醇和烯烃的绿色选择性氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醇和烯烃的选择性氧化作为一类重要的研究课题在精细化工和基础工业中引起人们的广泛关注。环氧化物作为一类重要的有机化合物中间体,广泛的应用于手性药物、杀虫剂、环氧树脂、农药、香料和佐料等领域。环氧化物的传统合成工艺是卤醇法和过酸法,这些方法会对环境造成污染。苯甲醛是一种重要的有机中间体,广泛应用于合成染料、香料和药物等精细化学品等。目前,苯甲醛在工业上采用氯羊联合水解法或重铬酸和硫酸作氧化剂氧化苯甲醇制备而得。这种生产苯甲醛和环氧化物的工艺较复杂,而且对环境会造成污染。从原子经济学和绿色化学上考虑,采用分子氧或者双氧水催化氧化烯烃和醇是目前研究的热点。本文旨在寻求一种高效的催化剂,催化分子氧选择性氧化醇和双氧水环氧化烯烃。
     首先是采用氯化钯稀溶液为钯源,金属氧化物为载体,使用吸附法一步合成了Fe3O4、MnOx和CeOx负载的Pd催化剂,同时与吸附-还原法和共沉淀法制备的Pd/MOx作对比。对于无溶剂条件下分子氧催化氧化苯甲醇的反应,不同制备方法制备中,吸附法制得的催化剂显示出更好的催化性能,其中Pd/MnOx-ads表现出最高的催化活性和苯甲醛的选择性,而且其可以回收使用四次,催化剂的活性没有明显的下降。其次,采用了不同的方法制备了一系列的纳米钯负载在MCM-41的催化剂,并用这些催化剂在无溶剂的条件下催化氧气氧化苯基醇。催化剂通过XRD分析得出,当Pd负载在MCM-41后,依然保持着MCM-41的介孔结构,而且在Pd-M41-AE上并没有发现有大颗粒的Pd存在。研究表明催化剂制备的方法和Pd的负载量显著影响了催化剂的活性。相比Pd-AP-M41、Pd-M41-AC和Pd-M41-I, Pd-M41-AE显示出较高的催化活性。同样在100℃下反应1h,以0.4-Pd-M41-AE作为催化剂,苯甲醇的转化率可以达到33.8%,远远高于其他类型的催化剂,这主要归结于Pd颗粒较小,而且Pd纳米粒子大部分分布在MCM-41的孔口和外表面,这样有利于反应的进行。在160℃时,0.05-Pd-M41-AE显示出来极高的催化醇的活性,催化氧化苯甲醇的TOF达到69,162h-1,1-苯乙醇的TOF达到69,960h"1,肉桂醇的TOF达到117,130h-1。而且这个催化剂重复使用四次,苯甲醇的转化率和选择性没有明显的下降。
     第二部分内容是双氧水环氧化苯乙烯。首先,合成了一系列的锰氧化物和其他过渡金属氧化物,然后用这些氧化物在0℃下催化环氧化烯烃。很明显的,MnO显示出了最高的活性,当使用4当量的双氧水反应5h时,苯乙烯的转化率达到100%,远远高于其他的锰氧化物以及其它的过渡金属氧化物。MnO在催化环氧化苯基烯烃、苯基环己烯以及降冰片烯时显示出较高的催化活性,而对于α-蒎烯、环辛烯显示出较一般的催化活性,对于线性烯烃没有活性。此外,MnO表现出了较高的催化稳定性,重复使用四次催化剂的活性没有明显的下降。其次,分别采用了模板剂离子交换法、原位还原法、直接水热合成法和浸渍法合成了一系列的Mn-MCM-41,并且研究了它们的物理化学性质。在催化双氧水环氧化苯乙烯的反应中,催化剂Mn-M41-K-1和T-Mn-M41-1表现出了良好的催化活性,苯乙烯的转化率达到了99.5%。在催化剂回收使用过程中,Mn-M41-K-1可以重复使用四次,苯乙烯的转化率没有明显的降低;而T-Mn-M41-1在第一次回收时转化率降低一半,而且有锰的流失。
     采用浸渍法制备了不同载体的催化剂MnOx/y-Al2O3、MnOx/MCM-41、 MnOx/SiO2和MnOx/TiO2,以及一系列不同含量的MnOx/γ-Al2O3。在这些催化剂中,1.3-MnOx/γ-Al2O3表现出了最高的催化活性,催化苯乙烯的转化率达到了99.5%,远高于催化剂MnOx/MCM-41、MnOx/SiO2和MnOx/TiO2的活性。1.3-MnOx/γ-Al2O3能够很好的催化环氧化苯基烯烃,如苯乙烯、α-甲基苯乙烯,茚以及降冰片烯和环己烯,而对于环辛烯和α-蒎烯,表现出较差的催化活性。1.3-MnOx/γ-Al2O3催化剂能够重复利用四次,活性基本不变。
The catalytic selective oxidation of alcohols and alkenes have been a subject of growing interest in the fundamental chemistry and modern industrial processes, since epoxides are key building blocks in organic synthesis. Epoxide compounds are commercially important intermediates used in the synthesis of products such as chiral Pharmaceuticals, pesticides, epoxy paints, agrochemicals, perfume materials and sweeteners. Traditionally, epoxides are produced by the epoxidation of alkenes with stoichiometric amount of peracid as oxidant. However, peracid is very expensive, hazardous, and the acid waste converted from the peracid is environmentally undesirable. Conventionally, stoichiometric oxidants (e.g., chromate or permanganate) have been used for oxidation of alcohols. However, lots of toxic wastes produced from the processes are environmentally undesirable. There has therefore been a drive to identify atom-efficient economic and green chemistry oxidation reaction that can be carried out with molecular oxygen and hydrogen peroxide. The present thesis therefore aims to develop an efficient catalyst, to produce the catalysts that can catalyze aerobic oxidation of alcohols or epoxidation of alkenes with hydrogen peroxide.
     The Pd nanoparticles supported on MnOx (Pd/MnOx-ads) has been synthesized via adsorption method. The Pd/MnOx-ads exhibited high activity and selectivity to benzaldehyde for aerobic oxidation of benzyl alcohol under free solvent, compared with Pd/Mn3O4, Pd/CeO2and Pd/Fe3O4catalysts. Moreover, the activity of Pd/MnOx-ads catalyst showed remarkably higher than those of catalysts prepared by adsorption-reduction and co-precipitation methods. The catalyst can be reused several times without obvious loss of its activity.
     The [PdCl4]2-ions were successfully supported on as;synthesized [CTA+]MCM-41materials through adsorption method. Subsequently, the composite materials were reduced by sodium borohydride, followed by being extracted of [CTA+] surfactants with acidified ethanol. The resulted solid (denoted as Pd-M41-AE) could be used as an efficient catalyst for the solvent-free aerobic oxidation of benzylic alcohol under atmospheric pressure.0.4%Pd-M41-AE exhibited high activity (turnover frequency of4,344h-1) for the oxidation of benzyl alcohol, remarkably superior than other kinds of Pd-M41at100℃. Moreover, the superior turnover frequencies (69,162h-1for benzyl alcohol,69,920h-1for1-phenylethanol and117,130h-1for cinnamyl alcohol, respectively) were achieved over0.05%Pd-M41-AE at160℃. Recycling studies proved the recyclability of Pd-M41-AE as a heterogeneous catalyst, which did not lose the catalytic activity after four recycles appreciably.
     A series of manganese oxides (MnO, Mn3O4, Mn2O3and MnO2) were prepared and firstly applied as heterogeneous catalysts for the liquid phase epoxidation of alkenes with30%H2O2in bicarbonate solution. Under our experimental conditions, MnO exhibited superior activity for the conversion of styrene to achieve ca.100%with92.4%selectivity of epoxide, compared to the other three manganese oxides as well as other metal oxides. Furthermore, recycling studies showed the good recyclability of MnO as a heterogeneous catalyst, which did not lose the catalytic activity after four reuses appreciably.
     Manganese containing mesoporous materials Mn-MCM-41were prepared by template-ion exchange (TIE), in-situ reduction (ISR), direct hydrothermal (DHT), and wetness impregnation (WI) methods. It has been found that the definite structure of the support was retained after introducing Mn into MCM-41. The catalytic activity and selectivity of the Mn-MCM-41in the epoxidation of styrene with30%H2O2as an oxidant agent are explored. The TIE catalysts showed the highest activity but Mn2+was leaching during the reaction. The ISR catalysts exhibited high activity and its very stability which could be recyclable for4times. However, the DHT and WI catalysts showed poor performance in the catalytic epoxidation of styrene.
     Manganese oxides supported on γ-Al2O3, amorphous SiO2, MCM-41and TiO2prepared by impregnation method were used as heterogeneous catalysts for epoxidation of alkenes with30%H2O2in the presence of NaHCO3aqueous solution. The effect of support and manganese loading on their activity was studied. The1.3%MnOx/γ-Al2O3exhibited superior epoxidazing activity of styrene, compared with other supported MnOx. Recycling studies showed the catalyst was a heterogeneous one and retained its activity after recycling for4times.
引文
[1]Matsumoto T, Ueno M, Wang N, et al. Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols. Chem Asia J,2008,3(2):196-214
    [2]Thangaraj A, Kumar R, Ratnasamy P. Catalytic properties of crystalline titanium silicalites II. Hydroxylation of phenol with hydrogen peroxide over TS-1 zeolites. J Catal,1991, 131(l):294-297
    [3]G. Clerici M. Oxidation of saturated hydrocarbons with hydrogen peroxide, catalysed by titanium silicalite. Appl Catal,1991,68(1):249-261
    [4]Lou L-L, Liu S. CuO-containing MCM-48 as catalysts for phenol hydroxylation. Catal Commun,2005,6(12):762-765
    [5]Shi H, Zhang T, Li B, et al. Photocatalytic hydroxylation of phenol with Fe-Al-silicate photocatalyst:A clean and highly selective synthesis of dihydroxybenzenes. Catal Commun,2011, 12(11):1022-1026
    [6]Abbo H S, Titinchi S J J. Transition metal coordination polymers:synthesis and catalytic study for hydroxylation of phenol and benzene. Appl Catal A:Gen,2012,435-436(0):148-155
    [7]Hayashi T, Tanaka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2 Catalysts in the Presence of Oxygen and Hydrogen. J Catal,1998,178(2):566-575
    [8]Lane B S, Burgess K. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide. Chem Rev,2003,103(7):2457-2474
    [9]Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science,2006,311(5759):362-365
    [10]Mallat T, Baiker A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem Rev,2004,104(6):3037-3058
    [11]Schuchardt U, Cardoso D, Sercheli R, et al. Cyclohexane oxidation continues to be a challenge. Appl Catal A:Gen,2001,211(1):1-17
    [12]Kaizer J, Klinker E J, Oh N Y, et al. Nonheme FeIVO Complexes That Can Oxidize the C-H Bonds of Cyclohexane at Room Temperature. J Am Chem Soc,2003,126(2):472-473
    [13]Kesavan L, Tiruvalam R, Rahim M H A, et al. Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles. Science,2011, 331(6014):195-199
    [14]Parida K M, Dash S S. Manganese containing MCM-41:Synthesis, characterization and catalytic activity in the oxidation of ethylbenzene. J Mol Catal A:Chem,2009,306(1-2):54-61
    [15]Arshadi M, Ghiaci M, Ensafi A A, et al. Oxidation of ethylbenzene using some recyclable cobalt nanocatalysts:The role of linker and electrochemical study. J Mol Catal A:Chem,2011, 338(1-2):71-83
    [16]Arshadi M, Ghiaci M, Rahmanian A, et al. Oxidation of ethylbenzene to acetophenone by a Mn catalyst supported on a modified nanosized SiO2/Al2O3 mixed-oxide in supercritical carbon dioxide. Appl Catal B:Environ,2012,119-120(0):81-90
    [17]Devika S, Palanichamy M, Murugesan V. Selective oxidation of ethylbenzene over CeAlPO-5. Appl Catal A:Gen,2011,407(1-2):76-84
    [18]Cavani F, Trifiro F. Some innovative aspects in the production of monomers via catalyzed oxidation processes. Appl Catal A:Gen,1992,88(2):115-135
    [19]Niwa S-i, Eswaramoorthy M, Nair J, et al. A One-step conversion of benzene to phenol with a palladium membrane. Science,2002,295(5552):105-107
    [20]Kanzaki H, Kitamura T, Hamada R, et al. Activities for phenol formation using Cu catalysts supported on Al2O3 in the liquid-phase oxidation of benzene in aqueous solvent with high acetic acid concentration. J Mol Catal A:Chem,2004,208(1-2):203-211
    [21]Ryder J A, Chakraborty A K, Bell A T. Density functional theory study of benzene oxidation over Fe-ZSM-5. J Catal,2003,220(1):84-91
    [22]Li G, Pidko E A, van Santen R A, et al. Stability and reactivity of active sites for direct benzene oxidation to phenol in Fe/ZSM-5:A comprehensive periodic DFT study. J Catal,2011, 284(2):194-206
    [23]Einaga H, Futamura S. Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. J Catal,2004,227(2):304-312
    [24]Pillai K S, Jia J, Sachtler W M H. Effect of steaming on one-step oxidation of benzene to phenol with nitrous oxide over Fe/MFI catalysts. Appl Catal A:Gen,2004,264(2):133-139
    [25]Choudary B M, Kantam M L, Rahman A, et al. The First Example of Activation of Molecular Oxygen by Nickel in Ni-Al Hydrotalcite:A Novel Protocol for the Selective Oxidation of Alcohols. Angew Chem Int Ed,2001,40(4):763-766
    [26]Choudhary V R, Chaudhari P A, Narkhede V S. Solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts. Catal Commun,2003,4(4):171-175
    [27]Velusamy S, Punniyamurthy T. Novel Vanadium-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones under Atmospheric Oxygen. Org Lett,2003,6(2):217-219
    [28]Tang Q, Chen Y, Yang Y. Understanding the nature of vanadium species supported on activated carbon and its catalytic properties in the aerobic oxidation of aromatic alcohols. J Mol Catal A:Chem,2010,315(1):43-50
    [29]Son Y-C, Makwana V D, Howell A R, et al. Efficient, Catalytic, Aerobic Oxidation of Alcohols with Octahedral Molecular Sieves. Angew Chem Int Ed,2001,40(22):4280-4283
    [30]Jing H, Sun K Q, He D P, et al. Amorphous manganese oxide for catalytic aerobic oxidation of benzyl alcohol. Chin J Catal,2007,28(12):1025-1027
    [31]Su Y, Wang L-C, Liu Y-M, et al. Microwave-accelerated solvent-free aerobic oxidation of benzyl alcohol over efficient and reusable manganese oxides. Catal Commun,2007, 8(12):2181-2185
    [32]Sun H, Hua Q, Guo F-F, et al. Selective Aerobic Oxidation of Alcohols by Using Manganese Oxide Nanoparticles as an Efficient Heterogeneous Catalyst. Adv Synth Catal,2012, 354(4):569-573
    [33]Tang Q, Huang X, Wu C, et al. Structure and catalytic properties of K-doped manganese oxide supported on alumina. J Mol Catal A:Chem,2009,306(1-2):48-53
    [34]Tang Q, Huang X, Chen Y, et al. Characterization and catalytic application of highly dispersed manganese oxides supported on activated carbon. J Mol Catal A:Chem,2009, 301(1-2):24-30
    [35]Tang Q, Liu T, Yang Y, Role of potassium in the aerobic oxidation of aromatic alcohols over K+-promoted Mn/C catalysts. Catal Commun,2008,9(15):2570-2573
    [36]Tang Q, Gong X, Wu C, et al. Insights into the nature of alumina-supported MnOOH and its catalytic performance in the aerobic oxidation of benzyl alcohol. Catal Commun,2009, 10(7):1122-1126
    [37]Tang Q, Gong X, Zhao P, et al. Copper-manganese oxide catalysts supported on alumina: Physicochemical features and catalytic performances in the aerobic oxidation of benzyl alcohol. Appl Catal A:Gen,2010,389(1-2):101-107
    [38]Tang Q, Wu C, Qiao R, et al. Catalytic performances of Mn-Ni mixed hydroxide catalysts in liquid-phase benzyl alcohol oxidation using molecular oxygen. Appl Catal A:Gen,2011, 403(1-2):136-141
    [39]Makwana V D, Son Y-C, Howell A R, et al. The Role of Lattice Oxygen in Selective Benzyl Alcohol Oxidation Using OMS-2 Catalyst:A Kinetic and Isotope-Labeling Study. J Catal,2002, 210(1):46-52
    [40]Matsumoto T, Ueno M, Wang N, et al. Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols. Chem Asia J,2008,3(2):196-214
    [41]Hinzen B, Lenz R, Ley S V. Polymer supported perruthenate (PSP):Clean oxidation of primary alcohols to carbonyl compounds using oxygen as cooxidant. Synthesis-Stuttgart,1998, (7):977-979
    [42]Bleloch A, Johnson B F G, Ley S V, et al. Modified mesoporous silicate MCM-41 materials: immobilised perruthenate-a new highly active heterogeneous oxidation catalyst for clean organic synthesis using molecular oxygen. Chem Commun,1999, (18):1907-1908
    [43]Takezawa E, Sakaguchi S, Ishii Y. Oxidative cleavage of vic-diols to aldehydes with dioxygen catalyzed by Ru(PPh3)3Cl2 on active carbon. Org Lett,1999,1(5):713-715
    [44]Dalal M K, Upadhyay M J, Ram R N. Oxidation of benzyl alcohol using polymer anchored Ru(Ⅲ) complex as catalyst. J Mol Catal A:Chem,1999,142(3):325-332
    [45]Zhan B Z, White M A, Sham T K, et al. Zeolite-confined nano-RuO2:A green, selective, and 'efficient catalyst for aerobic alcohol oxidation. J Am Chem Soc,2003,125(8):2195-2199
    [46]Yamaguchi K, Mizuno N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angew Chem Intern Edit,2002,41(23):4538-4541
    [47]Bavykin D V, Lapkin A A, Plucinski P K, et al. TiO2 nanotube-supported ruthenium(Ⅲ) hydrated oxide:A highly active catalyst for selective oxidation of alcohols by oxygen. J Catal, 2005,235(1):10-17
    [48]Kotani M, Koike T, Yamaguchi K, et al. Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction. Green Chem,2006,8(8):735-741
    [49]Kaneda K, Yamashita T, Matsushita T, et al. Heterogeneous oxidation of allylic and benzylic alcohols catalyzed by Ru-Al-Mg hydrotalcites in the presence of molecular oxygen. J Org Chem, 1998,63(6):1750-1751
    [50]Kaneda K, Yamaguchi K, Mori K, et al. Catalyst design of hydrotalcite compounds for efficient oxidations. Catal Surv Japan,2000,4(1):31-38
    [51]Yamaguchi K, Mori K, Mizugaki T, et al. Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation. J Am Chem Soc,2000,122(29):7144-7145
    [52]Donze C, Korovchenko P, Gallezot P, et al. Aerobic selective oxidation of (hetero)aromatic primary alcohols to aldehydes or carboxylic acids over carbon supported platinum. Appl Catal B: Environ,2007,70(1-4):621-629
    [53]Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃, Chem Lett,1987, (2):405-408
    [54]Abad A, Concepcion P, Corma A, et al. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Intern Edit,2005,44(26):4066-4069
    [55]Wang L-C, He L, Liu Q, et al. Solvent-free selective oxidation of alcohols by molecular oxygen over gold nanoparticles supported on β-MnO2 nanorods. Appl Catal A:Gen,2008, 344(1-2):150-157
    [56]Miyamura H, Matsubara R, Miyazaki Y, et al. Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angew Chem Intern Edit,2007,46(22):4151-4154
    [57]Haider P, Baiker A. Gold supported on Cu-Mg-Al-mixed oxides:Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. J Catal,2007, 248(2):175-187
    [58]Su F-Z, Chen M, Wang L-C, et al. Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs. Catal Commun,2008,9(6):1027-1032
    [59]Su F-Z, Liu Y-M, Wang L-C, et al. Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew Chem Intern Edit,2008,47(2):334-337
    [60]Choudhary V R, Dhar A, Jana P, et al. A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem,2005,7(11):768-770
    [61]Choudhary V R, Jha R, Jana P, Solvent-free selective oxidation of benzyl alcohol by molecular oxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-free benzaldehyde. Green Chem,2007,9(3):267-272
    [62]Liu P, Guan Y, Santen R A v, et al. Aerobic oxidation of alcohols over hydrotalcite-supported gold nanoparticles:the promotional effect of transition metal cations. Chem Commun,2011, 47(41):11540-11542
    [63]Dimitratos N, Lopez-Sanchez J A, Hutchings G J. Slective liquid phase oxidation with supported metal nanoparticles. Chem Sci,2012,3(1):20-44
    [64]Kakiuchi N, Maeda Y, Nishimura T, et al. Pd(Ⅱ)-hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air. J Org Chem,2001,66(20):6620-6625
    [65]Nishimura T, Kakiuchi N, Inoue M, et al. Palladium(Ⅱ)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen. Chem Commun,2000, (14):1245-1246
    [66]Kakiuchi N, Nishimura T, Inoue M, et al. Pd(II)-hydrotalcite-catalyzed selective oxidation of alcohols using molecular oxygen. Bull Chem Soc Jpn,2001,74(1):165-172
    [67]Mori K, Yamaguchi K, Hara T, et al. Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts. J Am Chem Soc,2002, 124(39):11572-11573
    [68]Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-supported palladium nanoclusters:A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J Am Chem Soc,2004,126(34):10657-10666
    [69]Uozumi Y, Nakao R. Catalytic oxidation of alcohols in water under atmospheric oxygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst. Angew Chem Intern Edit, 2003,42(2):194-197
    [70]Karimi B, Zamani A, Clark J H. A bipyridyl palladium complex covalently anchored onto silica as an effective and recoverable interphase catalyst for the aerobic oxidation of alcohols. Organometallics,2005,24(19):4695-4698
    [71]Karimi B, Abedi S, Clark J H, et al. Highly efficient aerobic oxidation of alcohols using a recoverable catalyst:The role of mesoporous channels of SBA-15 in stabilizing palladium nanoparticles. Angew Chem Intern Edit,2006,45(29):4776-4779
    [72]Kwon M S, Kim N, Park C M, et al. Palladium nanoparticles entrapped in aluminum hydroxide:Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation. Org Lett,2005, 7(6):1077-1079
    [73]Park C M, Kwon M S, Park J. Palladium nanoparticles in polymers:Catalyst for alkene hydrogenation, carbon-carbon cross-coupling reactions, and aerobic alcohol oxidation. Synthesis-Stuttgart,2006, (22):3790-3794
    [74]Wu H L, Zhang Q H, Wang Y. Solvent-free aerobic oxidation of alcohols catalyzed by an efficient and recyclable palladium heterogeneous catalyst. Adv Synth Catal,2005, 347(10):1356-1360
    [75]Li C, Zhang Q, Wang Y, et al. Preparation, characterization and catalytic activity of palladium nanoparticles encapsulated in SBA-15. Catal Lett,2008,120(l-2):126-136
    [76]Chen J, Zhang Q, Wang Y, et al. Size-dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols. Adv Synth Catal,2008,350(3):453-464
    [77]Li F, Zhang Q, Wang Y. Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Appl Catal A:Gen,2008, 334(1-2):217-226
    [78]Zhang Q, Deng W, Wang Y. Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons. Chem Commun,2011,47(33):9275-9292
    [79]Chen Y, Guo Z, Chen T, et al. Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. J Catal,2010, 275(1):11-24
    [80]Chen Y, Zheng H, Guo Z, et al. Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol:Support composition and structure sensitivity. J Catal,2011,283(1):34-44
    [81]Wang H, Deng S-X, Shen Z-R, et al. Facile preparation of Pd/organoclay catalysts with high performance in solvent-free aerobic selective oxidation of benzyl alcohol. Green Chem,2009, 11(10):1499-1502
    [82]Liu J, Wang F, Dewil R. CeO2 Nanocrystalline-Supported Palladium Chloride:An Effective Catalyst for Selective Oxidation of Alcohols by Oxygen. Catal Lett,2009,130(3-4):448-454
    [83]Sankar M, Dimitratos N, Miedziak P J, et al. Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev,2012,41(24):8099-8139
    [84]Jiang H-L, Xu Q. Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem,2011,21(36):13705-13725
    [85]Liotta L F, Venezia A M, Deganello G, et al. Liquid phase selective oxidation of benzyl alcohol over Pd-Ag catalysts supported on pumice. Catal Today,2001,66(2-4):271-276
    [86]Dimitratos N, Villa A, Wang D, et al. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J Catal,2006,244(1):113-121
    [87]Sankar M, Nowicka E, Tiruvalam R, et al. Controlling the Duality of the Mechanism in Liquid-Phase Oxidation of Benzyl Alcohol Catalysed by Supported Au-Pd Nanoparticles. Chem Europ J,2011,17(23):6524-6532
    [88]Miedziak P J, He Q, Edwards J K, et al. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catal Today,2011,163(1):47-54
    [89]Miedziak P, Sankar M, Dimitratos N, et al. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catal Today,2011,164(1):315-319
    [90]Pritchard J, Piccinini M, Tiruvalam R, et al. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catal Sci Technol,2013,3(2):308-317
    [91]Piccinini M, Ntainjua N E, Edwards J K, et al. Effect of the reaction conditions on the performance of Au-Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Phy Chem Chem Phy,2010,12(10):2488-2492
    [92]Dimitratos N, Lopez-Sanchez J A, Morgan D, et al. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Phy Chem Chem Phy,2009, 11(25):5142-5153
    [93]Pritchard J, Kesavan L, Piccinini M, et al. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au-Pd Catalysts Prepared by Sol Immobilization. Langmuir,2010, 26(21):16568-16577
    [94]Meenakshisundaram S, Nowicka E, Miedziak P J, et al. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discuss,2010,145(0):341-356
    [95]Lopez-Sanchez J A, Dimitratos N, Glanville N, et al. Reactivity studies of Au-Pd supported nanoparticles for catalytic applications. Appl Catal A:Gen,2011,391(1-2):400-406
    [96]Hutchings G J, Nanocrystalline gold and gold-palladium alloy oxidation catalysts:a personal reflection on the nature of the active sites. Dalton Trans,2008, (41):5523-5536
    [97]Enache D I, Barker D, Edwards J K, et al. Solvent-free oxidation of benzyl alcohol using titanic-supported gold-palladium catalysts:Effect of Au-Pd ratio on catalytic performance. Catal Today,2007,122(3-4):407-411
    [98]Tiruvalam R C, Pritchard J C, Dimitratos N. Aberration corrected analytical electron microscopy studies of sol-immobilized Au plus Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discuss,2011,152(0):63-86
    [99]Chen Y, Wang H, Liu C-J, et al. Formation of monometallic Au and Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. J Catal,2012,289:105-117
    [100]Henning A M, Watt J, Miedziak P J, et al. Gold-Palladium Core-Shell Nanocrystals with Size and Shape Control Optimized for Catalytic Performance. Angew Chem Int Ed,2013, 52(5):1477-1480
    [101]Lane B S, Burgess K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem Rev,2003,103(7):2457-2473
    [102]Yao H, Richardson D E. Epoxidation of Alkenes with Bicarbonate-Activated Hydrogen Peroxide. J Am Chem Soc,2000,122(13):3220-3221
    [103]Lane B S, Vogt M, DeRose V J, et al. Manganese-catalyzed epoxidations of alkenes in bicarbonate solutions. J Am Chem Soc,2002,124(40):11946-11954
    [104]Lane B S, Burgess K. A cheap, catalytic, scalable, and environmentally benign method for alkene epoxidations. J Am Chem Soc,2001,123(12):2933-2934
    [105]齐奔.含锰分子筛和苯甲酰腙类配体的含钴分子筛高效催化烯烃环氧化的研究:[硕士学位论文].湖北武汉:湖北大学,2010
    [106]Baciocchi E, Boschi T, Cassioli L, et al. Epoxidation and hydroxylation reactions catalysed by β-tetrahalogeno and β-octahalogeno manganese porphyrins. Tetrahedron Lett,1997, 38(41):7283-7286
    [107]Battioni P, Renaud J-P, Bartoli J F, et al. Hydroxylation of alkanes by hydrogen peroxide: and efficient system using manganese porphyrins and imidazole as catalysts. J Chem Soc, Chem Commun,1986,0(4):341-343
    [108]Monfared H H, Aghapoor V, Ghorbanloo M, et al. Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese(Ⅲ) meso-tetraphenylporphyrin complex:optimization of effective parameters using the Taguchi method. Appl Catal A:Gen,2010,372(2):209-216
    [109]Lu X H, Xia Q H, Zhan H J, et al. Synthesis, characterization and catalytic property of tetradentate Schiff-base complexes for the epoxidation of styrene. J Mol Catal A:Chem,2006, 250(1-2):62-69
    [110]Gharah N, Chattopadhyay B, Maiti S K, et al. Synthesis and catalytic epoxidation potential of oxodiperoxo molybdenum(Ⅵ) complexes with 2-hydroxybenzohydroxamate and 2-hydroxybenzoate:the crystal structure of PPh4MoO(O2)2(HBA). Transition Met Chem,2010, 35(5):531-539
    [111]Maiti S K, Dinda S, Bhattacharyya R. Unmatched efficiency and selectivity in the epoxidation of olefins with oxo-diperoxomolybdenum(Ⅵ) complexes as catalysts and hydrogen peroxide as terminal oxidant. Tetrahedron Lett,2008,49(43):6205-6208
    [112]Dinda S, Chowdhury S R, Malik K M A, et al. Highly effective peroxidic epoxidation of olefins using hexathiocyanatorhenate(Ⅳ) as catalyst and bicarbonate as co-catalyst. Tetrahedron Lett,2005,46(2):339-341
    [113]Maiti S K, Dinda S, Gharah N, et al. Highly facile homogeneous epoxidation of olefins using oxo-diperoxo tungstate(Ⅵ) complex as catalyst, bicarbonate as co-catalyst and hydrogen peroxide as a terminal oxidant. New J Chem,2006,30(3):479-489
    [114]Cai S-F, Wang L-S, Fan C-L. Catalytic Epoxidation of a Technical Mixture of Methyl Oleate and Methyl Linoleate in Ionic Liquids Using MoO(O2)2QOH (QOH=8-quinilinol) as Catalyst and NaHCO3 as co-Catalyst. Molecules,2009,14(8):2935-2946
    [115]Gharah N, Chakraborty S, Mukherjee A K, et al. Oxoperoxo molybdenum(Ⅵ)- and tungsten(Ⅵ) complexes with 1-(2'-hydroxyphenyl) ethanone oxime:Synthesis, structure and catalytic uses in the oxidation of olefins, alcohols, sulfides and amines using H2O2 as a terminal oxidant. Inorg Chim Acta,2009,362(4):1089-1100
    [116]Dinda S, Hazra D K, RoyChowdhury S, et al. Reductive thiocyanolysis of tetraoxorhenate (VII):Synthesis, crystal structure, catalytic oxidation and kinetic studies of (PPh4)2Re(NCS)2 and (PPh4)2Re0(NCS)5. Inorg Chim Acta,2009,362(7):2108-2116
    [117]Maiti S K, Malik K M A, Gupta S, et al. Oxo- and oxoperoxo-molybdenum(Ⅵ) complexes with aryl hydroxamates:Synthesis, structure, and catalytic uses in highly efficient, selective, and ecologically benign peroxidic epoxidation of olefins. Inorg Chem,2006,45(24):9843-9857
    [118]Gharah N, Chakraborty S, Mukherjee A K, et al. Highly efficient epoxidation method-of olefins with hydrogen peroxide as terminal oxidant, bicarbonate as a co-catalyst and oxodiperoxo molybdenum(Ⅵ) complex as catalyst. Chem Commun,2004, (22):2630-2632
    [119]Dinda S, Drew M G B, Bhattacharyya R. Oxo-rhenium(Ⅴ) complexes with bidentate phosphine ligands:Synthesis, crystal structure and catalytic potentiality in epoxidation of olefins using hydrogen peroxide activated bicarbonate as oxidant. Catal Commun,2009,10(5):720-724
    [120]Murugavel R, Roesky H W. Titanosilicates:Recent Developments in Synthesis and Use as Oxidation Catalysts. Angew Chem Intern Edit,1997,36(5):477-479
    [121]Wu P, Ruan J, Wang L, et al. Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors. J Am Chem Soc,2008,130(26):8178-8187
    [122]Wu P, Tatsumi T, Komatsu T, et al. A novel titanosilicate with MWW structure. Ⅰ. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. J Phys Chem B,2001,105(15):2897-2905
    [123]Wu P, Tatsumi T, Komatsu T, et al. A novel titanosilicate with MWW structure:Ⅱ. Catalytic properties in the selective oxidation of alkenes. J Catal,2001,202(2):245-255
    [124]Wu P, Tatsumi T. A novel titanosilicate with MWW structure III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2. J Catal,2003, 214(2):317-326
    [125]Wu P, Tatsumi T, Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide. Chem Commun,2001, (10):897-898
    [126]Yao J, Zhan W, Liu X, et al. Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation. Microp Mesop Mater,2012,148(1):131-136
    [127]Mandache I, Parvulescu V I, Popescu A, et al. Epoxidation of dibenzocycloalkenes on Ti-Ge-MCM-41 and Ti-SBA-15 catalysts. Microp Mesop Mater,2005,81 (1-3):115-124
    [128]Iglesias J, Melero J A, Sainz-Pardo J, Direct synthesis of organically modified Ti-SBA-15 materials. J Mol Catal A:Chem,2008,291(1-2):75-84
    [129]Wu P, Tatsumi T, Komatsu T, et al. Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chem Mater,2002, 14(4):1657-1664
    [130]Berube F, Nohair B, Kleitz F, et al. Controlled Postgrafting of Titanium Chelates for Improved Synthesis of Ti-SBA-15 Epoxidation Catalysts. Chem Mater,2010,22(6):1988-2000
    [131]Lin K, Pescarmona P P, Vandepitte H, et al. Synthesis and catalytic activity of Ti-MCM-41 nanoparticles with highly active titanium sites. J Catal,2008,254(1):64-70
    [132]Bhaumik A, Tatsumi T. Organically modified titanium-rich Ti-MCM-41:efficient catalysts for epoxidation reactions. J Catal,2000,189(1):31-39
    [133]Chen L Y, Chuah G K, Jaenicke S. Ti-containing MCM-41 catalysts for liquid phase oxidation of cyclohexene with aqueous H2O2 and tert-butyl hydroperoxide. Catal Lett,1998, 50(1-2):107-114
    [134]Yuan Q C, Hagen A, Roessner F. An investigation into the Ti-grafting structure on MCM-41 and epoxidation catalysis. Appl Catal A:Gen,2006,303(1):81-87
    [135]Wang Y, Zhang Q H, Shishido T, et al. Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J Catal,2002, 209(1):186-196
    [136]Ghorbanloo M, Monfared H H, Janiak C. The catalytic function of a silica gel-immobilized Mn(Ⅱ)-hydrazide complex for alkene epoxidation with H2O2. J Mol Catal A:Chem,2011, 345(1-2):12-20
    [137]Parida K M, Singha S, Sahoo P C. A facile method for promoting activities of vanadium-schiftbase complex anchored on organically modified MCM-41 in epoxidation reaction. J Mol Catal A:Chem,2010,325(1-2):40-47
    [138]Choudhary V R, Patil N S, Chaudhari N K, et al. Epoxidation of styrene by anhydrous hydrogen peroxide over boehmite and alumina catalysts with continuous removal of the reaction water. J Mol Catal A:Chem,2005,227(1-2):217-222
    [139]Bera R, Koner S. Incorporation of tungsten oxide in mesoporous silica:Catalytic epoxidation of olefins using sodium-bi-carbonate as co-catalyst. Inorgan Chimi Acta,2012,384(1) 233-238.
    [140]Rinaldi R, Schuchardt U, On the paradox of transition metal-free alumina-catalyzed epoxidation with aqueous hydrogen peroxide. J Catal,2005,236(2):335-345
    [141]Rinaldi R, Fujiwara F Y, Schuchardt U. Hexaaquoaluminum(Ⅲ) as an environmental friendly activator of hydrogen peroxide for the catalytic epoxidation of cis-cyclooctene. Catal Commun,2004,5(6):333-337
    [142]Rinaldi R, Sepulveda J, Schuchardt U. Cyclohexene and cycloodene epoxidation with aqueous hydrogen peroxide using transition metal-free sol-gel alumina as catalyst. Adv Synth Catal,2004,346(2-3):281-285
    [143]Pescarmona P P, Van Noyen J, Jacobs P A. Transition-metal-free microporous and mesoporous catalysts for the epoxidation of cyclooctene with hydrogen peroxide. J Catal,2007, 251(2):307-314
    [144]Pescarmona P P, Jacobs P A, A high-throughput experimentation study of the epoxidation of alkenes with transition-metal-free heterogeneous catalysts. Catalysis Today,2008,137(1):52-60
    [145]Lueangchaichaweng W, Li L, Wang Q-Y, et al. Novel mesoporous composites of gallia nanoparticles and silica as catalysts for the epoxidation of alkenes with hydrogen peroxide. Catal Today,2013,203(0):66-75
    [146]Mallat T, Baiker A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews,2004,104(6):3037-3058
    [147]Tan H T, Chen Y, Zhou C, et al. Palladium nanoparticles supported on manganese oxide-CNT composites for solvent-free aerobic oxidation of alcohols:Tuning the properties of Pd active sites using MnOx. Appl Catal B:Gen,2012,119-120(0):166-174
    [148]Chen Y, Lim H, Tang Q, et al. Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au-Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Appl Catal, A:Chem,2010,380(1-2):55-65
    [149]Dimitratos N, Lopez-Sanchez J A, Morgan D, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catal Today,2007,122(3-4):317-324
    [150]Dimitratos N, Villa A, Bianchi C L, et al. Gold on titania:Effect of preparation method in the liquid phase oxidation. Appl Catal A:Gen,2006,311(0):185-192
    [152]Miedziak P J, Tang Z, Davies T E, et al. Ceria prepared using supercritical antisolvent precipitation:a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. J Mater Chem,2009,19(45):8619-8627
    [153]Alhumaimess M, Lin Z, Weng W, et al. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem,2012,5(1):125-131
    [154]Wang H-F, Ariga H, Dowler R, et al. Surface science approach to catalyst preparation-Pd deposition onto thin Fe3O4 films from PdCl2 precursor. J Catal,2012,286(0):1-5
    [155]Stuchinskaya T L, Kozhevnikov I V. Liquid-phase oxidation of alcohols with oxygen catalysed by modified palladium(Ⅱ) oxide. Catal Commun,2003,4(8):417-422
    [156]Ma Z, Yang H, Qin Y, et al. Palladium nanoparticles confined in the nanocages of SBA-16: Enhanced recyclability for the aerobic oxidation of alcohols in water. J Mol Catal A:Chem,2010, 331(1-2):78-85
    [157]Yasu-eda T, Se-ike R, Ikenaga N, et al. Palladium-loaded oxidized diamond catalysis for the selective oxidation of alcohols. J Mol Catal A:Chem,2009,306(1-2):136-142
    [158]Hou Y, Ji X, Liu G, et al. Immobilization of palladium in N-heterocyclic carbene functionalized SBA-15 for the catalytic application in aerobic oxidation of benzyl alcohol. Catal Commun,2009,10(10):1459-1462
    [159]Feng B, Hou Z, Yang H, et al. Functionalized Poly(ethylene glycol)-Stabilized Water-Soluble Palladium Nanoparticles:Property/Activity Relationship for the Aerobic Alcohol Oxidation in Water. Langmuir,2009,26(4):2505-2513
    [160]Abad A, Almela C, Corma A, et al. Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron,2006, 62(28):6666-6672
    [161]Caravati M, Grunwaldt J-D, Baiker A. Selective oxidation of benzyl alcohol to benzaldehyde in "supercritical" carbon dioxide. Catal Today,2004,91-92(0):1-5
    [162]Lee H, Habas S E, Kweskin S, et al. Morphological Control of Catalytically Active Platinum Nanocrystals. Angew Chem Int Ed,2006,45(46):7824-7828
    [163]Sau T K, Murphy C J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. J Am Chem Soc,2004,126(28):8648-8649
    [164]Wang H, Wang J, Shen Z, et al. Facile preparation of supported noble metal nanoparticle catalysts with the aid of templating surfactants in mesostructured materials. J Catal,2010, 275(1):140-148
    [165]Mokhonoana M, Coville N, Datye A. Small Au Nanoparticles Supported on MCM-41 Containing a Surfactant. Catal Lett,2010,135(1-2):1-9
    [166]Lopez-Sanchez J, Dimitratos N, Hammond C, et al. Facile removal of stabiliser-ligands from supported gold nanoparticles. Nature Chemistry,2011,3(1):551-556
    [167]Xia Q H, Ge H Q, Ye C P, et al. Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation. Chem Rev,2005,105(5):1603-1662
    [168]Brinksma J, Hage R, Kerschner J, et al. The dinuclear manganese complex MnO(OAc)(TPTN) as a catalyst for epoxidations with hydrogen peroxide. Chem Commun,2000, 0(7):537-538
    [169]De Vos D, Bein T. Highly selective epoxidation of alkenes and styrenes with H2O2 and manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane. Chem Commun,1996,0(8):917-918
    [170]Tong K-H, Wong K-Y, Chan T H. Manganese/Bicarbonate-Catalyzed Epoxidation of Lipophilic Alkenes with Hydrogen Peroxide in Ionic Liquids. Org Lett,2003,5(19):3423-3425
    [171]Espinal L, Suib S L, Rusling J F. Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2. J Am Chem Soc,2004,126(24):7676-7682
    [172]Shi F, Tse M K, Pohl M-M, et al. Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. J Mol Catal A:Chem,2008,292(1-2):28-35
    [173]Shi F, Tse M K, Pohl M-M, et al. Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis:Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angew Chem Int Ed,2007,46(46):8866-8868
    [174]Choudhary V R, Jha R, Jana P. Selective epoxidation of styrene to styrene oxide by TBHP using simple transition metal oxides (NiO, CoO or MOO3) as highly active environmentally-friendly catalyst. Catal Commun,2008,10(2):205-207
    [175]Choudhary V R, Jha R, Chaudhari N K, et al. Supported copper oxide as a highly active/selective catalyst for the epoxidation of styrene by TBHP to styrene oxide. Catal Commun, 2007,8(10):1556-1560
    [176]Da Palma Carreiro E, Burke A J. Catalytic epoxidation of olefins using MoO3 and TBHP: Mechanistic considerations and the effect of amine additives on the reaction. J Mol Catal A:Chem, 2006,249(1-2):123-128
    [177]Tang Q, Zhang Q, Wu H, et al. Epoxidation of styrene with molecular oxygen catalyzed by cobalt(Ⅱ)-containing molecular sieves. J Catal,2005,230(2):384-397
    [178]Selvaraj M, Song S W, Kawi S. Epoxidation of styrene over mesoporous Zr-Mn-MCM-41. Microp Mesop Mater,2008,110(2-3):472-479
    [179]Selvaraj M, Seshadri K S, Pandurangan A, et al. Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr-Mn-MCM-41 molecular sieves. Microp Mesop Mater,2005,79(1-3):261-268
    [180]Gomez S, Giraldo O, Garces L J, et al. New Synthetic Route for the Incorporation of Manganese Species into the Pores of MCM-48. Chem Mater,2004,16(12):2411-2417
    [181]Zhang Q, Wang Y, Itsuki S, et al. Manganese-containing MCM-41 for epoxidation of styrene and stilbene. J Mol Catal A:Chem,2002,188(1-2):189-200
    [182]Yonemitsu M, Tanaka Y, Iwamoto M. Metal Ion-Planted MCM-41:2. Catalytic Epoxidation of Stilbene and Its Derivatives withtert-Butyl Hydroperoxide on Mn-MCM-41. J Catal,1998, 178(1):207-213
    [183]Gomez S, Garces L J, Villegas J, et al. Synthesis and characterization of TM-MCM-48 (TM=Mn, V, Cr) and their catalytic activity in the oxidation of styrene. J Catal,2005, 233(1):60-67
    [184]Shylesh S, Singh A P. Vanadium-containing ordered mesoporous silicates:Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41? J Catal,2005,233(2):359-371
    [185]Ghadiri M, Farzaneh F, Ghandi M, et al. Immobilized copper(Ⅱ) complexes on montmorillonite and MCM-41 as selective catalysts for epoxidation of alkenes. J Mol Catal A: Chem,2005,233(1-2):127-131
    [186]Lin K, Pescarmona P P, Houthoofd K, et al. Direct room-temperature synthesis of methyl-functionalized Ti-MCM-41 nanoparticles and their catalytic performance in epoxidation. J Catal,2009,263(1):75-82
    [187]Davies L J, McMorn P, Bethell D, et al. Oxidation of crotyl alcohol using Ti-β and Ti-MCM-41 catalysts. J Mol Catal A:Chem,2001,165(1-2):243-247
    [188]Wu Y, Zhang Y, Cheng J, et al. Synthesis, characterization and catalytic activity of binary metallic titanium and iron containing mesoporous silica. Microp Mesop Mater,2012, 162(0):51-59
    [189]Qi B, Lou L-L, Yu K, et al. Selective epoxidation of alkenes with hydrogen peroxide over efficient and recyclable manganese oxides. Catal Commun,2011,15(1):52-55
    [190]Qi B, Lu X H, Zhou D, et al. Catalytic epoxidation of alkenes with 30% H2O2 over Mn2+-exchanged zeolites. J Mol Catal A:Chem,2010,322(1-2):73-79
    [191]Maiti S K, Dinda S, Nandi M, et al. Selective epoxidation of olefins catalyzed by oxodiperoxomolybdenum(Ⅵ) complexes immobilized over highly ordered 2D-hexagonal mesoporous silica. J Mol Catal A:Chem,2008,287(1-2):135-141
    [192]Richardson D E, Yao H, Frank K M, et al. Equilibria, Kinetics, and Mechanism in the Bicarbonate Activation of Hydrogen Peroxide:Oxidation of Sulfides by Peroxymonocarbonate. J Am Chem Soc,2000,122(8):1729-1739
    [193]Sahana S, Jana T K, Bhattacharyya R. Electronic versus steric control in manganese-hydroxamate chemistry:synthesis and characterization of Mn(Ⅱ) and Mn(Ⅲ)-hydroxamate complexes and catalytic epoxidation of olefins using the Mn(Ⅲ) complexes as catalyst and H2O2 as terminal oxidant. CR Chim,2005,8(6-7):1109-1121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700