397,3213-3224.
    147Cheng, A. K. H.; Su, H.; Wang, Y. A.; Yu, H.-Z. Aptamer-based detection of epithelialtumor marker mucin1with quantum dot-based fluorescence readout. Anal. Chem.,2009,81,6130-6139.
    148Jokerst, J. V.; Raamanathan, A.; Christodoulides, N.; Floriano, P. N.; Pollard, A. A.;Simmons, G. W.; Wong, J.; Gage, C.; Furmaga, W. B.; Redding, S. W.; McDevitt, J. T.Nano-bio-chips for high performance multiplexed protein detection: determinations ofcancer biomarkers in serum and saliva using quantum dot bioconjugate labels.Biosensors and Bioelectronics,2009,24,3622-3629.
    149Hu, F.; Ran, Y.; Zhou, Z.; Gao, M. Preparation of bioconjugates of CdTe nanocrystalsfor cancer marker detection. Nanotechnology,2006,17,2972-2977.
    150Wang, J.; Liu, G.; Wu, H.; Lin, Y. Quantum-dot-based electrochemical immunoassayfor high-throughput screening of the prostate-specific antigen. Small,2008,4,82-86.
    151Kerman, K.; Endo, T.; Tsukamoto, M.; Chikae, M.; Takamura, Y.; Tamiya, E. Quantumdot-based immunosensor for the detection of prostate-specific antigen usingfluorescence microscopy. Talanta,2007,71,1494-1499.
    152Geszke-Moritz, M.; Clavier, G.; Lulek, J.; Schneider, R. Copper-or manganese-dopedZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media.Journal of Luminescence,2012,132,987-991.
    153Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots andmetal nanoparticles: syntheses, optical properties, and biological applications. Anal.Bioanal. Chem.,2008,391,2469-2495.
    154Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W.; Nie, S. M. In vivomolecular and cellular imaging with quantum dots. Curr. Opin. Biotech.,2005,16,63-72.
    155Kuo, C.-W.; Chueh, D.-Y.; Singh, N.; Chien, F.-C.; Chen, P. Targered nuclear deliveryusing peptide-coated quantum dots. Bioconjugate Chem.,2011,22,1073-1080.
    156Li, Z.; Huang, P.; He, R.; Zhang, X.; Bao, C.; Ren, Q.; Cui, D. Aptamer-conjugateddendrimer-modified quantum dots for glioblastoma cells imaging. Journal of Physics:Conference Series,2009,188,1-4.
    157Williams, Y.; Byrne, S.; Bashir, M.; Davies, A.; Whelan, á.; Gun’ko, Y.; Kelleher, D.;Volkov, Y. Comparison of three cell fixation methods for high content analysis assaysutilizing quantum dots. Journal of Microscopy,2008,232,91-98.
    158Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.;Farokhzad, O. C. Quantum dot-Aptamer conjugates for synchronous cancer imaging,therapy, and sensing of drug delivery based on Bi-fluorescence resonance energytransfer. Nano Letters,2007,7,3065-3070.
    159Smith, A. M.; Ruan, G.; Rhyner, M. N.; Nie, S. Engineering luminescent quantum dotsfor in vivo molecular and cellular imaging. Annals of Biomedical Engineering,2006,34,3-14.
    160Biju, V.; Itoh, T.; Ishikawa, M. Delivering quantum dots to cells: bioconjugatedquantum dots for targeted and nonspecific extracellular and intracellular imaging.Chem. Soc. Rev.,2010,39,3031-3056.
    [1] Soo, Y. L.; Ming, Z. H.; Huang, S. W.; Kao, Y. H.; Bhargava, R. N.; Gallagher, D.Local structures around Mn luminescent centers in Mn-doped nanocrystals ofZnS. Phys. Rev. B,1994,50,7602-7607.
    [2] Chen, H. Y.; Chen, T. Y.; Son, D. H. Measurement of energy transfer time incolloidal Mn-doped semiconductor nanocrystals. J. Phys. Chem. C,2010,114,4418-4423.
    [3] Qu, S. C.; Zhou, W. H.; Liu, F. Q.; Chen, N. F.; Wang, Z. G.; Pan, H. Y.; Yu, D. P.Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in awater/methanol solution. Appl. Phys. Lett.,2002,80,3605-3607.
    [4] Bol, A. A.; Beek, R. V.; Meijerink, A. On the incorporation of trivalent rare earthions in II-VI semiconductor nanocrystals. Chem. Mater.,2002,14,1121-1126.
    [5] Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J. Photophysical propertiesof ZnS nanoclusters with spatially localized Mn2+. J. Phys. Chem.,1996,100,4551-4555.
    [6] Xie, P. B.; Zhang, W. P.; Yin, M.; Chen, H. T.; Zhang, W. W.; Luo, L. R.; Xia, S.D. Photoluminescence properties of surface-modified nanocrystalline ZnS:Mn. J.Colloid Interface Sci.,2000,229,534-539.
    [7] Counio, G.; Gacoin, T.; Boilot, J. P. Synthesis and photoluminescence ofCd1-xMnxS (x≤5%) nanocrystals. J. Phys. Chem. B,1998,102,5257-5260.
    [8] Bol, A. A.; Meijerink, A. Long-lived Mn2+emission in nanocrystalline ZnS:Mn2+.Phys. Rev. B,1998,58, R15997-R16000.
    [9] Murase, N.; Jagannathan, R.; Kanematsu, Y.; Watanabe, M.; Kurita, A.; Hirata,K.; Yazawa T.; Kushida, T. Fluorescence and EPR characteristics ofMn2+-doped ZnS nanocrystals prepared by aqueous colloidal method. J. Phys.Chem. B,1999,103,754-760.
    [10]Koshravi, A. A.; Kundu, M.; Kuruvilla, B. A.; Shekhawat, G. S.; Gupta, R. P.;Sharma, A.; Vyas P. D. K.; Kulkarni, S. K. Manganese doped zinc sulphidenanoparticles by aqueous method. Appl. Phys. Lett.,1995,67,2506-2508.
    [11]Leeb, J.; Gebhardt, V.; Muller, G.; Haarer, D.; Su, D.; Giersig, M.; McMahon G.;Spanhel, L. Colloidal synthesis and electroluminescence properties ofnanoporous MnIIZnS films. J. Phys. Chem. B,1999,103,7839-7845.
    [12]Swayambunathan, V.; Hayes, D.; Schmidt, K. H.; Liao Y. X.; Meisel, D. Thiolsurface complexation on growing cadmium sulfide clusters. J. Am. Chem. Soc.,1990,112,3831-3837.
    [13]Norris, D. J.; Yao, N.; Charnock F. T.; Kennedy, T. A. High-qualitymanganese-doped ZnSe nanocrystals. Nano. Lett.,2001,1,3-7.
    [14]Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sunder, V. C.;Mikulec F. V.; Bewendi, M. G. Self-assembly of CdSe-ZnS quantum dotbioconjugates using an engineered recombinant protein. J. Am. Chem. Soc.,2000,122,12142-12150.
    [15]Bol A. A.; Meijerink, A. Luminescence quantum efficiency of nanocrystallineZnS:Mn2+.1. surface passivation and Mn2+concentration. J. Phys. Chem. B,2001,105,10197-10202.
    [16]Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis ofwater-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid asstabilizer. J. Mater. Chem.2003,13,1853.
    [17]Pogson, C. I. Guanine nucleotides and their significance in biochemical processes.Am. J. Clin. Nutr.,1974,27,380-402.
    [18]Melissa, M.; Guodong, L.; Stewart, A. M. Inhibition of calcium induced insulinsecretion from intact HIT-T15or INS-1β Cells by GTP depletion. BiochemPharm,1997,53,1873-1882.
    [19]Gysbers, J. W.; Pathbone, M. P.; GTP and guanosine synergistically enhanceNGF-induced neurite outgrowth from PC12cells. Int. J. Dev. Neuroscience,1996,14,19-34.
    [20]Gysbers, J. W.; Guarnieri, S.; Mariggio, M. A.; et al. Extracellular guanosine5’-triphosphate enhances nerve growth factor-induced neurite outgrowth viaincrease in intracellular calcium. Neuroscience,2000,96,817-824.
    [21]Kwon, J. Y.; Singh, N. J.; Kim, H.; Kim, S. K.; Kim, K. S.; Yoon, J. FluorescentGTP-sensing in aqueous solution of physiological pH. J. Am. Chem. Soc.2004,126,8892-8893.
    [22]Wang, S.; Chang, Y.-T. Combinatorial synthesis of benzimidazolium dyes and itsdiversity directed application toward GTP-selective fluorescent chemosensors. J.Am. Chem. Soc.2006,128,10380-10381.
    [23]Neelakandan, P. P.; Hariharan, M.; Ramaiah, D. A supramolecular ON-OFF-ONfluorescence assay for selective recognition of GTP. J. Am. Chem. Soc.2006,128,11334-11335.
    [24]Burrows, C. J.; Muller, J. G. Oxidative nucleobase modifications leading tostrand scission. Chem. Rev.,1998,98,1109-1152.
    [25]Norris, D. J.; Sacra, A.; Murray, C. B.; Bawendi, M. G. Measurement of the sizedependent hole spectrum in CdSe quantum dots. Phys. Rev. Lett.1994,72,2612-2615.
    [26]Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics insemiconductor nanocrystals. J. Phys. Chem. B,2000,104,6112-6123.
    [27]Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.;Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced luminescence of CdSe quantumdots on gold colloids. Nano Lett.2002,2,1449-1452.
    [28]Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching ofsingle-molecule fluorescence. Phys. Rev. Lett.2006,96,113002-1-4.
    [29]Hou, Y.; Ye, J.; Gui, Z.; Zhang, G. Z. Temperature-modulated photoluminescenceof quantum dots. Langmuir2008,24,9682-9685.
    [30]Zhang, X. R.; Zhao, Y. Q.; Li, S. G.; Zhang, S. S. Photoelectrochemical biosensorfor detection of adenosine triphosphate in the extracts of cancer cells. Chem.Commun.,2010,46,9173-9175.
    [31]Ogris, M.; Steinlein, P.; Carotta, S.; Brunner, S.; Wagner, E. DNA/polyethylenemine transfection particles: influence of ligands, polymer size, andPEGylation on internalization and gene expression. AAPS PharmSci,2001,3,43-53.
    [32]Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis andphotoluminescence nanocrystalline ZnS:Mn2+. Nano Lett.2001,1,429-433.
    [33]Chung, J. H.; Ah, C. S.; Jang, D. J. Formation and distinctive decay times ofsurface-and lattice-bound Mn2+impurity luminescence in ZnS nanoparticles. J.Phys. Chem. B2001,105,4128-4132.
    [1] Wu, G.; Morris, S. M. Arginine metabolism: nitric oxide and beyond. Biochem. J.1998,336,1-17.
    [2] Barbul, A. Arginine: biochemistry, physiology, and therapeutic implications. J. Parent.Enteral Nutr.1986,10,227-238.
    [3] Gopalakrishnan, V.; Burton, P. J.; Blaschke, T. F. High-performance liquidchromatographic assay for the quantitation of L-arginine in human plasma. Anal. Chem.1996,68,3520-3523.
    [4] Olson, D. L.; Lacey, M. E.; Webb, A. G.; Sweedler, J. V. Nanoliter-volume1H NMRdetection using periodic stopped-flow capillary electrophoresis. Anal. Chem.1999,71,3070-3076.
    [5] De Ordu a, R. M. Quantitative determination of L-arginine by enzymatic end-pointanalysis. J. Agric. Food Chem.2001,49,549-552.
    [6] Bahl, S.; Naqvi, S.; Venkitasubramanian, T. A. Simple, rapid quantitative determinationof lysine and arginine by thin-layer chromatography. J. Agric. Food Chem.1976,24,56-59.
    [7] Bastone, A.; Diomede, L.; Parini, R.; Carnevale, F.; Salmona, M. Determination ofargininosuccinate lyase and arginase activities with an amino acid analyzer. Anal.Biochem.1990,191,384-389.
    [8] Roberts, H. R.; Kolor, M. G. Rapid quantitative determination of arginine, histidine, andlysine by ion exchange paper chromatography. Anal. Chem.1959,31,565-566.
    [9] Sibali, S. M.; Radej, N. V. Determination of lysine, arginine, and histidine by hightemperature paper chromatography. Anal. Chem.1961,33,1223-1224.
    [10] Bǎnicǎ, F.-G.; Guziejewski, D.; Skrzypek, S.; Ciesielski, W.; Ka mierczak, D. Effect ofbasic amino acids on nickel ion reduction at a mercury electrode. Electroanalysis2009,21,1711-1718.
    [11] Miura, T.; Kashiwamura, M.; Kimura, M. A fluorometric method for the specificdetermination of serum arginine with2,3-naphthalenedicarbaldehyde. Anal. Biochem.1984,139,432-437.
    [12] Ruedas-Rama, M. J.; Hall, E. A. H. Azamacrocycle activated quantum dot for zinc iondetection. Anal. Chem.2008,80,8260-8268.
    [13] Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection. Science1998,281,2016-2018.
    [14] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductornanocrystals as fluorescent biological labels. Science1998,281,2013-2016.
    [15] Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Luminescentquantum dots for multiplexed biological detection and imaging. Anal. Biotechnol.2002,13,40-46.
    [16] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.;Sundare-san, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, invivo imaging, and diagnostics. Science2005,307,538-544.
    [17] Medintz, I. L.; Uyeda, H. T.; Goldman, E.; Mattoussi, H. Quantum dot bioconjugates forimaging, labelling and sensing. Nat. Mater.2005,4,435-446.
    [18] Ma, Y. Q.; Lu, G. X. Differential effects of Mg(II) and Nα-4-tosyl-L-arginine methylester hydrochloride on the recognition and catalysis in ATP hydrolysis. Dalton Trans.2008,1081-1086.
    [19] Fokkens, M.; Schrader, T.; Kl rner, F.-G. A molecular tweezer for lysine and arginine. J.Am. Chem. Soc.2005,127,14415-14421.
    [20] Bush, M. F.; O’Brien, J. T.; Prell, J. S.; Saykally, R. J.; Williams, E. R. Infraredspectroscopy of cationized arginine in the gas phase: direct evidence for the transitionfrom nonzwitterionic to zwitterionic structure. J. Am. Chem. Soc.2007,129,1612-1622.
    [21] Woods, A. S.; Ferré, S. Amazing stability of the arginine-phosphate electrostaticinteraction. J. Proteome Res.2005,4,1397-1402.
    [22] Woods, A. S. The mighty arginine, the stable quaternary amines, the powerful aromatics,and the aggressive phosphate: their role in the noncovalent minuet. J. Proteome Res.2004,3,478-484.
    [23] Rashkin, M. J.; Hughes, R. M.; Calloway, N. T.; Waters, M. L. Orientation andalkylation effects on cation-π interactions in aqueous solution. J. Am. Chem. Soc.2004,126,13320-13325.
    [24] Hughes, R. M.; Waters, M. L. Effects of lysine acetylation in a β-hairpin peptide:comparison of an amide-π and a cation-π interaction. J. Am. Chem. Soc.2006,128,13586-13591.
    [25] Luche, J.-L.; Bianchi, C. Synthetic Organic Sonochemistry, Plenum Press, New York,1998, p.91.
    [26] Wang, H.-F.; He, Y.; Ji, T.-R.; Yan, X.-P. Surface molecular imprinting on Mn-dopedZnS quantum dots for room-temperature phosphorescence optosensing ofpentachlorophenol in water. Anal. Chem.,2009,81,1615-1621.
    [27] He, Y.; Wang, H.-F.; Yan, X.-P. Exploring Mn-doped ZnS quantum dots for theroom-temperature phosphorescence detection of enoxacin in biological fluids. Anal.Chem.2008,80,3832-3837.
    [28] Ren, H.-B.; Wu, B.-Y.; Chen, J.-T.; Yan, X.-P. Silica-coated S2--enrichedmanganese-doped ZnS quantum dots as a photoluminescence probe for imagingintracellular Zn2+ions. Anal. Chem.2011,83,8239-8244.
    [29] Choi, J. H.; Chen, K. H.; Strano, M. S. Aptamer-capped nanocrystal quantum dots: anew method for label-free protein detection. J. Am. Chem. Soc.2006,128,15584-15585.
    [30] Zhuang, J. Q.; Zhang, X. D.; Wang, G.; Li, D. M.; Yang, W. S.; Li, T. J. Synthesis ofwater-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid as stabilizer. J.Mater. Chem.2003,13,1853-1857.
    [31] Green, M.; Smyth-Boyle, D.; Harries, J.; Taylor, R. Nucleotide passivated cadmiumsulfide quantum dots. Chem. Commun.2005,4830-4832.
    [32] Sigel, H. Have adenosine5’-triphosphate (ATP4-) and related purine-nucleotides playeda role in early evolution? ATP, its own ‘enzyme’ in metal ion facilitated hydrolysis!*Inorg. Chim. Acta1992,198-200,1-11.
    [33] Green, M.; Taylor, R.; Wakefield, G. The synthesis of luminescent adenosinetriphosphate passivated cadmium sulfide nanoparticles. J. Mater. Chem.2003,13,1859-1861.
    [34] Sauer, K.; Scheer, H.; Sauer, P. F rster transfer calculations based on crystal structuredata from agmenellum quadruplicatum C-phycocyanin. Photochem. Photobiol.1987,46,427-440.
    [35] Lakowicz, J. R.; Weber, G. Quenching of fluorescence by oxygen. A probe for structuralfluctuations in macromolecules. Biochemistry1973,12,4161-4170.
    [36] Jones, R. M.; Bergstedt, T. S.; McBranch, D. W.; Whitten, D. G. Tuning ofsuperquenching in layered and mixed fluorescent polyelectrolytes. J. Am. Chem. Soc.2001,123,6726-6727.
    [37] Murphy, C. B.; Zhang, Y.; Troxler, T.; Ferry, V.; Martin, J. J.; Jones, W. E. ProbingF rster and dexter energy-transfer mechanisms in fluorescent conjugated polymerchemosensors. J. Phys. Chem. B2004,108,1537-1543.
    [38] Baptista, M. S.; Indig, G. L. Effect of BSA binding on photophysical and photochemicalproperties of triarylmethane dyes. J. Phys. Chem. B1998,102,4678-4688.
    [39] Lakowicz, J. R. Principle of Fluorescence Spectroscopy,2nded., Plenum Press, NewYork,1999, p.237-259.
    [40] Oca a, J. A.; Callejón, M.; Barragán, F. J. Terbium-sensitized luminescencedetermination of levofloxacin in tablets and human urine and serum. Analyst2000,125,1851-1854.
    [41] Lobenhoffer, J. M.; Bode-B ger, S. M. Simultaneous detection of arginine, asymmetricdimethylarginine, symmetric dimethylarginine and citrulline in human plasma and urineapplying liquid chromatography-mass spectrometry with very straightforward samplepreparation. J. Chromatogr. B2003,798,231-239.
    [1] Berg, J. M.; Shi, Y. The galvanization of biology: a growing appreciation for theroles of zinc. Science,1996,271,1081-1085.
    [2] Takeda, A. Movement of zinc and its functional significance in the brain. BrainRes. Rev.,2000,34,137-148.
    [3] Wang, Z. Y.; Stoltenberg, M.; Jo, S. M.; Huang, L.; Larsen, A.; Dahlstr m A.;Danscher, G. Dynamic zinc pools in mouse choroid plexus. NeuroReport,2004,15,1801-1804.
    [4] Frederickson, C. J.; Koh J. Y.; Bush, A. I. The neurobiology of zinc in health anddisease. Nat. Rev. Neurosci.,2005,1-14.
    [5] Suh, S. W.; Jensen, K. B.; Jensen, M. S.; Silva, D. S.; Kesslak, P. J.; Danscher G.;Frederickson, C. J. Histochemically-reactive zinc in amyloid plaques, angiopathy,and degenerating neurons of alzheimer’s diseased brains. Brain Res.,2000,852,274-278.
    [6] Chausmer, A. B. Zinc, insulin and diabetes. J. Am. Coll. Nutr.,1998,17,109-115.
    [7] Henshall, S. M.; Afar, D. E. H.; Rasiah, K. K.; Horvath, L.G.; Gish, K.; Caras, I.;Ramakrishnan, V.; Wong, M.; Jeffry, U.; Kench, J. G.; Quinn, D. I.; Turner, J. J.;Delprado, W.; Lee, C.-S.; Golovsky, D.; Brenner, P. C.; O’Neill, G. F.; Kooner,R.; Stricker, P. D.; Grygiel, J. J.; Mack, D. H.; Sutherland, R. L. Expression ofthe zinc transporter ZnT4is decreased in the progression from early prostatedisease to invasive prostate cancer. Oncogene,2003,22,6005-6012.
    [8] Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Highlyzinc-selective fluorescent sensor molecules suitable for biological applications. J.Am. Chem. Soc.,2000,122,12399-12400.
    [9] Komatsu, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Selective zincsensor molecules with various affinities for Zn2+, revealing dynamics andregional distribution of synaptically released Zn2+in hippocampal slices. J. Am.Chem. Soc.,2005,127,10197-10204.
    [10]Kikuchi, K.; Komatsu, K.; Nagano, T. Zinc sensing for cellular application. Curr.Opin. Chem. Biol.,2004,8,182-191.
    [11]Nagano, T. Development of fluorescent probes for bioimaging applications. Proc.Jpn. Acad., Ser. B,2010,86,837-847.
    [12]Chang, C. J.; Jaworski, J.; Nolan, E. M.; Sheng, M.; Lippard, S. J. A tautomericzinc sensor for ratiometric fluorescence imaging: application to nitricoxide-induced release of intracellular zinc. Proc. Natl. Acad. Sci. USA,2004,101,1129-1134.
    [13]Chang, C. J.; Nolan, E. M.; Jaworski, J.; Okamoto, K.–I.; Hayashi, Y.; Sheng,M.; Lippard, S. J. ZP8, a neuronal zinc sensor with improved dynamic range;imaging zinc in hippocampal slices with two-photon microscopy. Inorg. Chem.,2004,43,6774-6779.
    [14]Burdette, S. C.; Frederickson, C. J.; Bu, W. M.; Lippard, S. J. ZP4, an improvedneuronal Zn2+sensor of the zinpyr family. J. Am. Chem. Soc.,2003,125,1778-1787.
    [15]Nolan, E. M.; Lippard, S. J. Small-molecule fluorescent sensors for investigatingzinc metalloneurochemistry. Acc. Chem. Res.,2009,42,193-203.
    [16]Ma, J. J.; Zhang, J.; Du, X.; Lei, X.; Li, J. Solidified floating organic dropmicroextraction for determination of trace amounts of zinc in water samples byflame atomic absorption spectrometry. Microchim Acta,2010,168,153-159.
    [17]Vanhoe, H.; Vandecasteele, C.; Versieck, J.; Dams, R. Determination of iron,cobalt, copper, zinc, rubidium, molybdenum, and cesium in human serum byinductively coupled plasma mass spectrometry. Anal. Chem.,1989,61,1851-1857.
    [18]B a ewicz, A.; Dolliver, W.; Sivsammye, S.; Deol, A.; Randhawa, R.;Orlicz-Szcz sna, G.; B a ewicz, R. Determination of cadmium, cobalt, copper,iron, manganese, and zinc in thyroid glands of patients with diagnosed nodulargoitre using ion chromatography. J. Chromatogr. B,2010,878,34-38.
    [19]Li, Z.; Yu, M.; Zhang, L.; Yu, M.; Liu, J.; Wei, L.; Zhang, H. A “switching on”fluorescent chemodosimeter of selectivity to Zn2+and its application to MCF-7cells. Chem. Commun.,2010,46,7169-7171.
    [20]Han, Z. X.; Zhang, X. B.; Li, Z.; Gong, Y. J.; Wu, X. Y.; Jin, Z.; He, C. M.;Jian, L. X.; Zhang, J.; Shen, G. L.; Yu, R. Q. Efficient fluorescence resonanceenergy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+using a rhodamine spirolactam as a trigger. Anal.Chem.,2010,82,3108-3113.
    [21]Que, E. L.; Domaille, D. W.; Chang, C. J. Metals in neurobiology: probing theirchemistry and biology with molecular imaging. Chem. Rev.,2008,108,1517-1549.
    [22]Carol, P.; Sreejith, S.; Ajayaghosh, A. Ratiometric and near-infrared molecularprobes for the detection and imaging of zinc ions. Chem. Asian J.,2007,2,338-348.
    [23]Xu, Z.; Yoon, J.; Spring, D. R. Fluorescent chemosensors for Zn2+. Chem. Soc.Rev.,2010,39,1996-2006.
    [24]Ruedas-Rama, M. J.; Hall, E. A. H. Azamacrocycle activated quantum dot forzinc ion detection. Anal. Chem.,2008,80,8260-8268.
    [25]Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitivenonisotopic detection. Science,1998,281,2016-2018.
    [26]Bruchez, M; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductornanocrystals as fluorescent biological labels. Science,1998,281,2013-2016.
    [27]Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S.Luminescent quantum dots for multiplexed biological detection and imaging.Anal. Biotechnol.,2002,13,40-46.
    [28]Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.;Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for livecells, in vivo imaging, and diagnostics. Science,2005,307,538-544.
    [29]Medintz, I. L.; Uyeda, H. T.; Goldman, E.; Mattoussi, H. Quantum dotbioconjugates for imaging, labeling and sensing. Nat. Mater.,2005,4,435-446.
    [30]Xu, H.; Miao, R.; Fang, Z.; Zhong, X. H. Quantum dot-based “turn-on”fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal.Chim. Acta,2011,687,82-88.
    [31]Wang, H.-F.; He, Y.; Ji, T.-R.; Yan, X.-P. Surface molecular imprinting onMn-doped ZnS quantum dots for room-temperature phosphorescenceoptosensing of pentachlorophenol in water. Anal. Chem.,2009,81,1615-1621.
    [32]Wang, H.-F.; Li, Y.; Wu, Y.-Y.; He, Y.; Yan, X.-P. Ascorbic acid inducedenhancement of room temperature phosphorescence of sodium tripolyphosphate-capped Mn-doped ZnS quantum dots: mechanism and bioprobe applications.Chem. Eur. J.,2010,16,12988-12994.
    [33]Wu, P.; He, Y.; Wang, H.-F.; Yan, X.-P. Conjugation of glucose oxidase ontoMn-doped ZnS quantum dots for phosphorescent sensing of glucose in biologicalfluids. Anal. Chem.2010,82,1427-1433.
    [34]Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity ofsemiconductor quantum dots. Nano. Lett.,2004,4,11-18.
    [35]Li, H.; Li, M. Y.; Shih, W. Y.; Lelkes, P. I.; Shih, W. H. Cytotoxicity tests ofwater soluble ZnS and CdS quantum dots. J. Nanosci. Nanotechnol.,2011,11,3543-3551.
    [36]Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis ofwater-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid asstabilizer. J. Mater. Chem.,2003,13,1853-1857.
    [37]Nann, T.; Mulvaney, P. Single quantum dots in spherical silica particles. Angew.Chem. Int. Ed.,2004,43,5393-5396.
    [38]Correa-Duarte, M. A.; Giersig, M.; Liz-Marzán, L. M. Stabilization of CdSsemiconductor nanoparticles against photodegradation by a silica coatingprocedure. Chem. Phys. Lett.,1998,286,497-501.
    [39] omor, M. I.; Nedeljkovi, J. M. Enhanced photocorrosion stability of colloidalcadmium sulphide-silica nanocomposites. J. Mater. Sci. Lett.,1999,18,1583-1585.
    [40]Zhang, T.; Stilwell, J. L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P. A.;Gray, J. W.; Alivisatos, A. P.; Chen, F. F. Cellular effect of high doses ofsilica-coated quantum dot profiled with high throughput gene expression analysisand high content cellomics. Nano. Lett.,2006,6,800-808.
    [41]Mu, J.; Gu D.; Xu, Z. Effect of annealing on the structural and optical propertiesof non-coated and silica-coated ZnS:Mn nanoparticles. Mater. Res. Bull.,2005,40,2198-2204.
    [42]Martínez-Martos, J. M.; Ramírez-Expósito, M. J.; Mayas-Torres, M. D.;García-López M. J.; Rammírez-Sánchez, M. Utility of the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to measure mitochondrialactivity in K+-and ATP-stimulated rodent cortex synaptosomes. Neurosci. Res.Commun.,2000,27,103-107.
    [43]Zhang, B. H.; Wu, F. Y.; Wu, Y. M.; Zhan, X. S. Fluorescent method for thedetermination of sulfide anion with ZnS:Mn quantum dots. J. Fluoresc.,2010,20,243-250.
    [44]Wu, C. L.; Zhao, Y. B. CdS quantum dots as fluorescence probes for thesensitive and selective detection of highly reactive HSe-ions in aqueous solution.Anal. Bioanal. Chem.,2007,388,717-722.
    [45]Chen, L.; Zhang, J.; Luo, Y.; Lu, S.; Wang, X. Effect of Zn2+and Mn2+introduction on the luminescent properties of colloidal ZnS:Mn2+nanoparticles.Appl. Phys. Lett.,2004,84,112-114.
    [46]Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.;Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shellnanocrystals using air-stable reagents via successive ion layer adsorption andreaction. J. Am. Chem. Soc.2003,125,12567-12575.
    [47]Chen, B. B.; Heng, S. J.; Peng, H. Y.; Hu, B.; Yu, X.; Zhang, Z. L.; Pang, D. W.;Yue, X.; Zhu, Y. Magnetic solid phase microextraction on a microchip combinedwith electrothermal vaporization-inductively coupled plasma mass spectrometryfor determination of Cd, Hg and Pb in cells. J. Anal. At. Spectrom.,2010,25,1931-1938.
    [48]Rovetta, F.; Catalani, S.; Steimberg, N.; Boniotti, J.; Gilberti, M. E.; Mariggiò, M.A.; Mazzoleni, G. Organ-specific manganese toxicity: a comparative in vitrostudy on five cellular models exposed to MnCl2. Toxicol. in Vitro,2007,21,284-292.
    [49]Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T. A novel,cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. J. Am.Chem. Soc.2002,124,10650-10651.
    [50]Rae, T. D.; Schmidt, P. J.; Pufahl, R. A.; Culotta, V. C.; O’Halloran, T. V.Undetectable intracellular free copper: the requirement of a copper chaperone forsuperoxide dismutase. Science,1999,284,805-808.
    [51]Mai, F.-D.; Chen, B.-J.; Wu, L.-C.; Li, F.-Y.; Chen, W.-K. Imaging of singleliver tumor cells intoxicated by heavy metal using ToF-SIMS. Appl. Surf. Sci.,2006,252,6809-6812.
    [52]Yu, M. X.; Shi, M.; Chen, Z. G.; Li, F. Y.; Li, X. X.; Gao, Y. H.; Xu, J.; Yang,H.; Zhou, Z. G.; Yi, T.; Huang, C. H. High sensitive and fast responsivefluorescence turn-on chemodosimeter for Cu2+and its application in live cellimaging. Chem. Eur. J.,2008,14,6892-6900.
    1《荧光分析法》许金钩,王尊本,主编,第三版,科学出版社,北京,2006.
    2Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: syntheses andspectroscopic properties. Chem. Rev.,2007,107,4891-4932.
    3田茂忠,彭孝军,樊江莉,氟硼二吡咯类阳离子荧光探针的研究进展,分析化学,2006,34,S283-S288.
    4Katerinopoulos, H. E. The coumarin moiety as chromophore of fluorescent ionindicators in biological systems. Curr. Pharm. Design,2004,10,3835-3852.
    5马文辉,彭孝军,徐群,香豆素类荧光传感器,化学进展,2007,19,1258-1266.
    6葛凤燕,闫喜龙,潘慧英,荧光素类探针在生物分析中的研究进展,分析化学,2005,33,1199-1204.
    7颜范勇,陈立功,闫喜龙,罗丹明类荧光染料的合成及应用.化学进展,2006,18,252-261.
    8Kim, H. N.; Lee, M. H.; Kim, H. J. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev.,2008,37,1465-1472.
    9Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Synthesis and applications ofrhodamine derivatives as fluorescent probes. Chem. Soc. Rev.,2009,38,2410-2433.
    10袁跃华,田茂忠,冯峰,罗丹明类阳离子荧光探针,化学进展,2010,22,1929-1939.
    11Murphy, C. J. Optical sensing with quantum dots. Anal. Chem.2002,74,520A-526A.
    12徐海娥,闫翠娥。水溶性量子点的制备及应用。化学进展,2005,17,800-808.
    13Dai, Q. Q.; Li, D. M.; Chang, J. J.; Song, Y. L.; Kan, S. H.; Chen, H. Y.; Zou, B.; Xu,W. Q.; Xu, S. P.; Liu, B. B.; Zou, G. T. Facile synthesis of magic-sized CdSe and CdTenanocrystals with tunable existence periods. Nanotechnology,2007,18,405-603.
    14Seo, H.; Kim, S. W. In situ synthesis of CdTe/CdSe core-shell quantum dots. Chem.Mater.2007,19,2715-2717.
    15Carbone, L.; Kudera, S.; Carlino, E.; Parak, W. J.; Giannini, C.; Cingolani, R.; Manna,L. Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid.J. Am. Chem. Soc.2006,128,748-755.
    16Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Low-temperature synthesis ofoil-soluble CdSe, CdS, and CdSe/CdS core-shell nanocrystals by using variouswater-soluble anion precursors. J. Phys. Chem. C,2007,111,5661-5666.
    17Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmüller, A.; Weller, H. Synthesis andcharacterization of a size series of extremely small thiol-stabilized CdSe nanocrystals.J. Phys. Chem. B,1999,103,3065-3069.
    18Bao, H. B.; Gong, Y. J.; Li, Z.; Gao, M. Y. Enhancement effect of illumination on thephotoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescentCdTe/CdS core-shell structure. Chem. Mater.2004,16,3853-3859.
    19Fillion, H.; Luche, J.-L. Synthetic organic sonochemistry, ed. Plenum Press, New York,1998, p.91.
    20Xia, B.; Lenggoro, I. W.; Okuyama, K. Synthesis of CeO2nanoparticles bysalt-assisted ultrasonic aerosol decomposition. J. Mater. Chem.2001,11,2925.
    21Ge, J.-P.; Li, Y.-D. Ultrasonic synthesis of nanocrystals of metal selenides andtellurides. J. Mater. Chem.,2003,13,911.
    22Xiao, J.; Xie, Y.; Tang, R.; Chen, M.; Tian, X. Novel ultrasonically assisted templatedsynthesis of palladium and silver dendritic nanostructures. Adv. Mater.,2001,13,1887.
    23Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M.Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat.,2003,2,630-638.
    24Aswathy, R. G.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Near-infrared quantum dotsfor deep tissue imaging. Anal. Bioanal. Chem.,2010,397,1417-1435.
    25Tavares, A. J.; Chong, L.; Petryayeva, E.; Algar, W. R.; Krull, U. J. Quantum dots ascontrast agents for in vivo tumor imaging: progress and issues. Anal. Bioanal. Chem.,2011,399,2331-2342.
    26Wang, C.; Gao, X.; Su, X. In vitro and in vivo imaging with quantum dots. Anal.Bioanal. Chem.,2010,397,1397-1415.
    27Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dotbioconjugates for imaging, labelling and sensing. Nat. Mater.2005,4,435-446.
    28Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271,933-937.
    29Klostranec, J. M.; Chan, W. C. W. Quantum dots in biological and biomedical research:recent progress and present challenges. Adv. Mater.2006,18,1953-1964.
    30Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science2008,319,1776-1779.
    31Swafford, L. A.; Weigand, L. A.; Bowers II, M. J.; McBride, J. R.; Rapaport, J. L.;Watt, T. L.; Dixit, S. K.; Feldman, L. C. Homogeneously alloyed CdSxSe1-xnanocrystals: synthesis, characterization, and composition/size-dependent band gap. J.Am. Chem. Soc.2006,128,12299-12306.
    32Piven, N.; Susha, A. S.; D blinger, M. Aqueous synthesis of alloyed CdSexTe1-xnanocrystals. J. Phys. Chem. C2008,112,15253-15259.
    33Bailey, R. E.; Nie, S. M. Alloyed semiconductor quantum dots: tuning the opticalproperties without changing the particle size. J. Am. Chem. Soc.2003,125,7100-7106.
    34Jiang, W.; Singhal, A.; Zheng, J.; Wang, C.; Chan, W. C. W. Optimizing the synthesisof red-to near-IR-emitting CdS-capped CdTexSe1-xalloyed quantum dots forbiomedical imaging. Chem. Mater.2006,18,4845-4854.
    35Franzl, T.; Müller, J.; Klar, T. A.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller,H. CdSeTe nanocrystals band-edge versus Te-related emission. J. Phys. Chem. C2007,111,2974-2979.
    36Kuno, M.; Higginson, K. A.; Qadri, S. B.; Yousuf, M.; Lee, S. H.; Davis, B. L.;Mattoussi, H. Molecular clusters of binary and ternary mercury chalcogenides:colloidal synthesis, characterization, and optical spectra. J. Phys. Chem. B2003,107,5758-5767.
    37Lan, G. Y.; Lin, Y. W.; Huang, Y. F.; Chang, H. T. Photo-assisted synthesis of highlyfluorescent ZnSe(S) quantum dots in aqueous solution. J. Mater. Chem.2007,17,2661-2666.
    38Li, C.; Nishikawa, K.; Ando, M.; Enomoto, H.; Murase, N. Synthesis of Cd-freewater-soluble ZnSe1-xTexnanocrystals with high luminescence in the blue region. J.Colloid Interface Sci.2008,321,468-476.
    39Bang, J. H.; Suh, W. H.; Suslick K. S. Quantum dots from chemical aerosol flowsynthesis: preparation, characterization, and cellular imaging. Chem. Mater.2008,20,4033-4038.
    40Korgel, B. A.; Monbouquette, H. G. Controlled synthesis of mixed core and layered(Zn,Cd)S and (Hg,Cd)S nanocrystals within phosphatidylcholine vesicles. Langmuir2000,16,3588-3594.
    41Sun, H. Z.; Zhang, H.; Ju, J.; Zhang, J. H.; Qian, G.; Wang, C. L.; Yang, B.; Wang, Z.Y. One-step synthesis of high-quality gradient CdHgTe nanocrystals: a prerequisite toprepare CdHgTe-polymer bulk composites with intense near-infraredphotoluminescence. Chem. Mater.2008,20,6764-6769.
    42Regulacio, M. D.; Han, M.-Y. Composition-tunable alloyed semiconductornanocrystals. Acc. Chem. Res.2010,43,621-630.
    43Ouyang, J. Y.; Ratcliffe, C. I.; Kingston, D.; Wilkinson, B.; Kuijper, J.; Wu, X. H.;Ripmeester, J. A.; Yu, K. Gradiently alloyed ZnxCd1-xS colloidal photoluminescentquantum dots synthesized via a noninjection one-pot approach. J. Phys. Chem. C2008,112,4908-4919.
    44Zheng, Y. G.; Yang, Z. C.; Ying, J. Y. Aqueous synthesis of glutathione-capped ZnSeand Zn1-xCdxSe alloyed quantum dots. Adv. Mater.2007,19,1475-1479.
    45Protière, M.; Reiss, P. Highly luminescent Cd1-xZnxSe/ZnS core/shell nanocrystalsemitting in the blue-green spectral range. Small2007,3,399-403.
    46Liu, F. C.; Cheng, T. L.; Shen, C. C.; Tseng, W. L.; Chiang, M. Y. Synthesis ofcysteine-capped ZnxCd1-xSe alloyed quantum dots emitting in the blue-green spectralrange. Langmuir2008,24,2162-2167.
    47李步洪,张镇西等。量子点在生物学中的研究进展。激光生物学报,2006,15,214-220.
    48Delehanty, J. B.; Bradburne, C. E.; Susumu, K.; Boeneman, K.; Mei, B. C.; Farrell, D.;Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H.; Medintz, I. L. Spatiotemporalmulticolor labeling of individual cells using peptide-functionalized quantum dots andmixed delivery techniques. J. Am. Chem. Soc.,2011,133,10482-10489.
    49Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization ofmonodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater.Sci.2000,30,545-610.
    50徐丽,刘明明,严拯宇。量子点的制备及其在生物医药领域中的应用。药学进展,2008,32,168-172.
    51Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. The use of luminescent quantumdots for optical sensing. Trends in Analytical Chemistry,2006,25,207-218.
    52Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J.Am. Chem. Soc.1993,115,8706-8715.
    53Chen, H.-Y.; Chen, T.-Y.; Son, D. H. Measurement of energy transfer time in colloidalMn-doped semiconductor nanocrystals. J. Phys. Chem. C,2010,114,4418-4423.
    54Zheng, J.; Ji, W.; Wang, X.; Ikezawa, M.; Jing, P.; Liu, X.; Li, H.; Zhao, J.; Masumoto,Y. Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controllingdiffusion of Mn ions into the ZnS shell. J. Phys. Chem. C,2010,114,15331-15336.
    55Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel,A.; Eychmüller, A.; Rakovich, Y. P.; Donegan, J. F. Aqueous synthesis of thiol-cappedCdTe nanocrystals: State-of-the-art. J.Phys. Chem. C,2007,111,14628-14637.
    56Yuan, Z.; Ma, Q.; Zhang, A.; Cao, Y.; Yang, J.; Yang, P. Synthesis of highlyluminescent CdTe/ZnO core/shell quantum dots in aqueous solution. J. Mater. Sci.,2012,47,3770-3776.
    57Wang, C.; Gao, X.; Ma, Q.; Su, X. Aqueous synthesis of mercaptopropionic acidcapped Mn2+-doped ZnSe quantum dots. J. Mater. Chem.,2009,19,7016-7022.
    58Shao, P.; Zhang, Q.; Li, Y.; Wang, H. Aqueous synthesis of color-tunable and stableMn2+-doped ZnSe quantum dots. J. Mater. Chem.,2011,21,151-156.
    59Liu, J.; Wei, X.; Qu, Y.; Cao, J.; Chen, C.; Jiang, H. Aqueous synthesis andbio-imaging application of highly luminescent and low cytotoxicity Mn2+-doped ZnSenanocrystals. Materials Letters,2011,65,2139-2141.
    60Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski,A.; Eychmüller, A.; Weller, H., Thiol-capping of CdTe nanocrystals: an alternative toorganometallic synthetic routes. J. Phys. Chem. B,2002,106,7177-7185.
    61Rogach, A. L.; Katsikas, L.; Kornowski, A.; Su, D.; Eychmueller, A.; Weller, H.Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Berichte derBunsengesellschaft fur Physikalische Chemie,1996,100,1772-1778.
    62Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis of water-solubleZnS: Mn2+nanocrystals by using mercaptopropionic acid as stabilizer. J. Mater. Chem.,2003,13,1853-1857.
    63李春喜,王子镐。超声技术在纳米材料制备中的应用。化学通报,2001,5,268-271.
    64陈洪杰,李志伟,陶小军,吴志申,张治军。超声波在纳米材料制备中的应用。化学研究,2005,16,104-112.
    65Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M. W. Sonochemical synthesisof amorphous iron. Nature,1991,353,414-416.
    66Crum, L. A.; Mason, T. J.; Reisse, J.; et al. Sonochemistry and sonolum inescence.Kluwer publishers dordrecht, Netherlands,1999,291-320.
    67Murcia, M. J.; Shaw, D. L.; Woodruff, H.; Naumann, C.A.; Young, B. A.; Long, E.C.Facile sonochemical synthesis of highly luminescent ZnS-shelled CdSe quantum dots.Chem. Mater.2006,18,2219-2225.
    68Liu, B.; Ren, T.; Zhang, J.-R.; Chen, H.-Y.; Zhu, J.-J.; Burda, C.Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water.Electrochem. Commun.2007,9,551-557.
    69Menezes, F. D.; Galembeck, A.; Junior, S. A. New methodology for obtaining CdTequantum dots by using ultrasound. Ultrasonics Sonochemistry,2011,18,1008-1011.
    70Wang, C.; Zhang, H.; Zhang, J.; Li, M.; Sun, H.; Yang, B. Application of ultrasonicirradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shellnanocrystals. J. Phys. Chem. C,2007,111,2465-2469.
    71Zhu, J. J.; Zhou, M. G.; Xu, J. Z.; et al. Preparation of CdS and ZnS nanoparticles usingmicrowave irradiation. Material Letters,2001,47,25-29.
    72Yang, H. M.; Huang, C. G.; Su, X. H.; et al. Microwave assisted synthesis andluminescent properties of pure and doped ZnS nanoparticles. J. Alloys. Compd,2005,402,274-277.
    73Li, L.; Qian, H. F.; Ren, J. C. Rapid synthesis of highly luminescent CdTe nanocrystalsin the aqueous phase by microwave irradiation with controllable temperature. Chem.Commun.2005,528-530.
    74He, Y.; Sai, L. M.; Lu, H. T.; et al. Microwave-assisted synthesis of water-dispersedCdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem.Mater.,2007,19,359-365.
    75Ma, J.; Tai, G.; Guo, W. Ultrasound-assisted microwave preparation of Ag-doped CdSnanoparticles. Ultrasonics Sonochemistry,2010,17,534-540.
    76董微,量子点的制备及在生物标记中的应用。东北大学博士学位论文,2009.
    77Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection. Science,1998,281,2016-2018.
    78孙聆东,付雪峰,钱程等。水热法合成CdS/ZnO核壳结构纳米微粒。高等学校化学学报,2001,22,879-882.
    79Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec,F. V.; Bawendi, M. G. Self-assemble of CdSe-ZnS quantum dot bioconjugates using anengineered recombinant protein. J. Am. Chem. Soc.,2000,122,12142-12150.
    80Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. Programmed assembley of DNAfunctionalized quantum dots. J. Am. Chem. Soc.,1999,121,8122-8123.
    81Pathal, S.; Choi, S. K.; Amheim, N.; Thompson, M. E. Hydroxylated quantum dots asluminescent probes for in situ hybridization. J. Am. Chem. Soc.,2001,123,4103-4104.
    82Bhang, S. H.; Won, N.; Lee, T.-J.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H.-S.;Sung, Y.-E.; Hahn, S. K.; Kim, B.-S.; Kim, S. Hyaluronic acid-quantum dot conjugatesfor in vivo lymphatic vessel imaging. ACS Nano,2009,3,1389-1398.
    83Choi, J. H.; Chen, K. H.; Strano, M. S. Aptamer-capped nanocrystal quantum dots: anew method for label-free protein detection. J. Am. Chem. Soc.,2006,128,15584-15585.
    84Levina, L.; Sukhovatkin, V.; Musikhin, S.; Cauchi, S.; Nisman, R.; Bazett-Jones, D. P.;Sargent, E. H. Efficient infrared-emitting PbS quantum dots grown on DNA and stablein aqueous solution and blood plasma. Adv. Mater.,2005,17,1854-1857.
    85Green, M.; Smyth-Boyle, D.; Harries, J.; Taylor, R. Nucleotide passivated cadmiumsulfide quantum dots. Chem. Commun.,2005,4830-4832.
    86Hinds, S.; Taft, B. J.; Levina, L.; Sukhovatkin, V.; Dooley, C. J.; Roy, M. D.; MacNeil,D. D.; Sargent, E. H.; Kelley, S. O. Nucleotide-directed growth of semiconductornanocrystals. J. Am. Chem. Soc.,2006,128,64-65.
    87Freeman, R.; Finder, T.; Willner, I. Multiplexed analysis of Hg2+and Ag+ions bynucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gateoperations. Angew. Chem. Int. Ed.,2009,48,7818-7821.
    88Gattás-Asfura, K. M.; Leblanc, R. M. Peptide-coated CdS quantum dots for the opticaldetection of copper(II) and silver(I). Chem. Commun.,2003,2684-2685.
    89Shang, Z. B.; Hu, S.; Wang, Y.; Jin, W. J. Interaction of β-cyclodextrin-capped CdSequantum dots with inorganic anions and cations. Luminescence,2011,26,585-591.
    90Chen, J. L.; Zheng, A. F.; Gao, Y.; He, C.; Wu, G.; Chen, Y.; Kai, X.; Zhu, C.Functionalized CdS quantum dots-based luminescence probe for detection of heavyand transition metal ions in aqueous solution. Spectrochimica Acta Part A,2008,69,1044-1052.
    91严拯宇,庞代文,邵秀芬,胡育筑。量子点荧光淬灭法测定中药饮片中的微量铜。中国药科大学学报,2005,3,230-233.
    92Zheng, A. F.; Chen, J. L. Aqueous phase preparation of CdTe nanorods and itsapplication in recognition of Cu2+ions. Journal of Inorganic Materials,2009,24,251-254.
    93Lai, S. J.; Chang, X. J.; Fu, C. Cadmium sulfide quantum dots modified by chitosan asfluorescence probe for copper ion determination. Microchimica Acta,2009,165,39-44.
    94Zhang, Y. H.; Zhang, H. S.; Guo, X. F.; Wang, H. L-Cysteine-coated CdSe/CdScore-shell quantum dots as selective fluorescence probe for copper(II) determination.Microchemical Journal,2008,89,142-147.
    95王柯敏,王益林,李朝辉等. CdTe量子点荧光淬灭法测定铜离子的研究.湖南大学学报(自然科学版),2005,32,1-5.
    96Chen, Y.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal.Chem.,2002,74,5132-5138.
    97Chan, Y.-H.; Chen, J.; Liu, Q.; Wark, S. E.; Son, D. H.; Batteas, J. D. Ultrasensitivecopper(II) detection using plasmon-enhanced and photo-brightened luminescence ofCdSe quantum dots. Anal. Chem.,2010,82,3671-3678.
    98Xia, Y.; Zhu, C. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots fornear-infrared fluorescent sensing of copper(II). Analyst,2008,133,928-932.
    99Fernández-Argüelles, M. T.; Jin, W. J.; Costa-Fernández, J. M.; Pereiro, R.;Sanz-Medel, A. Surface-modified CdSe quantum dots for the sensitive and selectivedetermination of Cu(II) in aqueous solutions by luminescent measurements. AnalyticaChimica Acta,2005,549,20-25.
    100Cao, Z.; Gu, Z.; Zeng, J.-L.; Liu, J.-H.; Deng, Q.; Fan, J.-B.; Xiang, J.-N. A novelfluorescent probe for copper ions based on polymer-modified CdSe/CdS core/shellquantum dots. Analytical Sciences,2011,27,643-647.
    101Shen, Y.; Li, L.; Lu, Q.; Ji, J.; Fei, R.; Zhang, J.; Abdel-Halim, E. S.; Zhu, J.-J.Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2quantum dotsand their application in the detection of Cu(II). Chem. Commun.,2012,48,2222-2224.
    102Mei, Y.-L.; Wang, H.-S.; Li, Y.-F.; Pan, Z.-Y.; Jia, W.-L. Electochemiluminescence ofCdTe/CdS quantum dots with triproprylamine as coreactant in aqueous solution at alower potential and its application for highly sensitive and selective detection of Cu2+.Electroanalysis,2010,22,155-160.
    103Chen, S.; Zhang, X.; Zhang, Q.; Hou, X.; Zhou, Q.; Yan, J.; Tan, W. CdSe quantumdots decorated by mercaptosuccinic acid as fluorescence probe for Cu2+. Journal ofluminescence,2011,131,947-951.
    104Wang, H.; Sun, L.; Li, Y.; Fei, X.; Sun, M.; Zhang, C.; Li, Y.; Yang, Q. Layer-by-layerassembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probefor sensitive sensing of Cu2+ions. Langmuir,2011,27,11609-11615.
    105Wang, G.-L.; Dong, Y.-M.; Li, Z.-J. Metal ion (silver, cadmium and zinc ions) modifiedCdS quantum dots for ultrasensitive copper ion sensing. Nanotechnology,2011,22,1-7.
    106Koneswaran, M.; Narayanaswamy, R. L-cysteine-capped ZnS quantum dots basedfluorescence sensor for Cu2+ion. Sensors and Actuators B,2009,139,104-109.
    107Wang, J.; Zhou, X.; Ma, H.; Tao, G. Diethyldithiocarbamate functionalized CdSe/CdSquantum dots as a fluorescent probe for copper ion detection. Spectrochimica Acta PartA,2011,81,178-183.
    108Xie, H.-Y.; Liang, J.-G.; Zhang, Z.-L.; Liu, Y.; He, Z.-K.; Pang, D.-W. LuminescentCdSe-ZnS quantum dots as selective Cu2+probe. Spectrochimica Acta Part A,2004,60,2527-2530.
    109Liang, G.-X.; Liu, H.-Y.; Zhang, J.-R.; Zhu, J.-J. Ultrasensitive Cu2+sensing bynear-infrared-emitting CdSeTe alloyed quantum dots. Talanta,2010,80,2172-2176.
    110Ai, X. P.; He, Z. K.; Pang, D. W. Functionalized CdSe quantum dots as selective silverion chemodosimeter Jian-Gong Liang. Analyst,2004,129,619-622.
    111Zhang, X. J.; Wang, G. F. Luminescent CuS nanotubes as silver ion probes.Spectrochimicaacta part a molecular and biomolecular spectroscopy,2009,72,1071-1075.
    112Wang, J. H.; Wang, H. Q.; Zhang, H. L.; et al. Purification of denatured bovine serumalbumin coated CdTe quantum dots for sensitive detection of silver(I) ions. Anal.Bioanal. Chem.,2007,388,969-974.
    113Chen, J. L.; Zhu, C.-Q. Functionalized cadmium sulfide quantum dots as fluorescenceprobe for silver ion determination. Analytical Chimica Acta,2005,546,147-153.
    114Mandal, A.; Dandapat, A.; De, G. Magic sized ZnS quantum dots as a highly sensitiveand selective fluorescence sensor probe for Ag+ions. Analyst,2012,137,765-772.
    115Pendyala, N. B.; Koteswara Rao, K. S. R. Efficient Hg and Ag ion detection withluminescent PbS quantum dots grown in poly vinyl alcohol and capped withmercaptoethanol. Colloids and Surfaces A: Physicochem. Eng. Aspects,2009,339,43-47.
    116Xia, Y.-S.; Cao, C.; Zhu, C.-Q. Two distinct photoluminescence responses of CdTequantum dots to Ag(I). Journal of Luminescence,2008,128,166-172.
    117Ingole, P. P.; Abhyankar, R. M.; Prasad, B. L. V.; Haram, S. K. Citrate-capped quantumdots of CdSe for the selective photometric detection of silver ions in aqueous solutions.Materials Science and Engineering B,2010,168,60-65.
    118Wang, J.; Liang, J.; Sheng, Z.; Han, H. A novel strategy for selective detection of Ag+based on the red-shift of emission wavelength of quantum dots. Microchim Acta,2009,167,281-287.
    119Zhang, B.-H.; Wu, F.-Y. Functionalized manganese-doped zinc sulfide core/shellquantum dots as selective fluorescent chemodosimeters for silver ion. Microchim Acta,2010,170,147-153.
    120Li, H.; Zhang, Y.; Wang, X. L-Carnitine capped quantum dots as luminescent probesfor cadmium ions. Sensors and Actuators B,2007,127,593-597.
    121Chen, J. L.; Gao, Y. C.; Guo, C.; Wu, G. H.; Chen, Y. C.; Lin, B. W. Facile synthesis ofwater-soluble and size-homogeneous cadmium selenide nanoparticles and theirapplication as a long-wavelength fluorescent probe for detection of Hg(II) in aqueoussolution. Spectrochimica Acta Part A-molecular and Biomolecular Spectroscopy,2008,69,572-579.
    122Shang, Z. B.; Wang, Y.; Jin, W. J. Triethanolamine-capped CdSe quantum dots asfluorescent sensors for reciprocal recognition of mercury(II) and iodide in aqueoussolution. Talanta,2009,78,364-369.
    123Cai, Z.-X.; Yang, H.; Zhang, Y.; Yan, X.-P. Preparation, characterization and evaluationof water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe fordetection of Hg(II) in aqueous solution. Analytica Chimica Acta,2006,559,234-239.
    124Nolan, E. M.; Lippard, S. J. Tools and tactics for the optical detection of mercuric ion.Chem. Rev.,2008,108,3443-3480.
    125Xia, Y.-S.; Zhu, C.-Q. Use of surface-modified CdTe quantum dots as fluorescentprobes in sensing mercury(II). Talanta,2008,75,215-221.
    126Chen, C. Y.; Cheng, C. T.; Lai, C. W.; Wu, P. W.; Wu, K. C.; Chou, P. T.; Chou, Y. H.;Chiu, H. T. Potassium ion recognition by15-crown-5functionalized CdSe/ZnSquantum dots in H2O. Chem. Commun.,2006,263-265.
    127Liu, M. M.; Xu, L.; Cheng, W. Q.; Zeng, Y.; Yan, Z. Y. Surface-modified CdS quantumdots as luminescent probes for sulfadiazine determination. Spectrochimica Acta PartA-molecular and Biomolecular Spectroscopy,2008,70,1198-1202.
    128Mohamed, A. E.; Zheng, Y.; Yu, H. H.; Ying, J. Y. Ultrasensitive Pb2+detection byglutathione-capped quantum dots. Anal. Chem.,2007,79,9452-9458.
    129Ruedas-Rama, M. J.; Hall, E. A. H. Azamacrocycle activated quantum dot for zinc iondetection. Anal. Chem.,2008,80,8260-8268.
    130Xu, H.; Miao, R.; Fang, Z.; Zhong, X. H. Quantum dot-based “turn-on” fluorescentprobe for detection of zinc and cadmium ions in aqueous media. Analytica ChimicaActa,2011,687,82-88.
    131Wu, C.-L.; Zhao, Y.-B. CdS quantum dots as fluorescence probes for the sensitive andselective detection of highly reactive Hse-ions in aqueous solution. Anal BioanalChem,2007,388,717-722.
    132Zhang, B.-H.; Wu, F.-Y.; Wu, Y.-M.; Zhan, X.-S. Fluorescent method for thedetermination of sulfide anion with ZnS:Mn quantum dots. J. Fluoresc.,2010,20,243-250.
    133Wang, Z.; Lu, M.; Wang, X.; Yin, R.; Song, Y.; Le, X. C.; Wang, H. Quantum dotsenhanced ultrasensitive detection of DNA adducts. Anal. Chem.,2009,81,10285-10289.
    134Xiang, D.-S.; Zeng, G.-P.; He, Z.-k. Magnetic microparticle-based multiplexed DNAdetection with biobarcoded quantum dot probes. Biosensors and Bioelectronics,2011,26,4405-4410.
    135Bailey, V. J.; Easwaran, H.; Zhang, Y.; Griffiths, E.; Belinsky, S. A.; Herman, J. G.;Baylin, S. B.; Carraway, H. E.; Wang, T.-H. MS-qFRET: A quantum dot-based methodfor analysis of DNA methylation. Genome Res.,2009,19,1455-1461.
    136Zhang, C.-Y.; Yeh, H.-C.; Kuroki, M. T.; Wang, T.-H. Single-quantum-dot-based DNAnanosensor. Nature materials,2005,4,826-831.
    137Wu, P.; Yan, X.-P. Ni2+-modulated homocysteine-capped CdTe quantum dots as aturn-on photoluminescent sensor for detecting histidine in biological fluids. Biosensorsand Bioelectronics,2010,26,485-490.
    138Cheng, W.; Yan, F.; Ding, L.; Ju, H.; Yin, Y. Cascade signal amplification strategy forsubattomolar protein detection by rolling circle amplification and quantum dots tagging.Anal. Chem.,2010,82,3337-3342.
    139Shi, L.; Rosenzweig, N.; Rosenzweig, Z. Luminescent quantum dots fluorescenceresonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.Anal. Chem.,2007,79,208-214.
    140Kim, Y.-P.; Oh, Y.-H.; Oh, E.; Ko, S.; Han, M.-K.; Kim, H.-S. Energy transfer-basedmultiplexed assay of proteases by using gold nanoparticle and quantum dot conjugateson a surface. Anal. Chem.,2008,80,4634-4641.
    141Xia, Z.; Xing, Y.; So, M.-K.; Koh, A. L.; Sinclair, R.; Rao, J. Multiplex detection ofprotease activity with quantum dot nanosensors prepared by intein-mediated specificbioconjugation. Anal. Chem.,2008,80,8649-8655.
    142Boeneman, K.; Mei, B. C.; Dennis, A. M.; Bao, G.; Deschamps, J. R.; Mattoussi, H.;Medintz, I. L. Sensing caspase3activity with quantum dot-fluorescent proteinassemblies. J. Am. Chem. Soc.,2009,131,3828-3829.
    143Zhang, W.; Wu, D.; Wei, J.; Xiao, G. A new method for the detection of the H5influenza virus by magnetic beads capturing quantum dot fluorescent signals.Biotechnol. Lett.,2010,32,1933-1937.
    144Kuo, Y.-C.; Wang, Q.; Ruengruglikit, C.; Yu, H.; Huang, Q. Antibody-conjugated CdTequantum dots for Escherichia coli detection. J. Phys. Chem. C,2008,112,4818-4824.
    145Hu, M.; Yan, J.; He, Y.; Lu, H.; Weng, L.; Song, S.; Fan, C.; Wang, L. Ultrasensitive,multiplexed detection of cancer biomarkers directly in serum by using a quantumdot-based microfluidic protein chip. ACS Nano,2010,4,488-494.
    146Wagner, M. K.; Li, F.; Li, J.; Li, X.-F.; Le, X. C. Use of quantum dots in thedevelopment of assays for cancer biomarkers. Anal. Bioanal. Chem.,2010,397,3213-3224.
    147Cheng, A. K. H.; Su, H.; Wang, Y. A.; Yu, H.-Z. Aptamer-based detection of epithelialtumor marker mucin1with quantum dot-based fluorescence readout. Anal. Chem.,2009,81,6130-6139.
    148Jokerst, J. V.; Raamanathan, A.; Christodoulides, N.; Floriano, P. N.; Pollard, A. A.;Simmons, G. W.; Wong, J.; Gage, C.; Furmaga, W. B.; Redding, S. W.; McDevitt, J. T.Nano-bio-chips for high performance multiplexed protein detection: determinations ofcancer biomarkers in serum and saliva using quantum dot bioconjugate labels.Biosensors and Bioelectronics,2009,24,3622-3629.
    149Hu, F.; Ran, Y.; Zhou, Z.; Gao, M. Preparation of bioconjugates of CdTe nanocrystalsfor cancer marker detection. Nanotechnology,2006,17,2972-2977.
    150Wang, J.; Liu, G.; Wu, H.; Lin, Y. Quantum-dot-based electrochemical immunoassayfor high-throughput screening of the prostate-specific antigen. Small,2008,4,82-86.
    151Kerman, K.; Endo, T.; Tsukamoto, M.; Chikae, M.; Takamura, Y.; Tamiya, E. Quantumdot-based immunosensor for the detection of prostate-specific antigen usingfluorescence microscopy. Talanta,2007,71,1494-1499.
    152Geszke-Moritz, M.; Clavier, G.; Lulek, J.; Schneider, R. Copper-or manganese-dopedZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media.Journal of Luminescence,2012,132,987-991.
    153Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots andmetal nanoparticles: syntheses, optical properties, and biological applications. Anal.Bioanal. Chem.,2008,391,2469-2495.
    154Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W.; Nie, S. M. In vivomolecular and cellular imaging with quantum dots. Curr. Opin. Biotech.,2005,16,63-72.
    155Kuo, C.-W.; Chueh, D.-Y.; Singh, N.; Chien, F.-C.; Chen, P. Targered nuclear deliveryusing peptide-coated quantum dots. Bioconjugate Chem.,2011,22,1073-1080.
    156Li, Z.; Huang, P.; He, R.; Zhang, X.; Bao, C.; Ren, Q.; Cui, D. Aptamer-conjugateddendrimer-modified quantum dots for glioblastoma cells imaging. Journal of Physics:Conference Series,2009,188,1-4.
    157Williams, Y.; Byrne, S.; Bashir, M.; Davies, A.; Whelan, á.; Gun’ko, Y.; Kelleher, D.;Volkov, Y. Comparison of three cell fixation methods for high content analysis assaysutilizing quantum dots. Journal of Microscopy,2008,232,91-98.
    158Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.;Farokhzad, O. C. Quantum dot-Aptamer conjugates for synchronous cancer imaging,therapy, and sensing of drug delivery based on Bi-fluorescence resonance energytransfer. Nano Letters,2007,7,3065-3070.
    159Smith, A. M.; Ruan, G.; Rhyner, M. N.; Nie, S. Engineering luminescent quantum dotsfor in vivo molecular and cellular imaging. Annals of Biomedical Engineering,2006,34,3-14.
    160Biju, V.; Itoh, T.; Ishikawa, M. Delivering quantum dots to cells: bioconjugatedquantum dots for targeted and nonspecific extracellular and intracellular imaging.Chem. Soc. Rev.,2010,39,3031-3056.
    161Soo, Y. L.; Ming, Z. H.; Huang, S. W.; Kao, Y. H.; Bhargava, R. N.; Gallagher,D. Local structures around Mn luminescent centers in Mn-doped nanocrystalsof ZnS. Phys. Rev. B,1994,50,7602-7607.
    162Chen, H. Y.; Chen, T. Y.; Son, D. H. Measurement of energy transfer time incolloidal Mn-doped semiconductor nanocrystals. J. Phys. Chem. C,2010,114,4418-4423.
    163Qu, S. C.; Zhou, W. H.; Liu, F. Q.; Chen, N. F.; Wang, Z. G.; Pan, H. Y.; Yu, D.P. Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in awater/methanol solution. Appl. Phys. Lett.,2002,80,3605-3607.
    164Bol, A. A.; Beek, R. V.; Meijerink, A. On the incorporation of trivalent rareearth ions in II-VI semiconductor nanocrystals. Chem. Mater.,2002,14,1121-1126.
    165Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J. Photophysicalproperties of ZnS nanoclusters with spatially localized Mn2+. J. Phys. Chem.,1996,100,4551-4555.
    166Xie, P. B.; Zhang, W. P.; Yin, M.; Chen, H. T.; Zhang, W. W.; Luo, L. R.; Xia, S.D. Photoluminescence properties of surface-modified nanocrystalline ZnS:Mn.J. Colloid Interface Sci.,2000,229,534-539.
    167Counio, G.; Gacoin, T.; Boilot, J. P. Synthesis and photoluminescence ofCd1-xMnxS (x≤5%) nanocrystals. J. Phys. Chem. B,1998,102,5257-5260.
    168Bol, A. A.; Meijerink, A. Long-lived Mn2+emission in nanocrystallineZnS:Mn2+. Phys. Rev. B,1998,58, R15997-R16000.
    169Murase, N.; Jagannathan, R.; Kanematsu, Y.; Watanabe, M.; Kurita, A.; Hirata,K.; Yazawa T.; Kushida, T. Fluorescence and EPR characteristics ofMn2+-doped ZnS nanocrystals prepared by aqueous colloidal method. J. Phys.Chem. B,1999,103,754-760.
    170Koshravi, A. A.; Kundu, M.; Kuruvilla, B. A.; Shekhawat, G. S.; Gupta, R. P.;Sharma, A.; Vyas P. D. K.; Kulkarni, S. K. Manganese doped zinc sulphidenanoparticles by aqueous method. Appl. Phys. Lett.,1995,67,2506-2508.
    171Leeb, J.; Gebhardt, V.; Muller, G.; Haarer, D.; Su, D.; Giersig, M.; McMahon G.;Spanhel, L. Colloidal synthesis and electroluminescence properties ofnanoporous MnIIZnS films. J. Phys. Chem. B,1999,103,7839-7845.
    172Swayambunathan, V.; Hayes, D.; Schmidt, K. H.; Liao Y. X.; Meisel, D. Thiolsurface complexation on growing cadmium sulfide clusters. J. Am. Chem. Soc.,1990,112,3831-3837.
    173Norris, D. J.; Yao, N.; Charnock F. T.; Kennedy, T. A. High-qualitymanganese-doped ZnSe nanocrystals. Nano. Lett.,2001,1,3-7.
    174Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sunder, V. C.;Mikulec F. V.; Bewendi, M. G. Self-assembly of CdSe-ZnS quantum dotbioconjugates using an engineered recombinant protein. J. Am. Chem. Soc.,2000,122,12142-12150.
    175Bol A. A.; Meijerink, A. Luminescence quantum efficiency of nanocrystallineZnS:Mn2+.1. surface passivation and Mn2+concentration. J. Phys. Chem. B,2001,105,10197-10202.
    176Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis ofwater-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid asstabilizer. J. Mater. Chem.2003,13,1853.
    177Pogson, C. I. Guanine nucleotides and their significance in biochemicalprocesses. Am. J. Clin. Nutr.,1974,27,380-402.
    178Melissa, M.; Guodong, L.; Stewart, A. M. Inhibition of calcium induced insulinsecretion from intact HIT-T15or INS-1β Cells by GTP depletion. BiochemPharm,1997,53,1873-1882.
    179Gysbers, J. W.; Pathbone, M. P.; GTP and guanosine synergistically enhanceNGF-induced neurite outgrowth from PC12cells. Int. J. Dev. Neuroscience,1996,14,19-34.
    180Gysbers, J. W.; Guarnieri, S.; Mariggio, M. A.; et al. Extracellular guanosine5’-triphosphate enhances nerve growth factor-induced neurite outgrowth viaincrease in intracellular calcium. Neuroscience,2000,96,817-824.
    181Kwon, J. Y.; Singh, N. J.; Kim, H.; Kim, S. K.; Kim, K. S.; Yoon, J. FluorescentGTP-sensing in aqueous solution of physiological pH. J. Am. Chem. Soc.2004,126,8892-8893.
    182Wang, S.; Chang, Y.-T. Combinatorial synthesis of benzimidazolium dyes andits diversity directed application toward GTP-selective fluorescentchemosensors. J. Am. Chem. Soc.2006,128,10380-10381.
    183Neelakandan, P. P.; Hariharan, M.; Ramaiah, D. A supramolecular ON-OFF-ONfluorescence assay for selective recognition of GTP. J. Am. Chem. Soc.2006,128,11334-11335.
    184Burrows, C. J.; Muller, J. G. Oxidative nucleobase modifications leading tostrand scission. Chem. Rev.,1998,98,1109-1152.
    185Norris, D. J.; Sacra, A.; Murray, C. B.; Bawendi, M. G. Measurement of the sizedependent hole spectrum in CdSe quantum dots. Phys. Rev. Lett.1994,72,2612-2615.
    186Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics insemiconductor nanocrystals. J. Phys. Chem. B,2000,104,6112-6123.
    187Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.;Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced luminescence of CdSequantum dots on gold colloids. Nano Lett.2002,2,1449-1452.
    188Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching ofsingle-molecule fluorescence. Phys. Rev. Lett.2006,96,113002-1-4.
    189Hou, Y.; Ye, J.; Gui, Z.; Zhang, G. Z. Temperature-modulatedphotoluminescence of quantum dots. Langmuir2008,24,9682-9685.
    190Zhang, X. R.; Zhao, Y. Q.; Li, S. G.; Zhang, S. S. Photoelectrochemicalbiosensor for detection of adenosine triphosphate in the extracts of cancer cells.Chem. Commun.,2010,46,9173-9175.
    191Ogris, M.; Steinlein, P.; Carotta, S.; Brunner, S.; Wagner, E. DNA/polyethylenemine transfection particles: influence of ligands, polymer size, andPEGylation on internalization and gene expression. AAPS PharmSci,2001,3,43-53.
    192Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis andphotoluminescence nanocrystalline ZnS:Mn2+. Nano Lett.2001,1,429-433.
    193Chung, J. H.; Ah, C. S.; Jang, D. J. Formation and distinctive decay times ofsurface-and lattice-bound Mn2+impurity luminescence in ZnS nanoparticles. J.Phys. Chem. B2001,105,4128-4132.
    194Wu, G.; Morris, S. M. Arginine metabolism: nitric oxide and beyond. Biochem. J.1998,336,1-17.
    195Barbul, A. Arginine: biochemistry, physiology, and therapeutic implications. J. Parent.Enteral Nutr.1986,10,227-238.
    196Gopalakrishnan, V.; Burton, P. J.; Blaschke, T. F. High-performance liquidchromatographic assay for the quantitation of L-arginine in human plasma. Anal. Chem.1996,68,3520-3523.
    197Olson, D. L.; Lacey, M. E.; Webb, A. G.; Sweedler, J. V. Nanoliter-volume1H NMRdetection using periodic stopped-flow capillary electrophoresis. Anal. Chem.1999,71,3070-3076.
    198De Ordu a, R. M. Quantitative determination of L-arginine by enzymatic end-pointanalysis. J. Agric. Food Chem.2001,49,549-552.
    199Bahl, S.; Naqvi, S.; Venkitasubramanian, T. A. Simple, rapid quantitativedetermination of lysine and arginine by thin-layer chromatography. J. Agric. FoodChem.1976,24,56-59.
    200Bastone, A.; Diomede, L.; Parini, R.; Carnevale, F.; Salmona, M. Determination ofargininosuccinate lyase and arginase activities with an amino acid analyzer. Anal.Biochem.1990,191,384-389.
    201Roberts, H. R.; Kolor, M. G. Rapid quantitative determination of arginine, histidine,and lysine by ion exchange paper chromatography. Anal. Chem.1959,31,565-566.
    202Sibali, S. M.; Radej, N. V. Determination of lysine, arginine, and histidine by hightemperature paper chromatography. Anal. Chem.1961,33,1223-1224.
    203Bǎnicǎ, F.-G.; Guziejewski, D.; Skrzypek, S.; Ciesielski, W.; Ka mierczak, D. Effectof basic amino acids on nickel ion reduction at a mercury electrode. Electroanalysis2009,21,1711-1718.
    204Miura, T.; Kashiwamura, M.; Kimura, M. A fluorometric method for the specificdetermination of serum arginine with2,3-naphthalenedicarbaldehyde. Anal. Biochem.1984,139,432-437.
    205Ruedas-Rama, M. J.; Hall, E. A. H. Azamacrocycle activated quantum dot for zinc iondetection. Anal. Chem.2008,80,8260-8268.
    206Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection. Science1998,281,2016-2018.
    207Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductornanocrystals as fluorescent biological labels. Science1998,281,2013-2016.
    208Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Luminescentquantum dots for multiplexed biological detection and imaging. Anal. Biotechnol.2002,13,40-46.
    209Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.;Sundare-san, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, invivo imaging, and diagnostics. Science2005,307,538-544.
    210Medintz, I. L.; Uyeda, H. T.; Goldman, E.; Mattoussi, H. Quantum dot bioconjugatesfor imaging, labelling and sensing. Nat. Mater.2005,4,435-446.
    211Ma, Y. Q.; Lu, G. X. Differential effects of Mg(II) and Nα-4-tosyl-L-arginine methylester hydrochloride on the recognition and catalysis in ATP hydrolysis. Dalton Trans.2008,1081-1086.
    212Fokkens, M.; Schrader, T.; Kl rner, F.-G. A molecular tweezer for lysine and arginine.J. Am. Chem. Soc.2005,127,14415-14421.
    213Bush, M. F.; O’Brien, J. T.; Prell, J. S.; Saykally, R. J.; Williams, E. R. Infraredspectroscopy of cationized arginine in the gas phase: direct evidence for the transitionfrom nonzwitterionic to zwitterionic structure. J. Am. Chem. Soc.2007,129,1612-1622.
    214Woods, A. S.; Ferré, S. Amazing stability of the arginine-phosphate electrostaticinteraction. J. Proteome Res.2005,4,1397-1402.
    215Woods, A. S. The mighty arginine, the stable quaternary amines, the powerfularomatics, and the aggressive phosphate: their role in the noncovalent minuet. J.Proteome Res.2004,3,478-484.
    216Rashkin, M. J.; Hughes, R. M.; Calloway, N. T.; Waters, M. L. Orientation andalkylation effects on cation-π interactions in aqueous solution. J. Am. Chem. Soc.2004,126,13320-13325.
    217Hughes, R. M.; Waters, M. L. Effects of lysine acetylation in a β-hairpin peptide:comparison of an amide-π and a cation-π interaction. J. Am. Chem. Soc.2006,128,13586-13591.
    218Luche, J.-L.; Bianchi, C. Synthetic Organic Sonochemistry, Plenum Press, New York,1998, p.91.
    219Wang, H.-F.; He, Y.; Ji, T.-R.; Yan, X.-P. Surface molecular imprinting on Mn-dopedZnS quantum dots for room-temperature phosphorescence optosensing ofpentachlorophenol in water. Anal. Chem.,2009,81,1615-1621.
    220He, Y.; Wang, H.-F.; Yan, X.-P. Exploring Mn-doped ZnS quantum dots for theroom-temperature phosphorescence detection of enoxacin in biological fluids. Anal.Chem.2008,80,3832-3837.
    221Ren, H.-B.; Wu, B.-Y.; Chen, J.-T.; Yan, X.-P. Silica-coated S2--enrichedmanganese-doped ZnS quantum dots as a photoluminescence probe for imagingintracellular Zn2+ions. Anal. Chem.2011,83,8239-8244.
    222Choi, J. H.; Chen, K. H.; Strano, M. S. Aptamer-capped nanocrystal quantum dots: anew method for label-free protein detection. J. Am. Chem. Soc.2006,128,15584-15585.
    223Zhuang, J. Q.; Zhang, X. D.; Wang, G.; Li, D. M.; Yang, W. S.; Li, T. J. Synthesis ofwater-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid as stabilizer. J.Mater. Chem.2003,13,1853-1857.
    224Green, M.; Smyth-Boyle, D.; Harries, J.; Taylor, R. Nucleotide passivated cadmiumsulfide quantum dots. Chem. Commun.2005,4830-4832.
    225Sigel, H. Have adenosine5’-triphosphate (ATP4-) and related purine-nucleotidesplayed a role in early evolution? ATP, its own ‘enzyme’ in metal ion facilitatedhydrolysis!*Inorg. Chim. Acta1992,198-200,1-11.
    226Green, M.; Taylor, R.; Wakefield, G. The synthesis of luminescent adenosinetriphosphate passivated cadmium sulfide nanoparticles. J. Mater. Chem.2003,13,1859-1861.
    227Sauer, K.; Scheer, H.; Sauer, P. F rster transfer calculations based on crystal structuredata from agmenellum quadruplicatum C-phycocyanin. Photochem. Photobiol.1987,46,427-440.
    228Lakowicz, J. R.; Weber, G. Quenching of fluorescence by oxygen. A probe forstructural fluctuations in macromolecules. Biochemistry1973,12,4161-4170.
    229Jones, R. M.; Bergstedt, T. S.; McBranch, D. W.; Whitten, D. G. Tuning ofsuperquenching in layered and mixed fluorescent polyelectrolytes. J. Am. Chem. Soc.2001,123,6726-6727.
    230Murphy, C. B.; Zhang, Y.; Troxler, T.; Ferry, V.; Martin, J. J.; Jones, W. E. ProbingF rster and dexter energy-transfer mechanisms in fluorescent conjugated polymerchemosensors. J. Phys. Chem. B2004,108,1537-1543.
    231Baptista, M. S.; Indig, G. L. Effect of BSA binding on photophysical andphotochemical properties of triarylmethane dyes. J. Phys. Chem. B1998,102,4678-4688.
    232Lakowicz, J. R. Principle of Fluorescence Spectroscopy,2nded., Plenum Press, NewYork,1999, p.237-259.
    233Oca a, J. A.; Callejón, M.; Barragán, F. J. Terbium-sensitized luminescencedetermination of levofloxacin in tablets and human urine and serum. Analyst2000,125,1851-1854.
    234Lobenhoffer, J. M.; Bode-B ger, S. M. Simultaneous detection of arginine,asymmetric dimethylarginine, symmetric dimethylarginine and citrulline in humanplasma and urine applying liquid chromatography-mass spectrometry with verystraightforward sample preparation. J. Chromatogr. B2003,798,231-239.
    235Berg, J. M.; Shi, Y. The galvanization of biology: a growing appreciation forthe roles of zinc. Science,1996,271,1081-1085.
    236Takeda, A. Movement of zinc and its functional significance in the brain. BrainRes. Rev.,2000,34,137-148.
    237Wang, Z. Y.; Stoltenberg, M.; Jo, S. M.; Huang, L.; Larsen, A.; Dahlstr m A.;Danscher, G. Dynamic zinc pools in mouse choroid plexus. NeuroReport,2004,15,1801-1804.
    238Frederickson, C. J.; Koh J. Y.; Bush, A. I. The neurobiology of zinc in healthand disease. Nat. Rev. Neurosci.,2005,1-14.
    239Suh, S. W.; Jensen, K. B.; Jensen, M. S.; Silva, D. S.; Kesslak, P. J.; DanscherG.; Frederickson, C. J. Histochemically-reactive zinc in amyloid plaques,angiopathy, and degenerating neurons of alzheimer’s diseased brains. BrainRes.,2000,852,274-278.
    240Chausmer, A. B. Zinc, insulin and diabetes. J. Am. Coll. Nutr.,1998,17,109-115.
    241Henshall, S. M.; Afar, D. E. H.; Rasiah, K. K.; Horvath, L.G.; Gish, K.; Caras,I.; Ramakrishnan, V.; Wong, M.; Jeffry, U.; Kench, J. G.; Quinn, D. I.;Turner, J. J.; Delprado, W.; Lee, C.-S.; Golovsky, D.; Brenner, P. C.; O’Neill,G. F.; Kooner, R.; Stricker, P. D.; Grygiel, J. J.; Mack, D. H.; Sutherland, R. L.Expression of the zinc transporter ZnT4is decreased in the progression fromearly prostate disease to invasive prostate cancer. Oncogene,2003,22,6005-6012.
    242Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Highlyzinc-selective fluorescent sensor molecules suitable for biological applications.J. Am. Chem. Soc.,2000,122,12399-12400.
    243Komatsu, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Selective zincsensor molecules with various affinities for Zn2+, revealing dynamics andregional distribution of synaptically released Zn2+in hippocampal slices. J. Am.Chem. Soc.,2005,127,10197-10204.
    244Kikuchi, K.; Komatsu, K.; Nagano, T. Zinc sensing for cellular application.Curr. Opin. Chem. Biol.,2004,8,182-191.
    245Nagano, T. Development of fluorescent probes for bioimaging applications.Proc. Jpn. Acad., Ser. B,2010,86,837-847.
    246Chang, C. J.; Jaworski, J.; Nolan, E. M.; Sheng, M.; Lippard, S. J. A tautomericzinc sensor for ratiometric fluorescence imaging: application to nitricoxide-induced release of intracellular zinc. Proc. Natl. Acad. Sci. USA,2004,101,1129-1134.
    247Chang, C. J.; Nolan, E. M.; Jaworski, J.; Okamoto, K.–I.; Hayashi, Y.; Sheng,M.; Lippard, S. J. ZP8, a neuronal zinc sensor with improved dynamic range;imaging zinc in hippocampal slices with two-photon microscopy. Inorg. Chem.,2004,43,6774-6779.
    248Burdette, S. C.; Frederickson, C. J.; Bu, W. M.; Lippard, S. J. ZP4, an improvedneuronal Zn2+sensor of the zinpyr family. J. Am. Chem. Soc.,2003,125,1778-1787.
    249Nolan, E. M.; Lippard, S. J. Small-molecule fluorescent sensors forinvestigating zinc metalloneurochemistry. Acc. Chem. Res.,2009,42,193-203.
    250Ma, J. J.; Zhang, J.; Du, X.; Lei, X.; Li, J. Solidified floating organic dropmicroextraction for determination of trace amounts of zinc in water samples byflame atomic absorption spectrometry. Microchim Acta,2010,168,153-159.
    251Vanhoe, H.; Vandecasteele, C.; Versieck, J.; Dams, R. Determination of iron,cobalt, copper, zinc, rubidium, molybdenum, and cesium in human serum byinductively coupled plasma mass spectrometry. Anal. Chem.,1989,61,1851-1857.
    252B a ewicz, A.; Dolliver, W.; Sivsammye, S.; Deol, A.; Randhawa, R.;Orlicz-Szcz sna, G.; B a ewicz, R. Determination of cadmium, cobalt, copper,iron, manganese, and zinc in thyroid glands of patients with diagnosed nodulargoitre using ion chromatography. J. Chromatogr. B,2010,878,34-38.
    253Li, Z.; Yu, M.; Zhang, L.; Yu, M.; Liu, J.; Wei, L.; Zhang, H. A “switching on”fluorescent chemodosimeter of selectivity to Zn2+and its application to MCF-7cells. Chem. Commun.,2010,46,7169-7171.
    254Han, Z. X.; Zhang, X. B.; Li, Z.; Gong, Y. J.; Wu, X. Y.; Jin, Z.; He, C. M.;Jian, L. X.; Zhang, J.; Shen, G. L.; Yu, R. Q. Efficient fluorescence resonanceenergy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+using a rhodamine spirolactam as a trigger. Anal.Chem.,2010,82,3108-3113.
    255Que, E. L.; Domaille, D. W.; Chang, C. J. Metals in neurobiology: probing theirchemistry and biology with molecular imaging. Chem. Rev.,2008,108,1517-1549.
    256Carol, P.; Sreejith, S.; Ajayaghosh, A. Ratiometric and near-infrared molecularprobes for the detection and imaging of zinc ions. Chem. Asian J.,2007,2,338-348.
    257Xu, Z.; Yoon, J.; Spring, D. R. Fluorescent chemosensors for Zn2+. Chem. Soc.Rev.,2010,39,1996-2006.
    258Ruedas-Rama, M. J.; Hall, E. A. H. Azamacrocycle activated quantum dot forzinc ion detection. Anal. Chem.,2008,80,8260-8268.
    259Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitivenonisotopic detection. Science,1998,281,2016-2018.
    260Bruchez, M; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductornanocrystals as fluorescent biological labels. Science,1998,281,2013-2016.
    261Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S.Luminescent quantum dots for multiplexed biological detection and imaging.Anal. Biotechnol.,2002,13,40-46.
    262Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.;Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for livecells, in vivo imaging, and diagnostics. Science,2005,307,538-544.
    263Medintz, I. L.; Uyeda, H. T.; Goldman, E.; Mattoussi, H. Quantum dotbioconjugates for imaging, labeling and sensing. Nat. Mater.,2005,4,435-446.
    264Xu, H.; Miao, R.; Fang, Z.; Zhong, X. H. Quantum dot-based “turn-on”fluorescent probe for detection of zinc and cadmium ions in aqueous media.Anal. Chim. Acta,2011,687,82-88.
    265Wang, H.-F.; He, Y.; Ji, T.-R.; Yan, X.-P. Surface molecular imprinting onMn-doped ZnS quantum dots for room-temperature phosphorescenceoptosensing of pentachlorophenol in water. Anal. Chem.,2009,81,1615-1621.
    266Wang, H.-F.; Li, Y.; Wu, Y.-Y.; He, Y.; Yan, X.-P. Ascorbic acid inducedenhancement of room temperature phosphorescence of sodiumtripolyphosphate-capped Mn-doped ZnS quantum dots: mechanism andbioprobe applications. Chem. Eur. J.,2010,16,12988-12994.
    267Wu, P.; He, Y.; Wang, H.-F.; Yan, X.-P. Conjugation of glucose oxidase ontoMn-doped ZnS quantum dots for phosphorescent sensing of glucose inbiological fluids. Anal. Chem.2010,82,1427-1433.
    268Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity ofsemiconductor quantum dots. Nano. Lett.,2004,4,11-18.
    269Li, H.; Li, M. Y.; Shih, W. Y.; Lelkes, P. I.; Shih, W. H. Cytotoxicity tests ofwater soluble ZnS and CdS quantum dots. J. Nanosci. Nanotechnol.,2011,11,3543-3551.
    270Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis ofwater-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid asstabilizer. J. Mater. Chem.,2003,13,1853-1857.
    271Nann, T.; Mulvaney, P. Single quantum dots in spherical silica particles. Angew.Chem. Int. Ed.,2004,43,5393-5396.
    272Correa-Duarte, M. A.; Giersig, M.; Liz-Marzán, L. M. Stabilization of CdSsemiconductor nanoparticles against photodegradation by a silica coatingprocedure. Chem. Phys. Lett.,1998,286,497-501.
    273omor, M. I.; Nedeljkovi, J. M. Enhanced photocorrosion stability of colloidalcadmium sulphide-silica nanocomposites. J. Mater. Sci. Lett.,1999,18,1583-1585.
    274Zhang, T.; Stilwell, J. L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P. A.;Gray, J. W.; Alivisatos, A. P.; Chen, F. F. Cellular effect of high doses ofsilica-coated quantum dot profiled with high throughput gene expressionanalysis and high content cellomics. Nano. Lett.,2006,6,800-808.
    275Mu, J.; Gu D.; Xu, Z. Effect of annealing on the structural and opticalproperties of non-coated and silica-coated ZnS:Mn nanoparticles. Mater. Res.Bull.,2005,40,2198-2204.
    276Martínez-Martos, J. M.; Ramírez-Expósito, M. J.; Mayas-Torres, M. D.;García-López M. J.; Rammírez-Sánchez, M. Utility of the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay tomeasure mitochondrial activity in K+-and ATP-stimulated rodent cortexsynaptosomes. Neurosci. Res. Commun.,2000,27,103-107.
    277Zhang, B. H.; Wu, F. Y.; Wu, Y. M.; Zhan, X. S. Fluorescent method for thedetermination of sulfide anion with ZnS:Mn quantum dots. J. Fluoresc.,2010,20,243-250.
    278Wu, C. L.; Zhao, Y. B. CdS quantum dots as fluorescence probes for thesensitive and selective detection of highly reactive HSe-ions in aqueoussolution. Anal. Bioanal. Chem.,2007,388,717-722.
    279Chen, L.; Zhang, J.; Luo, Y.; Lu, S.; Wang, X. Effect of Zn2+and Mn2+introduction on the luminescent properties of colloidal ZnS:Mn2+nanoparticles.Appl. Phys. Lett.,2004,84,112-114.
    280Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.;Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shellnanocrystals using air-stable reagents via successive ion layer adsorption andreaction. J. Am. Chem. Soc.2003,125,12567-12575.
    281Chen, B. B.; Heng, S. J.; Peng, H. Y.; Hu, B.; Yu, X.; Zhang, Z. L.; Pang, D.W.; Yue, X.; Zhu, Y. Magnetic solid phase microextraction on a microchipcombined with electrothermal vaporization-inductively coupled plasma massspectrometry for determination of Cd, Hg and Pb in cells. J. Anal. At. Spectrom.,2010,25,1931-1938.
    282Rovetta, F.; Catalani, S.; Steimberg, N.; Boniotti, J.; Gilberti, M. E.; Mariggiò,M. A.; Mazzoleni, G. Organ-specific manganese toxicity: a comparative in vitrostudy on five cellular models exposed to MnCl2. Toxicol. in Vitro,2007,21,284-292.
    283Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T. A novel,cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. J. Am.Chem. Soc.2002,124,10650-10651.
    284Rae, T. D.; Schmidt, P. J.; Pufahl, R. A.; Culotta, V. C.; O’Halloran, T. V.Undetectable intracellular free copper: the requirement of a copper chaperonefor superoxide dismutase. Science,1999,284,805-808.
    285Mai, F.-D.; Chen, B.-J.; Wu, L.-C.; Li, F.-Y.; Chen, W.-K. Imaging of singleliver tumor cells intoxicated by heavy metal using ToF-SIMS. Appl. Surf. Sci.,2006,252,6809-6812.
    286Yu, M. X.; Shi, M.; Chen, Z. G.; Li, F. Y.; Li, X. X.; Gao, Y. H.; Xu, J.; Yang,H.; Zhou, Z. G.; Yi, T.; Huang, C. H. High sensitive and fast responsivefluorescence turn-on chemodosimeter for Cu2+and its application in live cellimaging. Chem. Eur. J.,2008,14,6892-6900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700