功能性微纳米材料的控制合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有明显不同于体材料和单个分子的独特的表面效应、体积效应、量子尺寸效应和宏观隧道效应等,呈现出许多奇异的物理、化学性质,如纳米材料在化学反应中显示了极高的活性和良好的选择性;与大块的体材料比较,纳米材料的吸收光谱普遍存在“蓝移”现象;纳米半导体微粒具有光吸收率大的特点等等。纳米材料这些独特的物理化学性质使得其在电子学、化学化工、生命科学、医学等众多领域有着广泛的应用前景。然而,纳米材料的性质又受到纳米材料的尺寸、形貌结构的影响,因此实现其控制合成及研究其结构与性质之间关系对于基础研究和技术应用都具有重要意义。本论文主要从以下几个方面开展:
     一.铜基纳米材料的合成及其性能研究。
     1.多孔铜基微纳结构的合成及其性能研究。铜基纳米材料具有十分丰富的物理化学性质,多孔结构的纳米材料具有很大的比表面积,将可能带来一些奇特的物理化学性能。我们提出了一种简便的前驱物法来合成多孔铜/碳和氧化铜纳米结构。利用Cu2+和甘氨酸(Gly)之间的配位作用,在室温条件下合成甘氨酸合铜的纳米线或纳米片状结构前驱体,并通过在不同气氛下煅烧得到多孔铜/碳或氧化铜一维或二维纳米结构。在抗菌性能研究和染料光催化降解研究表明,这些材料具有良好的抗菌性能和光催化活性。
     2.氧化亚铜微纳结构的合成及其性能研究。由于纳米材料物理、化学活性与表面形貌相关联,系统地调节无机纳米材料的结构、尺寸和形貌已经成为当今材料合成的一个焦点。在本小节中,我们提出了在甘氨酸的辅助下,采用双溶剂热法来可控地合成一系列不同形貌的氧化亚铜微晶。在水和乙醇混合体系中,产物主要为氧化亚铜八面体和多面体结构。而在水和乙二醇或者水和丙三醇混合体系中,产物则更倾向于形成立方体结构。相比起传统合成路线,这种方法提供了一种温和的方式在不需使用模板或表面活性剂的情况下获得一系列不同形貌的氧化亚铜。在纳米无机抗菌性能研究结果表明:所获得的氧化亚铜都具有一定的抗菌作用,并且伴随着氧化亚铜晶体从立方体结构向八面体结构转变,氧化亚铜的抗菌作用从普适性变为选择性。而对罗丹明B的光催化降解研究显示氧化亚铜具有良好的催化活性,并且其催化活性同样受到其形貌的影响。
     3.金属铜微纳结构的合成及其性能研究。合成纳米结构和将纳米尺度的微粒组装形成有序的超结构或复杂的功能结构,将提供巨大的机遇来探索其新的性能。我们利用生物小分子-葡萄糖辅助水热法合成了新颖的铜片状拼图结构。将它们作为电极材料制成修饰电极,应用到无酶葡萄糖传感器中,发现相比与商业铜粉末,拼图状铜微米片修饰的电极对葡萄糖浓度变化有良好的线性关系和较高的灵敏度和选择性。此外,抑菌试验表明,拼图状微米片铜具有良好的抗菌效果,这将在实际葡萄糖检测具有很好的应用前景。
     二.镍基纳米材料的合成及其性能研究。
     1.氧化镍纳米管的合成及其性能研究。由于质量密度低、孔隙率高、表面积大,中空无机纳米材料已成为一类具有重要性质及潜在应用价值的纳米结构材料。在本节中,我们开发了一种简单的前驱物法获得氧化镍纳米管。首先利用镍与丁二酮肟的配位作用合成一维纳米金属配合物丁二酮肟合镍(Ni(DMG)2),并将其作为前驱物,在空气中进行煅烧即获得氧化镍纳米管。性质研究表明所获得的氧化镍纳米管表现出良好的抗菌性能此外,氧化镍纳米管表现出有效的电化学电容,它可以用来作为放热系统中的能源供应。磁性测量表明,与块材氧化镍是反铁磁性不同,氧化镍纳米管是铁磁性的,有可能应用在磁共振成像领域和磁性药物输送中。
     2.氧化镍纳米线的合成及其性能研究。纳米线作为一种一维纳米结构,是完美的纳米功能器件材料,也代表着电子有效传递的最小尺寸。电导率是电极材料最重要的一个方面,它能有效提高活性材料的利用效率并降低电容器的内阻。在本研究中,我们提出了一个NiO纳米线的简单的合成路线,将镍箔浸泡在LiOH溶液中后在高温下煅烧获得NiO纳米线,通过调节LiOH溶液的浓度可控制获得NiO纳米线的长度。产物的电化学研究发现,NiO纳米线的长度对其电化学性能具有明显的影响,最长氧化镍纳米线/镍箔电极的比电容可达到最高180.00Fg-1,而且具有长期电化学稳定性。
     3.硼酸镍纳米带结构的合成及其性能研究。金属硼酸盐在许多方面如非线性光学,激光应用和磁学,催化和磷光性质等方面有着重要特征。我们通过一个简单的固相法首次合成硼酸镍纳米带。所得Ni3(BO3)2纳米带的宽度在100-150纳米之间,长度可达20微米。抗菌实验表明,Ni3(BO3)2纳米带具有良好的抗菌活性。我们还探讨了Ni3(BO3)2纳米带的电化学电容器的应用,发现Ni3(BO3)2纳米带具有较大的比电容(170·Fg-1)。
     4.二氧化钛-金属镍磁性光催化剂的合成及其性能研究。在现实应用中,催化剂的分离手段,如离心或过滤可能造成催化剂的损耗和能源的浪费。近来,使用磁性纳米粒子来分离催化剂已经引起相当的关注。在本节中我们利用磁场作为无形的模板作用,合成了镍微米线结构。将合成的镍微纳结构作为模板,合成了二氧化钛-金属镍复合磁性光催化剂,该材料具有良好的光催化降解有机染料的性能,同时具有优良的生物相容性和磁性,易分离可重复使用。
     三.锰基纳米材料的合成及其性能研究。
     1.四氧化三锰纳米线和纳米管阵列的合成及其性能研究。锰基材料是一种重要且被深入研究的材料,广泛用于磁性材料、催化、离子交换和电池。在电子工业中Mn3O4作为软磁性材料有着广泛的应用,而有序的微纳结构有可能具有十分特殊的性能,尤其是一维纳米结构的有序组合。在这项研究工作中,我们首次成功地利用温和的水热反应,在无模板、无基底条件下合成出自支持四氧化三锰纳米线和纳米管阵列,即在四氧化三锰基底上生长出四氧化三锰纳米线或纳米管阵列。在磁学性能的研究中,我们发现四氧化三锰纳米线阵列和纳米管阵列显现了不同的磁学性能,四氧化三锰纳米管阵列具有更强的磁容量。
     2.β-二氧化锰纳米网状结构合成及其性能研究。β-MnO2因其热力学稳定性,非常容易制备。但传统的β-MnO2的电化学性能一般都较差。然而,β-MnO2纳米或介孔材料,与常规材料不同,纳米级的β-MnO2可具有很高的电容量。在本节中,我们避免了极端的反应条件和模板/基板的辅助,利用水热法在温和的水热条件下成功地合成β-MnO2的纳米线网络结构。将获得二维p-二氧化锰纳米线网络结构作为超级电容器电极,具有出良好的电化学性能,其在室温条件下电容量可达到381.2F/g,并具有高比容量、高能量密度、高功率密度和寿命长等特点,很可能成为下一代高性能超级电容器电极材料。
     四.其他材料微纳米结构的合成及其性能研究。
     1.羟基磷酸铁超级分型结构的水热合成及其性能研究。自然状态下,低晶体对称性(单斜晶系)的超级分型结构在自然界中并不常见。在本节中,我们利用水热法在温和无模板的水热条件下合成分型的羟基磷酸铁纳米结构。分型的羟基磷酸铁纳米结构可高度选择性地捕捉蛋白质酶解产物中的磷酸肽。产物的毒性试验结果表明这些材料具有良好的生物相容性,这使得其有望在生命科学领域中得到应用。
     2.石墨烯-氧化锆复合材料的合成及其性能研究。石墨烯具有许多含羟基和环氧官能团,且具有易分散的特点。锆氧化物对磷酸肽体现出独特的选择性,尤其是zrO2微米/纳米结构材料因其独特的物理化学性质而被应用于磷酸肽的选择性识别中。但是由于纳米材料本身表面能高极易团聚,在液相中不易分散,大大限制了其应用。在本节中,我们成功地使用氧化石墨烯作为导向剂控制合成氧化锆纳米梭形-氧化石墨烯复合材料(FZGO),并且具有良好的分散性。在对磷酸肽选择性捕捉实验表明产物对磷酸肽具有高度选择性的捕捉。
Nano-materials have many special physical and chemical properties obviously different from their bulk counterparts or single molecules, due to the unique volume effect, quantum size effect, and macroscopic tunnel effect. For example, nanomaterials show both high activity and good selectivity in chemical reaction; compared with the bulk materials, nano-materials display blue-shiprt in their absorption spetra; semiconductor nanoparticles have their large absorption section. The unique properties of nanomaterial endow them wide potential applications in many fields such as electronics, chemistry, chemical engineering, life science and so on. However, the property of nanomaterials are greatly depend on their size, shape and structure, therefore, the controlled synthesis and the study of the relationship between the structure and property of nanomaterials are of great importance for both fundamental research and practical application. The main contents of this thesis are summaried as follows:
     1. Synthesis and property studies of copper-based nanomaterials
     1) Synthesis and property studies of porous copper/carbon and copper oxide nanostructures. Copper-based nanomaterials have various of physical and chemical poperties. Porous structure would endow the nanomaterials with large surface area, which may lead to some special physical chemical functions. We proposed a facile method for porous copper/carbon and copper oxide nanostructures. By using coordination between Cu2+and glycine (Gly), the precursors of Cu-Gly nanorods or nanosheets were synthesized at room temperature. The one or two dimensional nanostructure of porous Cu/C or CuO were obtained by calcining the precursors in different gas atmospheres. The studies of the antibacterial properties and decolorization of methyl orange (MO) revealed that the obtained materials exhibit significant antibacterial properties and photocatalytic fuction.
     2) Synthesis and property studies of Cu2O micro/nano structures. Because the physical and chemical activities of nanomaterials are associated with the surface morphology, the systematical tuning the structure, size and morphology of the inorganic nanomaterials has become a hot topic in the current materials research. In this section, we proposed a glycine-assisted double-solvent thermal approach to controllably synthesize a series of CU2O microcrystals. In water-ethanol system, the products have predominantly octahedral and polyhedral structures; while in water-glycol system or awater-glycerin system, the products have more tendencies to form a cubic type structure. Compared with the conventional route, this method provides a mild technique for various morphologies of Cu2O and omits the need for template or surfactants. The investigations of the antibacterial activity of the obtained Cu2O crystals suggest the obtained Cu2O crystals have good antibacterial effects, which transits from universality to selectivity with the transition of the crystal structure from cubic to octahedron. The study of these crystals for photodegradation of rhodamine B indicate that all these products have great catalytic activities, which are also influenced by the mophorlogies.
     3) Synthesis and property studies of copper micro/nano structure. Fabrication of nanostructure and the ordered functional structure assembled by nanoparticle will provide great oppertunity to explore their new functions. We used glucose, one of the biomolecules, to assist the synthesis of brand new puzzle-like copper microstructures and applied them as nonenzymatic glucose sensors. Compared to the commercial copper powders, the glucose-produced Cu micropuzzles show good linear dependence and high sensitivity and selectivity to glucose concentration change as nonenzymatic glucose sensors. Moreover, antibacterial tests show that the Cu micropuzzles have good antimicrobial efficiency, which would make the Cu glucose sensor applicable in the actual glucose detections.
     2. Synthesis and propertiy studies of nickel-based materials
     1) Synthesis and property studies of NiO nanotubes. Due to low density, high pore rate and large surface/volumn ratio, hollow inorganic nanomaterials have shown important properties and potential applications. In this chapter, we developed a simple and convenient precursor approach for the synthesis of NiO nanotubes. By using coordination between Ni and dimethylglyoximato, one-dimensional metal complex bis(dimethylglyoximato) nickel(Ⅱ), Ni(dmg)2was synthesized and then used as precursor to produce NiO nanotube by calcining in the air. The obtained NiO nanotubes show good antibacterial properties compared to commercial NiO and synthetic NiO nanoflowers. Also, the NiO nanotubes exhibit effective electrochemical capacitance, which can be used as a supply of energy in the exothermic system. The magnetic measurement demonstrates that unlike antimagnetic bulk NiO, the NiO nanotubes are magnetic and may be used in fields of MR imaging and magnetic drug delivery.
     2) Synthesis and property studies of NiO nanowires. Nanowires, as a kind of one-dimensional nanostructure, are perfect nanomaterials for the functional device, and are also the symbol of the smallest size for the effective electron transfer. Conductivity is one of the important aspects of the electrode materials, which can enhance the efficiency of the active materials and reduce the inner resistance. In this study, we proposed an easy synthesis route of NiO nanowires with different lengths by calcining Ni foil after soaking in LiOH solutions. The length of NiO nanowires can be adjusted by the varying the concentration of the LiOH solution. The electrochemical capacitor property measurements of these NiO nanowires/Ni foil electrodes show that the length of the NiO nanowires has an obvious effect on their electrochemical properties. The NiO nanowires/Ni foil electrode with the longest length has a highest specific capacitance of180.00F g-1and long-term electrochemical stability
     3) Synthesis and property studies of nickel orthoborate nanoribbons. Metal borates possess important properties and great application potentials in many fields, such as non-linear optics, laser application, magnetism, catalytic and phosphorescent properties. We firstly synthesized nickel orthoborate Ni3(BO3)2nanoribbons via a facile solid state reaction. The obtained Ni3(BO3)2nanoribbons have widths between100-150nm and lengths up to20μm. The antimicrobial studies show that the Ni3(BO3)2nanoribbons have good antimicrobial activities towards gram-negative bacterial and gram-positive bacterial. In addition, we also explored the application of the Ni3(BO3)2nanoribbons in electrochemical capacitors and found that the Ni3(BO3)2nanoribbons have a large specific capacitance of170F·g-1.
     4) Synthesis and properties studies of TiO2-nickel magnetic photocatalysts. In practical industry, separation procedures of the catalysts, such as centrifugation or filtration, may result in the loss of the catalysts or the waste of much energy. Recently, using magnetic nanoparticles for separation of catalysts have been received great attention. In this study, we demonstrated that by using the magnetic force lines as invisible templates nickel one-dimensional (1D) urchin-like structure can be successfully obtained. The1D urchin-like Ni nanostructures cross each other and result in many gaps or spaces to make them easily be modified by TiO2. The photocatalytic and biocompatibility studies show that this TiO2/Ni composite remains the outstanding photocatalytic activity for organic pollutant decomposition and the biocompatibility of TiO2. But more importantly, because of the coexistence of magnetic Ni nanostructure, the composite also displays good magnetic properties, which enable the photocatalysts to be easily separated and recycle-used.
     3. Synthesis and properties studies of Mn-based nanomaterials
     1) Synthesis and properties studies of Mn3O4nanotube arrays and nanowire arrays. Mn-based materials are very important and well-investigated, and have been widely used in magnetical materials, catalytic, ion exchange as well as batteries. In the electronic industry, Mn3O4can be widely employed as soft magnetic materials. Orded micro/nano structures especially the ordered structures of the one-dimensional nanostructure might have very special magnetic properties,. In the section, we reported a mild route to synthesis of self-supported pattern of aligned Mn3O4nanotubes and nanowires under mild hydrothermal conditions without any substrates used. Mn3O4nanotubes/nanowires can grow into perfect aligned arrays on Mn3O4plates. The magnetic studies show that Mn3O4nanotube arrays have a larger magnetic capacity than Mn3O4nanowire arrays
     2) Synthesis and properties studies of β-MnO2network structures. β-MnO2is very easy to be prepared due to its stability in thermodynamics. Conventional β-MnO2usually exhibits very low electrochemical activities. In this study, we have successfully synthesized a long-range order two dimensional (2D) β-MnO2network structures assembled by β-MnO2nanowires by a mild solution method without the assistance of templates/substrates. Moreover, the2Dβ-MnO2network structures show good electrochemical performances with a capacity of381.2F/g at room temperature, which would offer great potential in next generational electrochemical supercapacitor.
     4. Synthesis and properties studies of other nanomaterials.
     1) Synthesis and properties studies of hyperbranched ferric phosphate nanostructures. In this work, we reported a simple, mild route to synthesize hyperbranched ferric phosphate nanostructures. The obtained hyperbranched ferric phosphate nanostructures show highly selective capture ability for phosphopeptides. The toxicity test of these materials shown they have good biocompatibility, and the low toxicity level would lead them to have promising application in the field of life sciences.
     2) Synthesis and properties studies of fusiform zirconia-GO hybrid composites (FZGO) nanostructures. During the last two decateds, nanostructured zirconium oxides have been widely used in the capture of phosphopeptides. In this section, we have successfully used GO to act as a nanostructure-directing template to synthesize zirconia fusiform nanostructures on GO. More importantly, the obtained FZGO show highly selective capture of phosphopeptides. The FZGO would be a kind of promising nanomaterials might to applied as the affinity probes for the specific capture of phosphopeptides from complex tryptic digests with the detection of MALDITOF mass spectrometry.
引文
1.张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    2. S. Deka, A. Genovese, Y. Zhang, K. Miszta, G. Bertoni, R. Krahne, C. Giannini and L. Manna,J. Am. Chem. Soc.,2010,225,22680.
    3. X. L. Li, X. R. Wang, L. Zhang, S. Lee and H. J. Dai, Science,2008,319,1229.
    4. X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu and P. K. Chu, Nnano.2010,264.
    5. S. Lijima, Nature,1991,354,56.
    6. J. Livage, Chem. Mater.,1991,3,578.
    7. M. R. Ghadiri, J. R. Granja and R. A. Milligan, Nature,1993,366,324.
    8. Z. K. Tang, L. Y. Zhang and N. Wang, Science,2001,292,2462.
    9. B. Gates, Y. Y. Wu and Y. D. Yin,J. Am. Chem. Soc.,2001,123,11500.
    10. Z. W. Pan, Z. R. Tang and Z. L. Wang, Science,2001,291,1947.
    11.A.Maiti, J.A. Rodriguez and M. Law,Nano. Lett.,2003,3,1025.
    12. R. Terme and A. K. Zettl, Top. Appl. Phys.,2001,80,81.
    13. R. C. Claussen, B. M. Rabatic and S. I. Stupp, J. Am. Chem. Soc.,2003,125,12680.
    14. V. Berry, A. Gole and S. Kundu,J. Am. Chem. Soc.,2005,127,17600.
    15. R. L.Wells and W. L. Gladfelter, J. Cluster Sci.,1997,8,217.
    16. T. Masui, H. Hirai, R. Hamada, N. linanak, G. Adachi, T.Sakata and H. Mori, J. Mater, Chem.,2003,13,622
    17. M. Inoue, M. Kimura and T. Inui, Chem. Commun.,1999,11,957.
    18. D. Wu, J. Liu, X. Zhao and A. Li, Chem. Mater.,2006,18,547.
    19. C. C. Tsai and H. Teng, Chem. Mater.,2006,18,367.
    20.张卫民,孙思修,俞海云,,高等笋校化学学报,2003,12,2151.
    21.尹贻东,洪广言,高等学校化学学报,2005,10,1795.
    22. Y. Xie, Y. T. Qian, J. Liu, X. Zhao and A. Li, Appl. Phys. Lett.,1996,69,334.
    23. Y. Xie, Y. T. Qian, Science,1996,272,1926.
    24. Y. Li, Y. Qian, J. H. Zeng and A. Li, J. Am. Chem. Soc.,1997,119,7869.
    25. H. Yamane, R. Hamada and N. linanak, Chem. Mater.1997,9,413.
    26. P. Feng and G. D. Stucky, Nature,1997,388,735.
    27. J. Yang, G. H. Cheng, J. H. Zeng, S. H. Yu, X. M. Liu and Y. T. Qian, Chem. Mater, 2001,13,848.
    28. J. Seher and E. C. Alivisatos,J. Am. Chem. Soc.,1999,121,11595.
    29. W. S. Sheldriek and M. Wachold, Angew. Chem. Int. Ed. Engl.,1997,36,206.
    30. Q. Peng, Y. Dong, Z. Deng, X. Sun and Y. Li, Inorg. Chem.,2001,40,3840.
    31. U. K. Gautam, M. Rajamathi, F. Meld, P. Morgan and R. Seshadri, Chem. Commun., 2001,7,629.
    32. Q. Gao and R. Xu, Chem. Commun.,1994,1364.
    33. S. Kistler, H. Xu and X. Peng, Nature,1993,327,741.
    34. P.Tewari and A. Hunt, USPate T.,1986,46,10863.
    35. Y. Oliver, F. Cheng and Y. Shi, Nature,1995,378,47.
    36. T. Dubosis, F. Cheng and Y. Shi, Mater. Lett.,1994,19,38.
    37. N. Pradhan, H. Xu and X. Peng, Nano Lett.,2006,4,720.
    38. Y. Chen, E. Johnson and X. Peng, J. Am. Chem. Soc.,2007,129,10937.
    39. X. Gou, F. Cheng and Y. Shi, J. Am. Chem. Soc.,2006,126,7222.
    40. S. J. Chen, X. T. Chen and Z. Xue, J. Mater. Chem.,2007,14,1332.
    41. A. Dong, R. Tang and W. E. Buhro, J. Am. Chem. Soc.,2003,1132.
    42. S. Marksimuk, S. Yang and Z. Peng, J. Am. Chem. Soc.,2007,8684.
    43.林本兰,沈晓冬,崔升,材料科学与工程学报,2007,25,88.
    44.刘世霆,晏媛,陈志良,南方医科大学学报,2006,26,331.
    45.林本兰,沈晓冬,崔升,中国新药杂志,2006,15,1081.
    46.付佳,许启明,李宁,无机盐工业,2007,39,5.
    47.蔡政武,王明,化共新型材料,2000,28,36.
    48.朱伟员,黎志明,化工新型材群,2001,29,37.
    49. I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci.,2004,275,177.
    50. J. R. Morones, J. L. Elechiguerra and A. Camacho, Nanotechnol,2005,16,2346.
    51. C. Baker, A. Pradhan and L. Pakstis, Nanosci. Nanotechnol.,2005,5,244.
    52. T. S. Nushe, A. Stensballe, O. N. Jensen and S. C. Peck, Mol. Cell. Proteomics,2003, 2,1234.
    53. M. C. Posewitz and P. Tempst, Anal. Chem.,1999,71,2883.
    54. S. Raska, C. E. Parker, A. Dominski and W. F. Marzluff, Anal. Chem.,2002,74,3429.
    55. R. Hynek, H. Vankova, M. Tesarova and J. Kas,J Liq. Chromatogr. Relat. Technol., 2001,24,2801.
    56. G. Woolf, The supercap communication challenge. Batteries & Energy Storage Technology,2006, Winter:107-183.
    57.李国欣,新型化学电源技术概论上海,上海科学技术出版社,2007.
    58. A. Bruke,2005 IEE vehicle power and propulsion conference proceedings. Chicago. Illinois:Illinois Institute of Technology,2005.
    59. A. Bruke, Supercapacitors for hybrid-electric vehicles:recent test data & future projections. Euro capacitors 2007 conference proceedings. Cologne, Germany: IntertechPira,2007.
    60.程立文,汪继强,谭玲生,电源技术,2007,31,921.
    61. C. Niu, E. K. Sichel and R. Hoch,Appl. Phys. Lett.,1997,70,1480.
    62. N. H. Phan, S. Rio and C. Faur, Carbon,2006,44,2569.
    63. S. J. Park, M. K. Seo and Y. S. Lee, Carbon,2003,41,723.
    64. S. J. Zhang, H. Q. Yu and H. M. Feng, Carbon,2006,44,2059.
    65. C. Kim, S. H. Park and W. J. Lee, Electrochim. Acta,2004,50,877.
    66. K. P. Wang and H. Teng, Carbon,2006,44,3218.
    67. C. Kim and K.S. Yang, Appl. Phys. Lett.,2002,83,1216.
    68. C. Kim,J. Power Sources,2005,142,382.
    69. D. H. Jurcakova, X. Li, Z. H. Zhu, R. Marco and G. Q. Lu, Energy Fuels,2008,22, 4139.
    70. K. X. Wang, Y. G. Wang, Y. R. Wang, E. Hosono and H. S. Zhou, J. Phys. Chem. C, 2009,113,1093.
    71. V. Subramanian, H. W. Zhu, R. Vajtai, P. M. Ajayan and B. Q. Wei, J. Phys. Chem. B, 2005,109,20207.
    72. T. Shinomiya, V. Gupta and N. Miura, Electrochim. Acta,2006,51,4412.
    73. W. F. Wei, X. W. Cui, W. X. Chen and D. G. Ivey, J. Phys. Chem. C,2008,112, 15075.
    74. W. Xing, F. Li, Z. F. Yan and G. Q. Lua,J. Power Sources,2004,134,324.
    75. Y. G. Wang and Y. Y. Xia, Electrochim. Acta,2006,51,3223.
    76. C. Z. Yuan, X. G. Zhang, L. H. Su, B. Gao and L. F. Shen,J. Mater. Chem.,2009, 5772.
    77. D. D. Zhao, W. J. Zhou and H. L. Li, Chem. Mater.,2007,19,3882.
    78. G. W. Yang, C. L. Xu and H. L. Li, Chem. Commun.,2008,6537.
    79. J. B. Reitz and E. L. Solomon,J.Am. Chem. Soc.,1998,120,11467.
    80. G. A. El-Shobaky, N. R. E.Radwan, M. S.El-Shall, A. M.Turky and H. M. A.Hassan, Colloids Surfaces A,2009,345,147.
    81. M. F. Luo, Y. P. Song, J. Q.Lu, X. Y.Wang and Z. Y. Pu, J. Phys. Chem. C,2007,111, 12686.
    82. P. Podhajecky, Z. Zabransky, P. Novak, Z. Dobiasova, R. Cerny and V. Valvoda, Electrochim. Acta,1990,35,245.
    83. F. Lanza, R. Feduzi and J. Fuger, J. Mater. Res.,1990,5,1739.
    84. S. Q. Wang, J. Y. Zhang and C. H. Chen, Scripta Mater,2007,57,337.
    85. S. Q. Wang, J. Y. Zhang, N. Ding and C. H. Chen, Scripta Mater,2009,60,1117.
    86. H. B.Wang, Q. M. Pan, H. W. Zhao, G. P. Yin and P. J. Zuo, J. Power Sources,2007, 67,206.
    87. J. J. Chen, K. Wang, L. Hartman and W. L. Zhou,J. Phys. Chem. C,2008,112, 16017.
    88. X. H. Kong and Y. D. Li, Sensors and Actuators B-Chem.,2005,105,449.
    89. X. Y. Xue, L. L. Xing, Y. J. Chen, S. L. Shi, Y. G. Wang and T. H. Wang, J. Phys. Chem. C,2008,112,12157.
    90. J. Y. Li, S. L. Xiong, B. J. Xi, X. G. Li and Y. T. Qian, Crystal Growth Design,2009, 9,4108.
    91. P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong and S. Choopun, Cera. Inter,2009,35,649.
    92. W. Jia, M. Guo, Z. Zheng, T. Yu, Y. Wang, E. G. Rodriguez and Y. Lei, Electroanalysis,2008,20,2153.
    93. M. Ando, T. Kobayashi, S. Iijima and Haruta, J. Mater. Chem.,1997,7,1779.
    94. H. Yamaura, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe, J. Electrochem. Soc.,1997, 144,158.
    95. A. M. Cao, J. S. Hu, H. P. Liang, W. G. Song, L. J. Wan, X. L. He, X. G. Gao and S. H. Xia,J. Phys. Chem.B,2006,110,15858.
    96. W. Y. Li, L. N. Xu and J. Chen, Adv. Mater.,2005,15,851.
    97. M. M. Natile and A. Glisenti, Chem. Mater,2002,14,3090.
    98. J. Jansson, A. E. C. Palmqvist, E. Fridell, M. Skoglundh, L. Osterlund, P. Thormahlen and V. Langer, J. Catal.,2002,211,387.
    99. F. Bodker, M. F. Hansen, C. BenderKoch and S. Morup, J. Mag. Mag. Mater,2000, 221,32.
    100. R. B. Fahim and A. I. Abu-Shady, J. Catal.,1970,17,10.
    101.白春礼,纳米科学与技术,云南科技出版社,1995,44.
    102. J. T. Richardson, D.I. Yiagas, B. Turk, K. Forster and M. V. Twingg, J. Appl. Phys., 1991,70,6977.
    103. B. Zou, L. Wang and J. Lin, Solid. State. Commu.,1995,94,847.
    104.朱诚意,刘中华,陈雯,何发泉,功能材料,1999,30,345.
    105.李亚栋,李成韦,郑化桂,李龙泉,段镶锋,钱逸泰,高等学校化学学报,1997,18,1921.
    106. P. Tomczyk, H. Sato, K. Yamada, T. Nishina and I. Uchida, J. Electrochem. Soc. 1995,391,125.
    107. P. Polzot, S. Laruelle, S. Grugeon, L. Dupont and J-M. Tarascon, Nature,2000,407, 496.
    108. V. Biju and M. Abdul Khadar, Mater. Sci. Eng.,2001,81, A304.
    1. J.B. Reitz and E. L. Solomon, J. Am. Chem.Soc.,1998,120,11467.
    2. G. A. El-Shobaky, N. R. E. Radwan, M. S. El-Shall, A. M. Turky and H. M. A. Hassan, Colloids Surfaces A,2009,345,147.
    3. M. F. Luo, Y. P. Song, J. Q. Lu, X. Y. Wang and Z. Y. Pu, J. Phys. Chem. C,2007,111, 12686.
    4. P. Podhajecky, Z. Zabransky, P. Novak, Z. Dobiasova, R. Cerny and V. Valvoda, Electrochim. Acta,1990,35,245.
    5. F. Lanza, R. Feduzi and J. Fuger, J. Mater. Res.,1990,5,1739.
    6. S. Q. Wang, J. Y. Zhang and C. H.Chen, Scripta Mater.,2007,57,337.
    7. S. Q. Wang, J. Y. Zhang, N. Ding and C. H. Chen, Scripta Mater,2009,60,1117.
    8. H. B.Wang, Q. M. Pan, H. W. Zhao, G. P. Yin and P. J. Zuo, J. Power Sources,2007,67, 206.
    9. J. J. Chen, K. Wang, L. Hartman and W. L. Zhou, J. Phys. Chem. C,2008,112,16017.
    10. X. H. Kong and Y. D. Li, Sensors and Actuators B-Chem.,2005,105,449.
    11. X. Y. Xue, L. L. Xing, Y. J. Chen, S. L. Shi, Y. G. Wang and T. H. Wang, J. Phys. Chem.C,2008,112,12157.
    12. J. Y. Li, S. L. Xiong, B. J. Xi, X. G. Li and Y. T. Qian, Crystal Growth Design,2009, 9,4108.
    13. P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong and S. Choopun, Cera. Inter,2009,35,649.
    14. W. Jia, M. Guo, Z. Zheng, T. Yu, Y. Wang, E. G. Rodriguez and Y. Lei, Electroanalysis,2008,20,2153.
    15. R. Liu, E. A. Kulp, F. Oba, E. W. Bohannan, F. Ernst and J. A. Switzer, Chem. Mater.,2005,17,725.
    16. D. B. Wang, M. S. Mo, D. B. Yu, L. Q. Xu, F. Q. Li and Y. T. Qian, Cryst. Growth Des.,2003,3,717.
    17. H. L. Cao, X. F. Qian, J. T. Zai, J. Yin and Z. K. Zhu, Chem.Commun.,2006,4548.
    18. M. J. Siegfried and K. S. Choi,Adv. Mater.,2004,16,1743.
    19. Z. Yang, C. K. Chiang and H. T. Chang, Nanotechnology,2008,19,025604.
    20. H. R. Zhang, C. M. Shen, S. T. Chen, Z. C. Xu, F. S. Liu, J. Q. Li and H. J. Gao, Nanotechnology,2005,16,267.
    21.X. D. Liang, L. Gao, S. W. Yang and J. Sun, Adv. Mater.,2009,21,2068.
    22. C. H. Lu, L. M. Qi, J. H. Yang and X. Y. Wang, Adv. Mater.,2005,17,2562.
    23. M. J. Siegfried and K. S. Choi, Angew. Chem, Int. Ed,2005,44,3282.
    24. D. F. Zhang, H. Zhang, L. Guo, K. Zheng, X. D. Han and Z. Zhang, J. Mater. Chem., 2009,19,5220.
    25. C. H. Kuo and M. H. Huang,J. Am. Chem. Soc,2008,130,12815.
    26. J. Y. Ho and M. H. Huang,J. Phys. Chem. C,2009,113,14159.
    27. W. T. Yao and S. H. Yu, Adv. Funct. Mater.,2008,18,3357.
    28. S. F. Chen, S. H. Yu, B. Yu, L. Ren, W. T. Yao and H. Colfen, Chem.-Eur. J.,2004, 10,3050.
    29. H. P. Cong and S. H. Yu, Cryst. Growth Des.,2009,9,210.
    30. X. Wang, J. Zhuang, Q. Peng and Y. D. Li, Nature,2005,437,121.
    31. H. Pang, F. Gao and Q. Y. Lu, Chem. Commun.,2009,1076.
    32. G. H. Jeong, M. J. Kim, Y. W. Lee, W. J. Choi, W. T. Oh, Q. H. Park and S. W. Han, J. Am. Chem. Soc.,2009,131,1672.
    33. D. Angelo, P. Bottari, E. Festa, M. R. Nolting and H.-F. Pavel, J. Phys. Chem. B, 1998,102,3114.
    34. M. Tiziana, T. Marirosa, R. Nino and G. Andre, J. Phys. Chem. B,2006,110,24666.
    35. D. M. Michael and R. M. Edmund, Anal. Chem.,1996,68,1593.
    36. Z. L. Wang, J. Phys. Chem. B,2000,104,1153.
    1. Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, Phys. B,2003,329,862.
    2. I. Hotovy, V. Rehacek and P. Siciliano, Thin Solid Films,2002,418,9.
    3. J. Huran, L. Spiess and S. Hascik., Sensors and Actuators B,1999,57,147.
    4.1. Hotovy, J. Huran and P. Siciliano, Sensors and Actuators B,2004,103,300.
    5. Y. N. Nuli, S. Zhao and Q. Qi,J. Powder Sources,2003,114,113.
    6. Y. Wang, J. Zhu and X. Yang, Thermo. Acta,2005,437,106.
    7. G. Zheng and H. Keith, Ind Eng Chem Res,2004,43,30.
    8.王晓峰,孔祥华,刘庆国,电子元件与材料,2000,19,26.
    9. F. Zhang, Y. Zhou and H. L. Li., Mater. Chem. Phys.2004,83,260.
    10. D. Houivet, J. Fallah and J. M. Haussonne, J. Eur. Ceramic Society,1999,19,1095.
    11. M. Borgstrom, E. Blart and G. Boschloo, J.Phys. Chem. B,2005,109,22928.
    12. J. L. Garcia-Miquel, Q. Zhang and S. J. Allen, Thin Solid Films,2003,424,165.
    13.揭建胜.准一维纳米材料可控合成及其物性的研究[D].合肥:中国科学技术大学,2004,4-5.
    14. R. Wartena, J. Winnick and P. H. Pfromm, J. Appl. Electrochem.,2002,32,415.
    15. A. Durairajan and H. Colon-Mercado,J. Power Sources,2002,104,157.
    16. G. Davolio and E. Soragni,J. Applied Electrochem.,1998,28,1313.
    17.刘长久,叶乃清,刁汉明,应用化学,2001,18,335.
    18.闪星,张密林,功能材料与器件学,2002,8,35.
    19.王晓峰,解晶莹,电子元件与材料,2000,19,26.
    20.谈玲华,李勤华,杨毅,固体火箭技术,2004,27,198.
    21.葛秀涛,焦健,肖建平,化学物理学报,2001,14,2318.
    1. M. Thackeray, Prog. Solid State Chem.,1997,25,1.
    2. M. W. Xu, D. D. Zhao, S. J. Bao and H. L. Li, J. Solid State Electrochem.,2007,11, 1101
    3. A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud and J. W. Long, Nano Lett.,2001,7,281.
    4. Y. Makimura and T. Ohzuku, J. Power Sources,2003,119,156.
    5. B. Folch, J. Larionova, Y. Guari, C. Guerin and C. Reibel,J. Solid State Chem.,2005, 178,2368.
    6. O. P. Ferreira, L. Otubo, R. Romano and O. L. Alves, Cryst. Growth Des.,2006,6, 601.
    7. F. Y. Cheng, J. Z. Zhao, W. Song, C. S. Li, H. Ma, J. Chen and P. W. Shen, Inorg. Chem.,2006,45,2038.
    8. X. K. Huang, D. P. Lv, H. J. Yue, A. Attia and Y. Yang, Nanotechnology,2008,19, 225606.
    9. M. M. Thackeray, A. DeKock, L. A. DePicciotto and G. Pistoia, J. Power Sources, 1989,26,355.
    10. J. Y. Luo, J. J. Zhang and Y. Y. Xia, Chem. Mater.,2006,18,5618.
    11. F. Jiao and P.G. Bruce, Adv. Mater.,2007,19,657.
    12. W. P. Tang, X. J. Yang, Z. H. Liu and K. Ooi,J. Mater. Chem.,2003,13,2989.
    13. J. A. Yan, E. Khoo, A. Sumboja and P. S. Lee,ACS Nano,2010,7,4247.
    14. M. Winter and R. J. Brodd, Chem. Rev.,2004,104,4245.
    15. V. S. Arunachalam and E. L. Fleischer, MRS Bull.,2008,33,261.
    16. M. Armand and J. M. Tarascon, Nature,2008,451,652.
    17. J. Tollefson, Nature,2008,456,436.
    18. M. Z. Jacobson, Energy Environ. Sci.,2009,2,148.
    19. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl and Y. Wu, Energy Environ. Sci.,2009,2,559.
    20. B. K. Hodge, Alternative Energy Systems and Applications, John Wiley & Sons Inc. 2010.
    21. V. Subramanian, H. Zhu, R.Vajtai and P. M. Ajayan, B. Wei,J. Phys. Chem. B,2005, 109,20207.
    22. S. Sarangapani, B. V. Tilak and C. P. Chen,J. Electrochem. Soc.,1996,143,3791.
    23. R. N. Reddy and R. G. Reddy,J. Power Sources,2004,132,315.
    24. B. E. Conway, Electrochemical Supercapacitors; Kluwer Academic Plenum Publishers:New York,1999.
    25. C. C. Hu and T. W. Tsou, Electrochem. Commun.,2002,4,105.
    26. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science, 2001,294,1313
    27. H. Li and J. Jiao, Chem. Mater.,2008,20,3770.
    28. L. Li, N. Sun, Y. Huang. Y. Qin, N. Zhao, J. Gao, M. Li, H. Zhou and L. Qi, Adv. Funct. Mater.,2008,18,1194.
    29. G. Ramanath, J. D'Arcy-Gall. T. Maddanimath, A. V. Ellis, P. G. Ganesan, R. Goswami, A. Kumar and K. Vijayamohanan, Langmuir,2004,20,5583.
    30. J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu and Z. L. Wang, Adv. Mater.,2005, 17,2107.
    31. J. Zhu, H. Peng, C. K. Chan, K. Jarausch, X. F. Zhang and Y. Cui, Nano Lett.,2007,7, 1095.
    32. K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. R. Wallenberg and L. Samuelson, Nano Lett.,2006,6,2842.
    33. Q. Lu, F. Gao and S. Komarneni, J. Am. Chem. Soc.,2004,126,54.
    34. Y. Zhao, Y. Xie, J. S. Jie, C. Y. Wu and S. Yan,J. Mater. Chem.,2009,19,3378.
    35. X. K. Huang, D. P. Lv, Q. S. Zhang, H. T. Chang, J. L. Gana and Y. Yang, Electrochimica Acta 2010,55,4915.
    1. A. P. Alivisatos, Science,1996,271,933.
    2. M. A. El-Sayed, Acc. Chem. Res.,2001,34,257.
    3. Y. G. Sun and Y. N. Xia, Science,2002,298,2176.
    4. M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu and Z. L. Wang, Angew. Chem. Int. Ed., 2005,117,4197.
    5. D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen and D. Fenske, Adv. Mater.,2003,15, 1747.
    6. Y. Zhao, Y. Xie, X. Zhu, S. Yan and S. X. Wang, Chem. Eur. J.,2008,14,1601.
    7. T. S. Nushe, A. Stensballe, O. N. Jensen and S. C. Peck, Mol. Cell. Proteomics,2003,2, 1234.
    8. M. C. Posewitz and P. Tempst, Anal. Chem.,1999,71,2883.
    9. C. S. Raska, C. E.Parker, A. Dominski and W. F. Marzluff, Anal. Chem.,2002,74, 3429.
    10. R. Hynek, H.Vankova, M. Tesarova and J. Kas, J. Liq. Chromatogr.Relat. Technol., 2001,24,2801.
    11. H. Shioyama and T. Akita, Carbon,2003,41,179.
    12. L. M. Viculis, J. J. Mack and R. B. Kaner, Science,2003,299,1361.
    13. H. K. Chae, D. Y. SiberioPerez and J. Kim, Nature,2004,427,523.
    14. Y. Zhang, J. W. Tan and P. Kim, Nature,2005,438,201.
    15.曾玉华,崔树茂,刘柯,材料导报,2008,22,21.
    16. A. K. Geim and K. S.Novoselov, Nature Mater.,2007,6,183.
    17. K. S. Novoselov, D. Jiang and F. Schedin, Proc.Nat. Acad. Sci.,2005,102,10451.
    18. G. H. Chen, W. G. Weng and D. J. Wu, Carbon,2004,42,753.
    19. H. K. Jeong, Y. P. Lee and R, Lahaye, J. Am. Chem. Soc.,2008,130,1362.
    20. A. Barinov and O. B. Malcioglu,J. Phys Chem. C,2009,113,9009.
    21.X. Sun, Z. Liu and K. Welsher, Nano Res.,2008,1,203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700