CO_2辅助合成分子筛及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔分子筛是晶化硅铝酸盐矿物的一个家族,其结构由均匀分子尺寸的微孔规则排列而成。由于微孔的高比表面积,微孔分子筛有高的气体吸附能力,这个“分子筛”作用使分子大小或择形性的发展应用在吸附分离和催化方面。近些年又有了新的应用,例如在光电子学,传感和药物输送等方面。分子筛在催化方面的巨大成功归因于它们的离子交换能力,固体酸性,骨架稳定性和择形孔径。在大多数分子筛中,三价Al与晶化硅酸盐骨架中的氧形成四配位态。这就引起了Al和氧化物骨架的电荷不匹配,这由非骨架Na+离子弥补,这些Na+离子也可由其他像K+和H+离子所替换。在这些分子筛中,H+离子交换型能呈现出Lewis酸和Br nsted酸中心,酸性相当于硫酸。此外,可通过骨架组成的选择来调节酸强和浓度。有还原-氧化性质的过渡金属,例如Ti,Co和Sn能被合并进分子筛骨架中。
     钛硅分子筛(TS-1)是高活性多功能的氧化催化剂,尤其是使用H2O2作为氧化剂,在各种催化氧化还原过程中被广泛应用,众所周知,TS-1中骨架钛含量越高,其催化能力越好,而锐钛矿TiO2则加速了H2O2的分解,所以有效地增加骨架钛含量而不形成非骨架钛物种仍然是一个巨大的挑战。此外,由于沸石晶体尺寸和形貌影响了沸石晶体的微孔体积内分散和滞留时间,进而也强烈的影响了其性能,所以晶体尺寸和形貌的控制是重要的。超临界流体由于其独特的溶解性和分散性,在分离技术和化学工程中提供了很多技术优势,在本论文中,研究了在超临界CO2存在下合成TS-1,超临界压力对晶体形貌,结晶度,晶化时间和Ti含量的影响。研究过程中还发现一种简便的方法即在CO2存在下制备富含骨架钛并且没有形成锐钛矿TiO2,制备的晶体具有可控的尺寸和形态。由于沸石L独特的一维孔道结构,在催化剂和可持续能源领域已经吸引了研究者强烈的注意力。其在任何领域都能成功的发挥作用,这与沸石L的尺寸和形状有密不可分的关系。有报道通过加入添加剂来合成沸石L,例如加入氟化物和醇胺。到目前为止,还没有人系统的研究铵盐(无机和有机铵盐)对沸石L合成和性质的影响,那么研究铵盐对沸石L合成和性质的影响是十分必要的,在这项工作中我们系统的研究了无机铵盐和有机铵盐的加入量对沸石L结晶度和形貌的影响。
     在第二章中,采用了一种新的路线来合成微孔TS-1,即用超临界二氧化碳(SCCO2)作为帮助晶化试剂,在这里超临界二氧化碳起到了双重作用:作为一种添加剂在晶化过程中改变了体系碱度,另外作为媒介消除了传质限制(大量液体之间和通过液体/气体,固体/气体或是固体/液体相界面)。在这个路线中,与没有通入SCCO2的传统合成路线相比,合成的TS-1中Ti含量增加了,但是随着SCCO2压力的增加Ti含量减少,所制备的晶体形态发生了显著变化,TS-1的晶化时间也缩短了。
     在第三章中,采用在合成凝胶中直接通入不同量的CO2来合成微孔TS-1,CO2起到了碱度调节剂的作用,制备的TS-1催化剂通过XRD,SEM,UV-vis,ICP和IR进行表征,发现骨架钛与总含量均增加了,Si/Ti降低为40,而没引入CO2的传统合成方法为56,形貌发生了变化,由传统的球状转变为孪晶,通入适量的CO2还可以抑制锐钛矿TiO2的生成,催化苯酚羟基化反应的能力有了很大的提高,苯酚转化率达到了26.1%。
     在第四章中,通过加入不同的添加剂进合成凝胶,进行了L沸石的合成和性质的研究。所有的无机铵盐都抑制了沸石L的晶化过程,不利的影响取决于铵盐的种类和加入的量。随着无机铵盐量的增加,制备的产物中发现有不纯相形成了。令我们惊奇的是除了醋酸按,当其他铵盐加入一定量时,均形成了透长石。而对于有机铵盐PDDA和CTAB的加入,也导致了晶体结晶度的下降,晶体形貌由长宽比为2-4六角棱柱形转变为长宽比为3-6的棒状晶体。通过我们系统的研究说明了LTL晶体的合成对于铵盐的加入是敏感的。而有机硅烷APTMS、TPOAC和TMPED的加入,得到了具有可调长宽比的沸石L晶体,长宽比的大小取决于有机硅烷加入的量。
Microporous zeolites are a family of crystalline aluminosilicate mineral, whosestructure is composed by regular array of uniform micropores in a moleculardimension. Microporous zeolites have high gas adsorption capacity due to the highspecifc surface area of the microporous, this ‘molecular sieving’ effect has enabledthe development of molecular size-or shape-selective applications in adsorption,separation and catalysis. New applications, such as optoelectronics, sensing, and drugdelivery, were considered in recent years. The tremendous success of zeolites incatalysis is owing to their ion-exchange capacity, solid acidity and frameworkstability, as well as shape-selective pore diameters. In most zeolites, trivalent Alatoms are tetrahedrally coordinated by oxygen in the crystalline silicate framework.This causes a charge mismatch between Al and the oxide framework, which iscompensated by extra-framework Na+ions, these Na+ions can be exchanged by othercations like K+and H+. In some zeolites, H+-ion exchanged form can exhibit Lewisacidity and also Br nsted acidity, which is comparable to sulfuric acid. Furthermore,the acidity can often be tailored in strength and concentration by the choice of theframework composition. Transition metals with reduction-oxidation property, such asTi, Co and Sn, can be incorporated into zeolite frameworks.
     Ti-silicalite-1(TS-1) is a highly active and versatile oxidation catalystparticularly using diluted H2O2as oxidant in various catalytic oxy-reductive processes,it is known that, the more framework Ti the TS-1contains, the higher catalyticperformance it would present, while anatase TiO2would promote the decompositionof H2O2, so the effective way to increase the Ti content in the framework of TS-1 without forming extraframework Ti species is still a huge challenge. In addition, thecontrol of zeolite crystal size and morphology can stronglyaffect the performance byinfluencing the diffusion and resident time in the micropore volume of zeolite crystals,so the control of crystal size and morphology is important. Supercritical fluids (SCFs)offer a series of technical advantages in separation technology and chemicalengineering because of their unique solubility and diffusivity properties. In this article,the synthesis of TS-1in SCCO2has been investigated and the effects of supercriticalpressure on crystal morphology and crystallinity, thus on crystallization time and Ticontents have also been studied. In the presence of CO2, a facile method is showed forpreparation of framework Ti-rich TS-1without anatase TiO2, with the controllablecrystal size and morphology. Due to its unique one-dimensional pore structure, zeoliteL has attracted intense research attention in catalyst and in sustainable energy. It hasbeen observed that the successful implementation in either areas is strongly correlatedto the size and the shape of zeolite L. The synthesis of zeolite L though addingadditives have been reported, such as adding fluoride and alkanolamine. Up to now,however, nobody systematically investigated the effect of different ammonium salts(inorganic and organic)on the synthesis and properties of zeolite L. Thus, it wouldbe necessary to investigate the effects of different ammonium salts on the synthesisand properties of zeolite L. In this work, we systematically investigate the amount ofinorganic and organic ammonium salts effect on the morphology and crystallinity ofzeolite L.
     In the second chapter, a new route to synthesize TS-1has been developed usingthe supercritical carbon dioxide (SCCO2) as a crystallization-assistant agent. SCCO2plays a dual role: as an additive changing the alkalinity during the crystallizationprocess and as a medium eliminating mass-transfer limitations (both within the bulkfluid and across liquid/gas, solid/gas or solid/liquid phase boundaries). In this route, itwas shown that the Ti content in TS-1increase compared with that in the TS-1prepared without SCCO2, but decrease while the SCCO2pressure increase. Theprepared crystal morphology also underwent significant change. The crystallizationtime of TS-1can be shorten a lot.
     In the third chapter, a new method that CO2was directly added into prepared gelhas been developed to synthesize TS-1, the carbon dioxide (CO2) was used as analkalinity regulator, the resulted TS-1were characterized by XRD,SEM,UV-vis,ICP and IR, that had enhanced framework and total Ti contents, Si/Ti ratio was as lowas40in contrast to the ratio of56prepared through conventional synthesis. Themorphology was changed from the smaller spherical-shape crystal to the larger twincrystal via introduction of CO2. The appropriate amount of CO2can inhibit theformation of anatase TiO2. The catalytic ability to catalyse phenol hydroxylation wasgreatly enhanced, the phenol conversion rate reached26.1%.
     In the fourth chapter, effects of additives on the synthesis and characteristics ofzeolite L were studied by adding different additives to the synthesis gel. All of theseinorganic ammonium salts inhibited the crystallization process of zeolite L, and theunfavorable effect was dependent on the type and amount of ammonium salts. Theobtained products were demonstrated that the formation of these impurity phases withincreasing amount of ammonium salts. To our great surprise, in addition toCH3COONH4, orthoclase was formed when moderate amount of some ammoniumsalts are added. With the addition of CTAB and PDDA, the crystallinity is decreasing,the crystals were changed from hexagonal prism shape with the aspect ratio of2-4into rod-like morphologywith the aspect ratio of3-6. Our systematic approachdemonstrates the syntheses of LTL crystals are sensitive to the presence ofammonium salts in the synthesis gel. While zeolite L crystals with tuning aspect ratiowere obtained throughadding these organosilanes(APTMS、TPOAC and TMPED),and the sizes of aspect ratio depend on the organosilanes concentration.
引文
[1] Barrer R M. Hydrothermal Chemistry of Zeolites[M]. BeiJing AademicPress,1982.
    [2]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [3]徐如人等著.分子筛与多孔材料化学[M].北京:科学出版社,2004年.
    [4] ATTFIELD M P. Microporous materials[J].Science Progress,2002,85(4):319-345.
    [5] Flanigen E M. Molecular Sieve Zeolite Technology-The First twenty-five years[C].Proc.of the fifth Intl.Conf.on Zeolite,Heyden,Rees L.V.C.(Ed.).1980:760-780.
    [6] Wilson S T, Lok B M, Flanigen E M.: U.S,4310,440[P].1982.
    [7] Davis M E, Saldarriaga C, Montes C, etal.[J] Nature.1988,331:698-699.
    [8] Xu R, Pang W, Yu J, Huo Q, Chen J. Chemistry of Zeolites and Related PorousMaterials[M]. Chemistry and Structure,John Wiley&Sons (Asia): Singapore,2007.
    [9] Velev O D, Jede T A, Lobo R F, etal. Microstructured Porous Silica Obained ViaColloidal Crystal Template Chem[J]. Mater,1998,10:3597-3602.
    [10]Davis S A,Burkett S L, Mendelson N H, etal. Bacterial templating of orderedMacrostructures in Silica and Silica-Surfactant Mesophases[J], Nature,1997,385:420-423.
    [11]Imhof A, Pine D J. Ordered Materials by emulsion templating[J], Nature,1997,389:948-951.
    [12]Rowsell J L C, Yaghi O M. Metal-organic frameworks: a new class of porousmaterials[J]. Micropor. Mesopor. Mat.,2004,73:3-14.
    [13]Chui S S-Y,Lo S M-F, Charmant J P H, Orpen A G, Williams I D. A chemicallyfunctionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283:1148-1150.
    [14] Eddaoudi M, Li H, Yaghi O M. Highly porous and stable metal-organicframeworks: Structure design and sorption properties[J]. J. Am. Chem. Soc.,2000,122:1391-1397.
    [15] Carlo P, Roberto M. Porous materials in catalysis: challenges for mesoporousmaterials[J]. Chem.Soc.Rev.,2013,42:3956-3976.
    [16] Database of Zeolite Structures: http://www.iza-structure.org/databases, as in June2012.
    [17] Singh K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J,Siermienieska T. Reporting physisorption data for gas/solid systems with specialreference to the determination of surface area and porosity (Recommendations1984)[J]. Pure Appl.Chem.,1985,57:603–619.
    [18] Kresge C T, Leonowicz M E, Roth W J, Beck J S. Ordered mesoporousmolecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710–712.
    [19] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Schmidt K D, Chu C T W,Olson D H, Sheppard E W, etal. A new family of mesoporous molecular sievesprepared with liquid crystal templates[J]. J. Am. Chem. Soc.,1992,114:10834–10843.
    [20] Taguchi A, Schüth F. Ordered mesoporous materials in catalysis[J]. Micropor.Mesopor. Mat.,2005,77:1-45.
    [21] Slowing I I.; Trewyn B G, Giri S, Lin V S-Y. Mesoporous silica nanoparticlesfor drug delivery and biosensing applications[J]. Adv. Funct. Mater.,2007,17:1225-1236.
    [22] Chew T-L, Ahmad A L, Bhatia S. Ordered mesoporous silica (OMS) as anadsorbent and membrane for separation of carbon dioxide (CO2)[J]. Adv. ColloidInterfac.,2010,153:43-57.
    [23] Taramasso M, Perego G, Notari B. Preparation of Porous Crystalline SyntheticMaterial Comprised of Silicon and Titanium Oxides. U.S.Pat.4410501[P],1983.
    [24] Thangaraj A, Kumar R, Mirajkar S P, Ratnasamy P. Catalytic properties ofcrystalline titanium silicalites. I. Synthesis and characterization of titanium-richzeolites with MFI structure[J]. J. Catal.,1991,130:1.
    [25] Li Y G, LEE Y M, PORTER J F. The synthesis and characterization of titaniumsilicalite-1[J]. Journal of materials science,2002,37:1959–1965.
    [26] Milini R, Massara E P, Perego G, Bellussi G. Framework composition oftitanium silicalite-1[J]. J. Catal.,1992,137:497.
    [27] Notari B. Synthesis and catalytic properties of titanium-containing zeolites[J]Stud. Surf. Sci. Catal,1988,37:413.
    [28] Khouw C B, Dartt C B, Labinger J A, Davis M E. Studies on the catalyticoxidation of alkanes and alkenes by titanium silicates[J]. J. Catal.,1994,149:195.
    [29] Thangaraj A., Sivasanker S. An Improved Methods for TS-1Synthesis:29SiNMR Studies[J]. J. Chem. Soc., Chem. Commun.,1992,(2):123-124.
    [30]Thangaraj A, Eapan M J, Sivasanker S, Ratnasamy R. Studies on the Synthesis ofTitanium Silicalite, TS-1[J]. Zeolites,1992,12(9):943-950.
    [31]高焕新,索继栓,吕功煊,李树本.钛硅分子筛(TS-l)的合成、结构表征及催化性能研究[J].分子催化,1996,10(l):25-32.
    [32] Padovan M, Leofanti G, Roffia P, etal. Method for the Preparation of TitaniumSilicates. Eur. Pat.,311983[P],1989.
    [33] Uguina M A, Ovejero G, Van Der A, etal. Preparation of TS-l by WetnessImpregnation of Amorphous SiO2-TiO2Solids: Influence of the SynthesisVariables[J]. J. Chem. Soc., Chem. Commun.,1994,(l):27-28.
    [34] Gao H X, Suo J S, Li S B. A Easy Way to PrePare TS-1[J]. J. Chem. Soc., Chem.Commun.,1995,(8):835-843.
    [35] Zhang G Y, Sterte J, Schoeman B. Discrete Colloidal Crystals of TitaniumSilicalite-1[J]. J. Chem. Soc., Chem. Commun.,1995,(22):2259-2260.
    [36] Gontier S, Tuel A. Synthesis of Titanium Silicate-1Using Amorphous SiO2asSilicon Source[J]. Zeolites,1996,16(2-3):184-195.
    [37] Müller U, Steck W. Ammonium-based Alkaline-free Synthesis of MFI-typeBoron and Titanium Zeolites[J]. Stud. Surf. Sci. Catal.,1994,84:203-210.
    [38] Tuel A. Crystallization of Titanium Silicalite-l (TS-1) from Gels ContainingHexanediamine and Tetrapropylammounium Bromide[J]. Zeolites,1996,16(2-3):108-117.
    [39]张雄福,王桂茹,刘海鸥等.在己二胺体系中Ti-SiZSM-5沸石的合成因素研究[J].石油学报(石油加工),1997,13(3):21-26.
    [40] Shibata M, Gabelica Z. Synthesis of MFI Titanosilicates fromMethylamine-TPABr Media[J]. Zeolites,1997,19(4):246-252.
    [41]李钢,郭新闻,王祥生等. TPABr-正丁胺体系中的合成与表征[J].大连理工大学学报,1998,38(3):363-367.
    [42]李钢,郭新闻,王祥生.钛硅分子筛结构表征及催化性能研究[J].燃料化学学报,1998,26(2):119-124.
    [43]张义华.钛基催化材料的合成、表征和选择氧化性能研究[D].大连理工大学博士学位论文,2001.
    [44] Tuel A., Ben Taarit Y, Naccache C. Characterization of TS-1Synthesized UsingMixtures of Tetrabutyl and Tetraethyl Ammonium Hydroxides[J]. Zeolites,1993,13(6):454-461.
    [45]柯于勇,卢冠忠,万颖等.以混合模板剂合成TS-1分子筛及其性能研究[J].催化学报,1998,19(2):149-153.
    [46] Kessler H, Patarin J, Schott-Darie C. Synthesis of High-Silica Zeolites andPhosPhate-based Materials in the Presence of Fluoride[J]. Stud. Surf. Sci. Catal.,1994,85:75-113.
    [47]庞文琴,裘式纶,周凤歧.杂原子分子筛合成研究进展[J].吉林大学自然科学学报,1992年特刊(化学):78-84.
    [48]徐如人,庞文琴等著.分子筛与多孔材料化学[M].科学出版社,2004年
    [49] Krijnen S, Sanchez P, Jakobs B T F, etal. A Controlled Post-Synthesis Route toWell-Defined and Active Titanium Beta Epoxidation Catalysts[J], Microporous.Mater.1999,31:163-173.
    [50] Niederes J P M, Hoelderich W F. Isomorphous Substituted Early TransitionMetal Containing BEA Vin Post-Synthesis Modification of H-[B]-BEA. Porc. of the12th International Zeolite Conf[C], Part Ⅲ MRS, Treacy M M J, Marcus B K,Bisher M E, Higgins, J. B.(Eds.).1998,1893-1900.
    [51] Yashima T, Yamagishi K, Namba S. Preparation of metallosilicates with MFIstructure by atom-planting method[J]. Stud. Surf. Sci Catal.,1991,60:171.
    [52] Kraushaar B, Van Hoof J H C. A New Method for the Preparation of TitaniumSi1icalite (TS-l)[J]. Catal. Lett.,1988, l:81-84.
    [53] Bellussi G, Fattore V. Isomorphous Substitution in Zeolites: A Route for thePreparation of Novel Catalysts[J]. Stud. Surf. Sci. Catal.,1991,69:79-92.
    [54]张法智,郭新闻,王祥生.气固相同晶取代法Ti-ZSM-5沸石的表征及催化性能[J].大连理工大学学报,1998,38(3):368-371.
    [55]张法智,郭新闻,王祥生,周卓华.气固相同晶取代法制备Ti-ZSM-5沸石及其催化性能的研究[J].分子催化,1999,13(2):121-126.
    [56] Zhang F Z, Guo X W, Wang X S, etal. The Active Sites in different TS-1Zeolites for Propylene Epoxidation Studied by Ultraviolet Resonance Raman andUltraviolet Visible Absorption Spectroscopy[J]. Catal. Lett.,2001,72(3-4):235-239.
    [57] Wang X S, Guo X W. Synthesis, Characterization and Catalytic Properties ofLow Cost Titanium Silicate[J]. Catal. Today,1999,51:177-186.
    [58]李明丰,郭新闻,于桂燕,王祥生.以de-[B]ZSM-5为母体的钛硅沸石Ti-SiZSM-5合成[J].石油化工,1998,27(5):319-323.
    [59]李明丰.钛硅沸石分子筛的制备、表征及催化部分氧化行为的研究[D].大连理工大学硕士学位论文,1996.
    [60] Yang Q H, Wang S L, Lu J Q, etal. Epoxidation of Styrene on Si/Ti/SiO2Catalysts Prepared by Chemical Grafting[J]. Appl. Catal. A,2000,194-195:507-514.
    [61]李灿.高度隔离过渡金属催化剂及其催化烯烃环氧化反应[J].催化学报,2001,22(5):479-483.
    [62]赵杉林,张扬建,孙桂大,翟玉春.钛硅沸石分子筛Ti-MCM-41的微波合成与表征[J].催化学报,2000,20(l):93-95.
    [63]于健强,李灿,许磊等.以硅溶胶和三氯化钛为原料合成Ti-MCM-41分子筛1. Ti-MCM-41分子筛的合成[J].催化学报,2001,22(3):267-270.
    [64] Meng X P, Xu W G, Tang S Q, Pang W Q. Hydrothermal Synthesis of ZeoliteNaA by Microwave Radiation[J]. Chin. Chem. Lett.,1992,3(l):69-70.
    [65] MILLINI R., E. PREVIDE MASSARA, G. PEREGO and G. BELLUSSI, J.Catal.137(1992)497.
    [66] Huybrechts D R C, Buskens P L, Jacobs P A. Alkane oxygenations by hydrogenperoxide on titanium silicalite[J]. Studies in Surface Science and Catalysis,1992,72:21-31.
    [67] Astorino E, Peri J B, Willey R J, Busca G. Spectroscopic characterization ofsilicalite-1and titanium silicalite-1[J]. J. Catal.,1995,157:482.
    [68] Deo G, Turek A M, Wachs I E, Huybrechts D R C, Jacobs P A. Characterizationof titania silicalites[J]. Zeolites,1993,13:365.
    [69] Trong on D, Denis I, Lortie C, Cartier C, Bonneviot L. Symmetry and location oftitanium within titanium silicalite framework of MFI structure[J]. Stud. Surf. Sci.Catal.,1994,83:101.
    [70] Behrens P, Felsche J, Vetter S, Schulz-elkoff G, Jaeger N I, Niemann W. J.Chem. Soc.Chem. Commun,1991,10:678.
    [71] Zhang G, Sterte J, Schoeman B J. Preparation of Colloidal Suspensions ofDiscrete TS-1Crystals[J]. Chem. Mater.,1997,9:210.
    [72] Duprey E, Beaunier P, Springuel-Huet M.-A, etal. Characterization of catalystsbased on titanium silicalite, TS-1, by physicochemical techniques[J]. J. Catal.,1997,165:22.
    [73]Zecchina A, Spoto G, Bordiga S, Ferrero A, etal. Framework and extraframeworktitanium in titanium-silicalite: investigation by means of physical methods [J]. Stud.Surf. Sci. Catal.,1991,69:251.
    [74] Perego G., Bellussi G, Cordoc, Taramasso M, etal. Titanium-silicalite: a novelderivative in the pentasil family[J]. Stud. Surf. Sci. Catal.,1986,28:129.
    [75] Thangaraj A, Eapen M J, Sivasanker S, Ratnasamy P. Studies on the synthesis oftitanium silicalite, TS1[J]. Zeolites,1992,12:943.
    [76] Millini R, Previde Massara E, Perego G, Bellussi G. J. Catal.68(1992)479.
    [77] Vayssilov G N. Structural and physicochemical features of titanium silicalites[J].Catal. Rev.-Sci. Eng.,1997,39(3):209.
    [78] Bordiga S, Damin A, Berlier G, etal. The Role of Isolated Sites in HeterogeneousCatalysis: Characterization and Modeling[J]. Int. J. Mol. Sci.,2001,2:167-182.
    [79] Jorda E, Tuel A, Teissier R, Kervennal J. TiF4: An Original and Very InterestingPrecursor to the Synthesis of Titanium Containing Silicalite-1[J]. Zeolites,1997,19(4):238-245.
    [80] Perego C, Carati A, Ingallina P, etal. Production of Titanium ContainingMolecular Sieves and Their Application in Catalysis[J]. Appl. Catal. A: General,2001,221(l):63-72.
    [81]夏清华,王公慰,应慕良等.钛-硅沸石的结构表征及其催化性能[J].催化学报,1994,15(2):109-114.
    [82] Blasco T, Camblor M A, Corma A, etal. The State of Ti inTitanoaluminosilicates Isomorphous with Zeolite β[J]. J. Am. Chem. Soc.,1993,115(25):11806-11813.
    [83] Busca G, Ramis G, Gallardo Amores J M.G, etal. FT Raman and FTIR studies oftitanias and metatitanate powders[J]. J. Chem. Soc.Faraday Trans.,1994,90:3181.
    [84] Zhang Y.-H., Chan C K, Porter J F, Guo W. Micro-Raman spectroscopiccharacterization of nanosized TiO2powders prepared by vapor hydrolysis[J]. J. Mater.Res.,1998,13(9):2602.
    [85] Van der Pol A J H P, Van Hooff J H C. Parameters affecting the synthesis oftitanium silicalite1[J]. Appl. Catal.A,1992,92:93.
    [86] Clerici M G. Oxidation of Saturated Hydrocarbons with Hydrogen PeroxideCatalyzed by Titanium Silicates[J]. Appl. Catal.,1991,68:249-261.
    [87]柯于勇,卢冠忠,沈丹凤,王筱松. TS分子筛的催化氧化性能研究Ⅰ.戊烷的氧化[J].石油化工,1997,26(2):82-87.
    [88] Clerici M G, Bellussi G, Romano U. Synthesis of propylene oxide frompropylene and hydrogen peroxide catalyzed by titanium silicalite[J]. J. Catal.,1991,129:159.
    [89] Clerici M G, Ingallina P, Millini R. Titanium silicalite-1peroxides. Proc. Int.Zeolite Conf.,9th[C],1993,1:445.
    [90]夏清华,王公慰,应慕良等.钛-硅沸石的结构表征及其催化性能[J].催化学报,1994,15(2):109-114.
    [91]曹国英,李宏愿,夏清华等. TS分子筛催化剂上烯丙基氯的环氧化性能[J].催化学报,1995,16(3):217-221.
    [92] Clericl M G, Ingallina P. Epoxidation of lower olefins with hydrogen peroxideand titanium silicalite [J]. J Catal,1993,140:71-83.
    [93] Camblor M A, Corma A, Martinez A, Perez-Pariente J. Synthesis of a titaniumsilicoaluminate isomorphous to zeolite beta and its application as a catalyst for theselective oxidation of large organic molecules[J]. J. Chem. Soc., Chem. Commun.,1992,8:589.
    [94] van der Waal J C, Rigutto M S, van Bekkum H. Zeolite titanium beta as aselective catalyst in the epoxidation of bulky alkenes [J]. Appl. Catal. A,1998,167:331.
    [95] Camblor M A, Corma A, Esteve P, Martinez A, Valencia S. Epoxidation ofunsaturated fatty esters over large-pore Ti-containing molecular sieves as catalysts:important role of the hydrophobic-hydrophilic properties of the molecular sieve[J].Chemical Communications,1997,8:795.
    [96] Corma A, Iglesias M, Sánchez F. Large pore bifunctionaltitanium-aluminosilicates: the inorganic non-enzymic version of the epoxidaseconversion of linalool to cyclic ethers[J]. J. Chem. Soc., Chem. Commun.,1995,16:1635.
    [97] Romano U, Esposito A, Maspero F, Neri C, Clerici M G. Selective oxidationwith titanium silicalite[J]. Chim. Ind.,1990,72:610.
    [98] Varagnat J. Hydroquinone and pyrocatechol production by direct oxidation ofphenol[J]. Ind. Eng. Chem. Prod. Res. Dev.,1976,15:212.
    [99] Tuel A, Ben Taarit Y. Comparison between TS-1and TS-2in the hydroxylationof phenol with hydrogen peroxide[J]. Appl. Catal. A,1993,102:69.
    [100] Esposito A, Taramasso M, Neri C. US Patent4,396,783,1983[P], Anic S.p.A.
    [101] Ungarelli R, Balducci L, Bianchi D. EP Patent0,919,531,1999[P], Enichem.
    [102] Bhaumik A, Mukherjiee P, Kumar R. Triphase catalysis over titanium-silicatemolecular sieves under solvent-free conditions. I. Direct hydroxylation of benzene[J].J. Catal.,1998,178:101.
    [103] Clerici M G, Sheldon in: R A, van Bekkum (Eds.) H. Fine Chemicals throughHeterogeneous Catalysis[J]. Wiley-VCH, Weinheim,2001,538.
    [104] Roffa P, Leofanti G, Cesana A, etal. A new process for cyclohexanoneoxime[J]. Chim. Ind.(Milan),1990,72:598.
    [105] Petrini G, Leofanti G, Mantegazza M A, Pignataro F, Anastas in: P T,Williamson (Eds.) T C. Green Chemistry: Designing Chemistry for the Environment,ACS Symposium Series No.626[C]. Am. Chem. Soc.,1996,33.
    [106] Breck D W, BrecK W, Aonawanda, etal. Crystalline zeolite L [P]. US:3216789,1965,11:09.
    [107] Barrer R M, Villiger H. The crystal structure of the synthetic zeoliteL[J]. Z.Kristallogr.,1969,128:352-370.
    [108] Dean A Y, Yorba L, Calif. Method of Preparing crystallin“L”zeolite [P]. US:3867512,1975.
    [109] Wortel, Theodorus M. Zeolite L[P]. US:4593133,1986.
    [110] Verduijn J P, Wortel T M. Hexagonal Zeolite L [P]. EP:0220881,1987.
    [111] Wan Y, Williams C D, Duke C V A, etal. Zolite L synthesis using differentmolar gel compositions for the purpose of minimizing reagent waste [J]. Micro. Meso.Mater.,2001,47(l):79-84.
    [112]赵俊红.重油裂化催化剂活性组分L沸石的合成、改性及表征[D].郑州:郑州大学,2006.
    [113] Albers E W, Vaughan. Method for producing open framework zeolites[P]. US3947482,1976.
    [114] Verduijn J P. Zeolite L preparation[P]. US5670130,1997.
    [115] Occelli M L. Crystalline galliosilicate with the zeolite L type structure and itsuse in chemical catalytic conversions[P]. US4995963,1991.
    [116] Yong S K, Wha S A. Crystallization of zeolite L fromNa2O-K2O-A12O3-SiO2-H2O system[J]. Powder Technology,2004,145(1):10-19.
    [117]刘兴玉,谢传欣,赵静等.晶种在L沸石合成体系中的作用[J].石油大学学报(自然科学版),2004,28(5):103-107.
    [118] Kao J-L, Ramsey, etal. Naphtha reforming catalyst and process[P]. US5980731,1999.
    [119] Himpsl F L, Koermer, etal. Catalytic cracking of hydrocarbons with a mixtureof zeolite L and zeolite Y[P]. US5106485,1992.
    [120] Laukonen, Eugene. Process for producing para-dichlorobenzene[P]. US4990706,1991.
    [121] Raatz, Francis, Petit, etal. Decationized, dealuminated and stabilized L zeoliteand use thereof[P]. US4909924,1990.
    [122] Huss J, Albin, Krishnamurthy, etal. Process for the dehydrocyclization ofacyclic hydrocarbons and catalyst composition therefore[P]. US4888105,1989.
    [123] Wu A-h, Drake C A. Hydrocarbon hydrogenation catalyst and process[P]. US6235954,2001.
    [124] Cody, Ian A, Hamner, etal. Surface silylated zeolite catalysts, and processes forthe preparation, and use of said catalysts in the production of high octane gasoline[P].US4906599,1990.
    [125] Pechar T W., Kim S, Vaughan B, etal. Fabrication and characterization ofpolyimide-zeolite L mixed matrix membranes for gas separations[J]. Journal ofMembrane Seience,2006,277(2):195-202.
    [126] Bengoa J F, Alvarez A M, Cagnoli M V, etal. Fischer-Tropsch reaction onFe/Zeolite-L system. Structure and catalytic behavior[J]. Materials Letters,2002,53(l):6-11.
    [127]周学良著.精细化工产品手册(催化剂)[M].第一版(第2期).北京:化学工业出版社,2003:209-210.
    [128]潘惠芳.高硅铝比L沸石的制备方法[P]. CN200410008658.3,2004-03-16.
    [129] Himpsl, Francis L, Koermer, etal. Catalytic cracking of hydrocarbons with amixture of zeolite L and zeolite Y[P]. US5106485,1992.
    [130] Vaughan, David E W, Strohmeier. Process for Preparing LTL nano-crystallinezeolite compositions [P]. US:5318766,1994.
    [131]斯科特J [美].郁祖庚等译.沸石制备技术及其在石油化工中的应用[M].北京:烃加工出扳社,1986,325-327.
    [132] Olivier Larlus. Crystal morphology control of LTL-type zeolite crystals [J].Chem Mater,2004,16(17):3381-3389.
    [133] Shane Carr. Synthesis of high aspect ratio low-silica zeolite L rods inoil/water/surfactant mixtures [J]. Chem Mater,2005,17(24):6192-6197.
    [134] Takayuki Ban. Synthesis of zeolite L crystals with different shapes [J]. PorousMater,2007,14(2):119-126.
    [135] Dent Glasser L S, Harvey G. Kinetics and mechanism of crystal growth ofzeolite omega [J]. Zeolites,1984,398:493-505.
    [136]王保国,张妍,张金利等.模板剂在介孔分子筛合成中的作用机理[J].化学工业与工程,2005,22(2):115-119.
    [137] Kumar R, Mukherjee P, Pandey R, etal. Role of oxyanions as promoter forenhancing nucleation and crystallization in the synthesis of MFI-type [J]. Micro.Meso. Mater.,1998,22(l-3):23-31.
    [138] Flanigen E M, Patton R L. Silica polymorph and process for preparing same [P].US:4073865,1978.
    [139] Guth J L, Kessler H, Wey R. New route to pentasil-type zeolite using a nonalkaline medium in the presence of fluoride Ions[M]. New York: Elsevier sciencepublisher,1986,121-128.
    [140]朱水平,金庆华,李宝会等.添加剂在分子筛合成过程中的作用机理[J].无机化学学报,1999,15(3),331-335.
    [141] Kirl D S, Gordon J, Kennedy. Toward the rational design of zeolite synthesis:The synthesis of zeolite ZSM-18[J]. Zeolites,1994,14(8):635-642.
    [142] Sehlenker J L, Higgins J B, Valyocsik E W. Synthesis and characterization ofTS-48, a titanium containing silica analog of ZSM-48[J]. Chem. Mater. Sci.,1990,23(1-2):175-187.
    [143] Kresge C T, Leomowica M E, Roth W J, etal. Ordered mesoporous molecularsieves synthesized by a liquid-crystal template mechamism [J]. Nature,1992,359(243):710-712
    [144] Garb H. Molecular organization of surfactants at solid-liquid interfaces [J]. Sci,1995,270(5241):1480-1482.
    [145] Mon Mter A, Schuth F, Huo Q, etal. Cooperative formation ofinorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science,1993,261(5126):1299-1303.
    [146] Firouze A, Ateef, Oertlt A G, etal. Alkaline lyotropic silicate-surfactant liquidcrystals [J]. J Am Chem Soc,1997,119(15):3596-3610.
    [147] Miao Z, Liu Z, Han B, etal. Synthesis of TiO2nanotube networks from themineralization of swim bladder membrane in supercritical CO2[J]. J Supercrit Fluid,2007,42(2):310-315.
    [148] Dixon D J, Johnston K P, Bodmeier R A. Polymeric Materials Formed byPrecipitation with a Compressed Fluid Anti-solvent[J]. AIChE Journal,1993,39:127~139.
    [149] Chattopadhyay P, Gupta R B. Supercritical CO2-based formation of silicananoparticles using water-in-oil microemulsions[J]. Ind. Eng.Chem. Res,2003,42:465~472.
    [150]王宝和,于才渊,王喜忠.纳米多孔材料的超临界干燥新技术[J].化学工程,2005,33(2):13~17.
    [151] Jung Jennifer, Perrut M. Particle design using supercritical fluids: Literature andpatent survey[J]. Journal of Supercritical Fluids,2001,20:179~219.
    [152]Zhang J, Liu Z, Han B, Jiang T, Wu W, Chen J, Li Z. Preparation ofPolystyrene-Encapsulated Silver Nanorods and Nanofibers by Combination ofReverse Micelles,Gas Antisolvent,and Ultrasound Techniques[J]. J. Phys. Chem. B,2004,108:2200~2204.
    [153] Gupta G, Shah P S, Zhang X, Saunders A E, Korgel B A, Johnston K P.Enhanced Infusion of Gold Nanocrystals into Mesoporous Silica with SupercriticalCarbon Dioxide[J]. Chem. Mater.,2005,17:6728~6738.
    [154] Lim K T, Subban G H, Hwang H S, Kim J T, Ju C S, Johnston K P. NovelSemiconducting Polymer Particles by Supercritical Fluid Process[J]. MacromolecularRapid Communications,2005,26:1779~1783.
    [155] Savage P E, Gopalan S, Mizan T I, Martino C J, Brock E E. Reactions atsupercritical conditions: applications and fundamentals [J]. AIChE J,1995,41:1723.
    [156] Klabunde K J, Sark J, Koper O, etal. Nanocrystals as Stoichiometric Reagentswith Unique Surface Chemistry[J]. J. Phys. Chem,1996,100:12142.
    [157] O’Neil A S, Mokaya R, Poliakoff M. Supercritical fluid-mediated aluminationof mesoporous silica and its beneficial effect on hydrothermal stability[J]. J. Am.Chem. Soc,2002,124:10636.
    [158] Zemanian T S, Fryxell G E, Liu J, Mattigod S, Franz J A, Nie Z. Deposition ofSelf-Assembled Monolayers in Mesoporous Silica from Supercritical Fluids [J].Langmuir,2001,17:8172.
    [159] Darr J A, Poliakoff M. New Directions in Inorganic and Metal-OrganicCoordination Chemistry in Supercritical Fluids[J]. Chem. Rev,1999,99:495.
    [160] Hanrahan J P, Copley M P, Ryan K M, etal. Pore Expansion in MesoporousSilicas Using Supercritical Carbon Dioxide[J]. Chem. Mater,2004,16:424.
    [161] Pai P A, Humayun R, Schulberg M T,etal. Mesoporous Silicates Prepared UsingPreorganized Templates in Supercritical Fluids[J]. Science,2004,303:507.
    [162] Bag S, Trikalitis P N, Chupas P J, etal. Porous Semiconducting Gels andAerogels from Chalcogenide Clusters[J]. Science,2007,317:490.
    [163] Wang J, Xia Y, Wang W, Poliakoff M, Mokaya R. Synthesis of mesoporoussilica hollow spheres in supercritical CO2/water systems[J]. J. Mater. Chem,2006,16:1751.
    [164] Yuan Z Y, Ren T Z, Su B-L. CO2-induced micro-construction of hierarchicalstrings of mesoporous silica spheroids[J]. Chem. Phys. Lett,2004,383:348.
    [165] Sun J M, Wang C L, Xiao F S. Synthesis of MFI zeolites with improvedcrystallization rate and mesoporosity in the presence of CO2-in-water emulsions [J].Catalysis Today,2010,158:273.
    [166] Li S M, Xu Q, Chen J F, Guo Y Q. Study and Characterization ofAl-MCM-41Prepared with the Assistance of Supercritical CO2[J]. Ind. Eng. Chem.Res.,2008,47:21,8211–8217.
    [167] Fan W B, Wu P, Namba S, Tatsumi T. A titanosilicate that is structurallyanalogous to an MWW-type lamellar precursor[J]. Angew. Chem. Int. Ed,2004,43:236.
    [168] Padovan M, Leofanti G, Roffla P. European Patent Appl[P].1989,0311983.
    [169] Serrano D P, Uguina M A, Ovejero G, Van Grieken R, Camacho M. Synthesisof TS-1by wetness impregnation of amorphous SiO2-TiO2solids prepared by thesol-gel method[J]. Microporous Materials,1995,4:273.
    [170] Zhang X, Ding Y, Peng Z. CN Patent,2001,1327947.
    [171] Colborn T. Our Stolen Future[M]. New York:Dullon (Penguin Group),1997.
    [172] Dirk D E, Thomas B. Chem. Commun.,1996,8:917.
    [173] Ahmad M A, James H E. Epoxidation of Styrenes by Hydrogen Peroxide AsCatalyzed by Methylrhenium Trioxide[J]. J. Am. Chem. Soc.,1995,117:9243.
    [174] Zhang S-D, Xu C-H, Feng L-R, Qiu F-L. Acta Chim. Sinica2004,62:381(inChinese).(张术栋,徐成华,冯良荣,邱发礼.化学学报,2004,62:381.)
    [175] Xu C H, Jin T H, Jhung S H, etal. Incorporation of titanium into H-ZSM-5zeolite via chemical vapor deposition: Effect of steam treatment[J]. Bull. KoreanChem. Soc.2004,25:681.
    [176] Xu, C H, Lu S J, Deng G Y, Qiu F L. The effect of Al3+, Na+, and NH4+on Ticontent in the preparation of Ti-ZSM-5[J]. Chin. Chem.Lett.,1999,10,713-716.
    [177] Reddy J S, Khire U R, Ratnasamy P, Mitra R B. Cleavage of the carbon-carbondouble bond over zeolites using hydrogen peroxide[J]. J.Chem. Soc., Chem.Commun.,1992,17:1234.
    [178] Hulea V, Dumitriu E. Styrene oxidation with H2O2over Ti-containingmolecular sieves with MFI, BEA and MCM-41topologies[J]. Appl. Catal. A: Gen.,2004,277:99.
    [179] Kumar S B, Mirajkar S P, Pais G C G, etal. Epoxidation of styrene over atitanium silicate molecular sieve TS-1using dilute H2O2as oxidizing agent[J]. J.Catal.,1995,156:163.
    [180] Kumar R, Bhaumik A, Ahedi R K, Ganapathy S. Promoter-inducedenhancement of the crystallization rate of zeolites and related molecular sieves[J].Nature,1996,381:298.
    [181] Du Y C, Lan X J, Liu S, Ji Y Y, etal. The search of promoters for silicacondensation and rational synthesis of hydrothermally stable and well orderedmesoporous silica materials with high degree of silica condensation at conventionaltemperature[J]. Microporous and Mesoporous Materials,2008,112:225.
    [182] Liu H W, Yates M Z. Dual Function Surfactants for Carbon Dioxide BasedMicroencapsulation[J]. Langmuir,2003,19:1106.
    [183] Taramasso M, Perego G, Notari B. United States Patent,1983, US4410501.
    [184] Uguina M A, Serrano D P, Ovejero G, Grieken R, Camacho M. Preparation ofTS-1by wetness impregnation of amorphous SiO2-TiO2solids: influence of thesynthesis variables [J]. Appl. Catal. A: Gen.,1995,124:391.
    [185] Geobaldo F, Bordiga S, Zecchina A, Gianello E, Leofanti G, Petrini G. DRSUV-visible and EPR spectroscopy of hydroperoxo and superoxo complexes intitanium silicalite[J]. Catal. Lett,1992,16:109.javascript:;[186] Liu H, Lu G. Guo Y, Guo Y, Wang J. Chemical Engineering andProcessing,2005,108:187.
    [187] Limtrakul J, Inntam C, Truong T N. Density funcTional theory study of theethylene epoxidaTion over Ti-subsTituted silicalite (TS-1)[J]. J Mol Catal A-Chem,2004,207(2):139-148.
    [188] Carati A, Flego C, Massara E P, etal. Stability of Ti in MFI and Beta structures:a comparative study[J]. Microporous and Mesoporous Materials,1999,30:137.
    [189] Notari B. Synthesis and CatalyTic ProperTies of Titanium ContainingZeolites[J]. Stud Surf Sci Catal,1988,37(InnovaTion Zeolite Mater Sci):413-425.
    [190] Huybrechts D R C, Buskens P L, Jacobs P A. Physicochemical and catalyticproperties of titanium silicalites[J]. J. Mol. Catal.,1992,71:129.
    [191](a) Kuperman A, Nadimi S, Oliver S, Ozin G A, Garces J M, Olken M M.Non-aqueous synthesis of giant crystals of zeolites and molecular sieves[J]. Nature,1993,365:239-242.(b) Feng S, Bein T. VerTical aluminophosphate molecular sievecrystals grown at inorganic-organic interfaces[J]. Science,1994,265(5180):1839-1841.(c) Lai Z, Bonilla G, Diaz I, Nery J G, SujaoTi K, Amat M A, Kokkoli E,Terasaki O, Thompson R W, Tsapatsis M, Vlachos D G. MicrostructuralopTimizaTion of a zeolite membrane for organic vapor separaTion[J]. Science,2003,300(5618):456-460.
    [192](a) Drews T O, Tsapatsis M. Progress in manipulating zeolite morphology andrelated applications[J]. Curr. Opin. Colloid Interface Sci.,2005,10:233.(b) SnyderM A, Tsapatsis M. Hierarchical nanomanufacturing: from shaped zeolitenanoparticles to high-performance separation membranes[J]. Angew. Chem. Int. Ed.,2007,46:7560.
    [193] Lee T P, Saad B, Ng E P, Salleh B J. Zeolite Linde Type L as micro-solid phaseextracTion sorbent for the high performance liquid chromatography determinaTion ofochratoxin A in coffee and cereal[J]. Chromatogr A,2012,1237:46-54.
    [194] Lupulescu A I, Kumar M, and Rimer J D. A facile strategy to design Zeolite Lcrystals with tunable morphology and surface architecture[J]. J Am Chem Soc,2013,135:66086617.
    [195] Fan W B, Duan R G, Yokoi T, Wu P, Kubota Y, Tatsumi T. Synthesis,CrystallizaTion Mechanism, and CatalyTic ProperTies of Titanium-Rich TS-1Free ofExtraframework Titanium Species[J]. J Am Chem Soc,2008,130(31):10150-10164.
    [196] Prasad M R, Kamalakar G, Kulkarni S J, Raghavan K V, Rao K N, Prasad P S S,Madhavendra S S. An improved process for the synthesis of Titanium-rich Titaniumsilicates (TS-1) under microwave irradiaTion[J]. Catal commun,2002,3(9):399-404.
    [197] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing usingionic liquids and CO2[J]. Nature,1999,399:28.
    [198] Jessop P G, Leitner W. Chemical Synthesis using Supercritical Fluids[M],Wiley–VCH, Weinheim,1999.
    [199] Shen D, Zhang R, Han B X, Dong Y, Wu W, Zhang J L, Liu J C, Jiang T, Liu ZM. Enhancement of the solubilization capacity of water in TritonX-100/cyclohexane/water system by compressed gases[J]. Chem. Eur. J.,2004,10:5123.
    [200] Zhang J L, Han B X, Zhang C X, Li W, Feng X Y. Angew. Chem.,2008,120:3054.
    [201] Zhang J L, Han B X, Zhang C X, Li W, Feng X Y. Nanoemulsions induced bycompressed gases[J]. Angew. Chem. Int. Ed.,2008,47:3012.
    [202] Beckman E B. Carbon Dioxide Extraction of Biomolecules[J]. Science,1996,271:613.
    [203] Geoffrey D B, Barbara L K, Herbert J S, Sue E N. Liposome Fluidization andMelting Point Depression by Pressurized CO2Determined by FluorescenceAnisotropy[J]. Langmuir,2005,21:530.
    [204] Jessop P G, Subramaniam B. Gas-Expanded Liquids[J]. Chem. Rev.,2007,107:2666.
    [205] Ruckenstein E. Concentrated emulsion polymerization[J]. Adv. Polym. Sci.,1997,127:1.
    [206] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating [J].Nature,1997,389:948. Imhof A, Pine D J. Preparation of titania foams[J]. Adv.Mater.,1999,11:311.
    [207] Tai H, Sergienko A, Silverstein M S. Organic-inorganic networks in foams fromhigh internal phase emulsion polymerizations[J]. Polymer,2001,42:4473.
    [208] Darr J A, Poliakoff M. New Directions in Inorganic and Metal-OrganicCoordination Chemistry in Supercritical Fluids[J]. Chem. Rev.,1999,99:495.
    [209] Ke X B, Xu L, Zeng C F, Zhang L X, Xu N P. Synthesis of mesoporous TS-1by hydrothermal and steam-assisted dry gel conversion techniques with the aid oftriethanolamine[J]. Micropor. Mesopor. Mater.,2007,106:68.
    [210] Grieneisen J L, Kessler H, Fach E, Le Govic A M. Synthesis of TS-1in fluoridemedium. A new way to a cheap and efficient catalyst for phenol hydroxylation[J].Micropor. Mesopor. Mater.,2000,37:379.
    [211] van der Pol A J H P, van Hooff J H C. Parameters affecting the synthesis oftitanium silicalite1[J]. Appl. Catal. A: General.,1992,92:93.
    [212] Fegan S G, Lowe B M. Effect of alkalinity on the crystallisaTion of silicalite-1precursors[J]. J Chem Soc, Faraday Trans.1,1986,82(3):785-799.
    [213] Fan W B, Li R F, Ma J H, Fan B B, Dou T, Cao J H. CrystallizaTionmechanism study on ZSM-48in the system Na2O-Al2O3-SiO2-H2N(CH2)6NH2[J].Microporous Mater,1997,8(3,4):131-140.
    [214] Dokter W H, Garderen H F V, Beelen T P M, Santen R A V, Bras W.Homogeneous versus heterogeneous zeolite nucleation[J]. Angew Chem Int Ed Engl.1995,34(1):73-75.
    [215] Taramasso M, Perego G, Notari B. Porous crystalline synthetic materialconsisting of silicon and titanium oxides: US,4410501[P].1981-06-22.
    [216] Uguina M A, Serrano D P, Ovejero G, Van G R, Camacho M. PreparaTion ofTS-1by wetness impregnaTion of amorphous SiO2-TiO2solids: influence of thesynthesis variables[J]. Appl Catal A-Gen,1995,124(2):391-408.
    [217] Cundy C S, Forrest J O, Plaisted R J. Some observations on the preparation andproperties of colloidal silicalites. Part I: synthesis of colloidal silicalite-1andTitanosilicalite-1(TS-1)[J]. Micpopor Mesopor Mat,2003,66(2-3):143-156.
    [218] Geobaldo F, Bordiga S, Zecchina A, Gianello E, LeofanTi G, Petrini G. DRSUV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in Titaniumsilicalite[J]. Catal Lett,1992,16(1-2):109-115.
    [219] Tuel A, Ben T Y. Comparison between TS-1and TS-2in the hydroxylation ofphenol with hydrogen peroxide[J]. Appl. Catal. A: General,1993,102:69.
    [220] Davis R J. Aromatization on zeolite L-supported Pt clusters[J]. HeterogeneousChem. Rev,1994,1:41.
    [221] Trakarnroek S, Jongpatiwut S, Rirksomboon T, Osuwan S, Resasco D E.n-Octane aromatization over Pt/KL of varying morphology and channel lengths[J].Appl. Catal. a-Gen.,2006,313:189.
    [222] Jentoft R E, Tsapatsis M, Davis M E, Gates B C. Platinum clusters supported inzeolite LTL: Influence of catalyst morphology on performance in n-hexanereforming[J]. J. Catal.,1998,179:565.
    [223] Miller J T, Agrawal N G B, Lane G S, Modica F S J. Effect of pore geometry onring closure selectivities in platinum L-zeolite dehydrocyclization catalysts[J]. Catal.1996,163:106.
    [224] Barrer R M, Galabova I M. Ion-exchanged forms of zeolite L, erionite, andoffretite and sorption of inert gases[J]. Adv. Chem. Ser.,1973,121(Mol. Sieves, Int.Conf.,3rd):356.
    [225] Lee T P, Saad B, Ng E P, Salleh B. Zeolite Linde Type L as micro-solid phaseextraction sorbent for the high performance liquid chromatography determination ofochratoxin A in coffee and cereal[J]. J. Chromatogr. A,2012,1237:46.
    [226] Koeppe R, Bossart O, Calzaferri G, Sariciftci N S. Advanced photon-harvestingconcepts for low-energy gap organic solar cells[J]. Sol. Energy Mater. Sol. C,2007,91:986.
    [227] Calzaferri G, Meallet-Renault R, Bruhwiler D, etal. DesigningDye-Nanochannel Antenna Hybrid Materials for Light Harvesting, Transport andTrapping[J]. Chemphyschem,2011,12:580.
    [228] Calzaferri G, Huber S, Maas H, Minkowski C. Host-guest antenna materials[J].Angew. Chem., Int. Ed.,2003,42:3732.
    [229] Jentoft R E, Tsapatsis M, Davis M E, Gates B C. J. Catal.1998,179:565.
    [230] Lovallo M C, Tsapatsis M. in: W.R. Moser (Ed.), Advanced Catalysts andNanostructured Materials: Modern Synthetic Methods[M], Academic Press,1996, p.307, Chapter13.
    [231] Tsapatsis M, Lovallo M, Okubo T, Davis M E, Sadakata M. Characterization ofZeolite L Nanoclusters[J]. Chem. Mater.,1995,7:1734.
    [232] Meng X P, Zhang Y, Meng C G, Pang W Q. in: R. von Ballmoos, J.B. Higgins,M.M.J. Treacy (Eds.), Proceedings of the9th International Zeolite Conference,Montreal[C],1992, p.297.
    [233] Ko Y S, Ahn W S. Bull. Korean Chem. Soc.,1999,20:1.
    [234] Ko Y S, Chang S H, Ahn W S, in: H. Chon, S.-K. Ihm, Y.S. Uh (Eds.), Progressin Zeolite and Microporous Materials, Studies in Surface Science and Catalysis[M],Elsevier, Amsterdam,2001,135:189.
    [235] Latham K, Round C I, Williams C D. Synthesis, further characterization andcatalytic activity of iron-substituted LTL zeolite, prepared by using tetrahedraloxo-anion species[J]. Micropor. Mesopor. Mater.,2000,38:333.
    [236] Grau J M, Daza L, Seoane X L, Arcoya A. Effect of Ba and rare earths cationson the properties and dehydrocyclization activity of Pt/K-LTL catalysts[J]. Catal. Lett.,1998,53:161.
    [237] Lovallo M C, Tsapatsis M. Preparation of an Asymmetric Zeolite L Film[J].Chem. Mater.,1996,8:1579.
    [238] Calzaferri G, Huber S, Maas H, Minkowski C. Host-guest antenna materials[J].Angew. Chem. Int. Ed.,2003,42:3732.
    [239] Megelski S, Lieb A, Pauchard M, Drechsler A, Glaus S, Debus C, Meixner A J,Calzaferri G. Orientation of fluorescent dyes in the nano channels of zeolite L[J]. J.Phys. Chem. B,2001,105:25.
    [240] Gfeller N, Megelski S, Calzaferri G. Fast Energy Migration in Pyronine-LoadedZeolite L Microcrystals[J]. J. Phys. Chem. B,1999,103:1250.
    [241] Megelski S, Calzaferri G. Tuning the size and shape of zeolite L-basedinorganic-organic host-guest composites for optical antenna systems[J]. Adv. Funct.Mater.,2001,11:277.
    [242] Jentoft R E, Tsapatsis M, Davis M E, Gates B C. J. Catal.,1998,179:565.
    [243] Trakarnroek S, Jongpatiwut S, Rirksomboon T, Osuwan S, Resasco D E. Appl.Catal. a-Gen.,2006,313:189.
    [244]程志林,晁自胜,林海强,等.碱金属盐对ZSM-5分子筛晶化的影响[J].无机化学学报,2003,19(4):396-400.
    [245] Ruiz A Z, Brühwiler D, Ban T, etal. Synthesis of zeolite L. Tuning size andmorphology [J]. Monatsheftefür Chemie,2005,136(1):77-89.
    [246] LeeY J, Lee J S, Yoon K B. Synthesis of long zeolite-L crystals with flatfacets[J]. Microporous and Mesoporous Materials,2005,80(1/3):237-246.
    [247] Larlus O, Valtchev V P. Crystal morphology control of LTL-type zeolitecrystals[J]. Chemistry of Materials,2004,16(17):3381-3389.
    [248] Aiello R, Crea F, Nastro A, Pellegrino C. Zeolite crystallization fromhigh-silica mono-or bicationic alkali (lithium, sodium or potassium) gels in presenceand in absence of TPA ions[J]. Zeolites,1987,7:549.
    [249] Gabelica Z, Blom N, Derouane E G. Synthesis and characterization of ZSM-5type zeolites. III. A critical evaluation of the role of alkali and ammonium cations[J].Appl. Catal.,1983,5:227.
    [250] Fan W, Li R, Fan B, etal. Effects of introduction of different alkali metal halideson crystallization and characteristics of ZSM-48in a solid reaction mixture system.Effects of alkali metal chlorides[J]. Appl. Catal. A,1996,143:299.
    [251] Fan W, Li R, Ma J, etal. Synthesis, characterization and catalytic properties ofMFI-type zeolites prepared in the systemNa2O-SiO2-Al2O3-H2N(CH2)6NH2-NH4F[J]. Microporous Mater.,1995,4:301.
    [252] Guth J L, Kessler H, Caullet J, etal. in: Proceedings of9th International ZeoliteConference[C], Butterworth, Boston, MA,1993,1:215.
    [253] Barrett P A, Camblor M A, Corma A, etal. Synthesis and Structure ofAs-Prepared ITQ-4, A Large Pore Pure Silica Zeolite: The Role and Location ofFluoride Anions and Organic Cations[J]. J. Phys. Chem. B,1998,102:4147.
    [254] Fan W B, Fan B B, Shen X H, etal. Effect of ammonium salts on the synthesisand catalytic properties of TS-1[J]. Micropor. Mesopor. Mater.,2009,122:301.
    [255] Fan W, Li R, Ma J, etal. Ran liao Hua xue Xue bao (J. Fuel. Chem.Technol.),1997,25:477.
    [256] Kumar R, Bhaumik A, Ahedi R K, Ganapathy S. Promoter-inducedenhancement of the crystallization rate of zeolites and related molecular sieves[J].Nature,1996,381:298.
    [257] Fan W, Duan R, Yokoi T, etal. J. Am. Chem. Soc.,2008,130:10150.
    [258]李守贵,李锡凯,徐如人. L沸石导向剂陈化机制的研究[J].高等学校化学学报,1992,13:145.
    [259] Tago T, Nishi M, Kouno Y, Masuda T. New method for preparingmonodispersed nanocrystalline silicalite via hydrothermal synthesis inwater/surfactant/oil solution[J]. Chem. Lett.,2004,33:1040-1041.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700