HIV-1中枢神经系统致病性和调节性T细胞的神经保护作用的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HIV相关的神经认知障碍(HIV-1 Associated Neurocognitive Disorders, HAND)是HIV病的中枢神经系统(Central Nervous System, CNS)常见并发症,然而其发病机理还不清楚。为此,本文进行了以下的研究:1)HIV-1中枢神经系统致病性机理研究;2)调节性T细胞的神经保护作用的机理研究。第一部分旨在为HAND的治疗药物研发奠定基础;第二部分旨在为HAND的以免疫细胞为基础的干预提供科学依据。
     众所周知,HIV-1需要靶细胞表面的受体(CD4)和共受体(CCR5和CXCR4)的介导才能入胞,因此在CNS只有小胶质细胞(Microglia)和血管旁巨噬细胞(Perivascular Macrophage)才能被HIV-1感染。已有的研究表明,在HAND的发生发展中,小胶质细胞的过度活化和由此而引发的神经炎症起着重要的作用。要在体外进行HIV-1致病性机理的研究,小胶质细胞的分离、纯化和培养是本研究的前提条件(第一部分—第一章)。HIV-1糖蛋白gp120(gp120)是HIV-1病毒膜蛋白,HIV-1通过gp120与宿主细胞表面的CD4分子结合而进入细胞内,推测gp120参与了HAND的发生发展;为此,论文第一部分的第二章呈现了gp120刺激人的小胶质细胞钙离子内流的结果。从gp120能够诱发细胞外钙离子进入小胶质细胞细胞的事实推断小胶质细胞的活化与此有关,这一推断进一步为gp120可使小胶质细胞ERK发生磷酸化和NF-kB发生核转位的结果所证实。另外,HIV-1颗粒被看作是一个超分子,它的表面蛋白包括自身基因组编码的蛋白(gp120)和出胞时所携带的宿主蛋白,因此,第一部分的第三章呈现了灭活HIV-1颗粒刺激人的小胶质细胞钙离子内流的结果。结果表明,灭活HIV-1颗粒所引发的钙内流效应明显强于gp120,推论HIV-1颗粒表面的宿主蛋白在此起了一定的生物学作用。由此可见,能够阻断gp120和HIV-1颗粒相关的钙离子内流的药物有望遏制HAND的发生发展。
     已有的体内研究发现:向HIVE小鼠模型过继输入CD3活化的调节性T细胞(Regulatory T Cell, Treg)能够产生神经保护,但是其保护机制的细节尚不清楚。本论文的第二部分是在此基础上,通过分析体外共培养HIV-1/VSV感染的巨噬细胞和Treg,探讨Treg对感染的巨噬细胞的功能调节,旨在阐明Treg的神经保护作用的机理。第二部分的三个章节分别呈现了相关研究的结果。我们发现:1)Treg可以上调HIV-1/VSV感染的巨噬细胞的抗病毒免疫应答;2)Treg可以杀伤HIV-1/VSV感染的巨噬细胞;3)Treg可以诱导HIV-1/VSV感染的巨噬细胞发生Apoptosis,而不是Pyroptosis; 4)活化的Treg能够表达颗粒酶A,颗粒酶B和穿孔素;5)Treg可以通过granzyme/perforin杀伤HIV-1/VSV感染的巨噬细胞;6)Treg可以通过cAMP途径诱导HIV-1/VSV感染的巨噬细胞功能转化(M1-M2)。由此,Treg可以通过以上机制影响HIV-1/VSV感染的巨噬细胞的功能,从而化解感染的巨噬细胞引发的神经炎症。这些发现推翻了认为Treg功能仅局限于其免疫抑制的教条,并为探讨适应性免疫监控如何改善HAND提供了新的思路。
The pathogenesis of HIV-1-associated neurocognitive disorders (HAND), the most common complication of HIV disease in CNS, is still unclear. Therefore, this study was designed to explore the underlying mechanisms. The Part One of this thesis is devoted to the contributions of inactivated HIV-1 particle to microglial activation, which aims to providing scientific basis for therapeutic drug discovery. The Part Two of this thesis is focus on the mechanisms of Treg induced neuroprotection, which sets stage for immune intervention of HAND.
     As we known, the entry of HIV-1 to target cells is mediated by its receptor (CD4) and co-receptors (CCR5 and CXCR4). Therefore, in the CNS, only microglia and perivascular macrophage express those molecules and are infected by HIV-1. Previous studies demonstrated that the neuroinflammation triggered by activated microglia/macrophage plays a key role in the initiation and development of HAND. In order to decipher the effects of HIV-1 particle on microglia, it is very important to obtain highly purified human microglia, which is described in the First Chapter of Part One. HIV-1 glycoprotein, gp120, amongst the most studied viral proteins in the pathogenesis of HIV disease, is shown to mediate the virus entry and involve in neuroinflammation. In the Second Chapter of Part One, we found that gp120 could activate microglia via triggering calcium influx, inducing ERK phosphorylation and stimulating NF-кB translocation in human microglia. Moreover, HIV-1 particle is considered as a supermolecule, because its surface incorporates both virus and host derived proteins. The comparison study showed that inactivated HIV-1 particles trigger much stronger calcium influx than gp120, so the host derived proteins must play an important role in microglial activation. Taken together, the drugs, which could block the microglial calcium influx triggered by either gp120 or HIV-1 particles, may incite neuroprotection.
     Recent research has demonstrated a neuroprotective role for Treg in a mouse model of HIVE. However, the mechanism is only partially understood, which are believed to resolve neuroinflammation elicited by HIV-1 infected microglia/macrophage. In Part Two of this thesis, we cocultured HIV-1/VSV infected macrophage with Treg to find how Treg modulate macrophage function. We demonstrated that Treg promote neuroprotection by inhibiting virion release, killing infected macrophages and inducing phenotypic switch. Surprisingly, Treg inhibits progeny virion release through upregulating ISG15, an ubiquitin-like protein involving in interferon-mediated antiviral immunity. Importantly, Treg kills infected macrophages through both caspase-3 and granzyme/perforin pathways. Independently, Treg transforms infected macrophages from M1 to M2 phenotype as demonstrated by downregulated inducible nitric oxide synthase and unregulated arginase 1 expression. Taken together, Treg affacts infected macrophage function and achieves neuroinflammation resolution during the course of HIV disease. These findings challenge the dogma of a solitary Treg immune suppressor function and provide novel insights into how adaptive immunosurviellance limits the severity of HAND.
引文
[1]WHO, TOWARDS UNIVERSAL ACCESS Scaling up priority HIV/AIDS interventions in the health sector 2009.
    [2]Stevenson M. HIV-1 pathogenesis [J]. Nat Med,2003,9(7):853-60.
    [3]黄秀艳,曾耀英.艾滋病发病学研究进展与药物和疫苗研发新策略[J].中国病理生理杂志,2008,24(5):939-944.
    [4]Gonzalez-Scarano F, Li J, Martin-Garcia J. The neuropathogenesis of AIDS [J]. Nat Rev Immunol,2004,5(1):69-81.
    [5]Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair [J]. Nat Rev Neurosci,2007,8(1):33-44.
    [6]Buckner CM, Luers AJ, Calderon TM, Eugenin EA, Berman JW. Neuroimmunity and the blood-brain barrier:molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS [J]. J Neuroimmune Pharmacol,2006,1(2):160-81.
    [7]Hanisch UK, Kettenmann H. Microglia:active sensor and versatile effector cells in the normal and pathologic brain [J]. Nat Neurosci,2007,10(11):1387-1394.
    [8]Garden GA, Moller T. Microglia Biology in Health and Disease [J]. J Neuroimmune Pharmacol,2006,1(2):127-37.
    [9]Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity:uncovering the molecular mechanisms [J]. Nat Rev Neurosci,2007,8(1):57-69.
    [10]Zhang, R., Fichtenbaum, C. J., Hildeman, D. A., Lifson, J. D., Chougnet, C. CD40 ligand dysregulation in HIV infection:HIV glycoprotein 120 inhibits signaling cascades upstream of CD40 ligand transcription [J]. J Immunol,2004, 172(4):2678-2686.
    [11]Trubey CM, Chertova E, Coren LV, Hilburn JM, Hixson CV, Nagashima K, Lifson JD, Ott DE. Quantitation of HLA class Ⅱ protein incorporated into human immunodeficiency type 1 virions purified by anti-CD45 immunoaffinity depletion of microvesicles [J]. J Virol,2003,77(23):12699-12709.
    [12]Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, Brouwer D, Barbour S, Kovalev GI, Unutmaz D, Su L. FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2-/-gammaC-/- mice in vivo [J]. Blood,2008,112(7):2858-2868.
    [13]Liu J, Gong N, Huang X, Reynolds AD, Mosley RL, Gendelman HE. Neuromodulatory activities of CD4+CD25+ regulatory T cells in a murine model of HIV-1-associated neurodegeneration1[J]. J Immunol,2009,182(6): 3855-3865.
    [1]Hanisch UK, Kettenmann H. Microglia:active sensor and versatile effector cells in the normal and pathologic brain [J]. Nat Neurosci.2007,10(11):1387-1394.
    [2]Garden GA, Moller T. Microglia Biology in Health and Disease [J]. J NeuroImmu Pha,2006,1(2):127-37.
    [3]Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity:uncovering the molecular mechanisms [J]. Nat Rev Neurosci.2007,8(1):57-69.
    [4]Giulian D, Baker TJ. Characterization of ameboid microglia isolated from developing mammalian brain [J]. J Neurosci.1986,6(8):2163-78.
    [5]Giulian D, Li J, Bartel S, et al. Cell surface morphology identifies microglia as a distinct class of mononuclear phagocyte [J]. J Neurosci.1995,15(11):7712-26.
    [6]McCarthy KD, DeVellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue [J]. J Cell Biol.1980,85(3): 890-902.
    [7]Cardona AE, Huang D, Sasse ME, et al. Isolation of murine microglial cells for RNA analysis or flow cytometry [J]. Nat Protoc.2006,1(4):1947-51.
    [8]Haynes SE, Hollopeter G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides [J]. Nat Neurosci.2006,9(12): 1512-9.
    [9]Jack CS, Arbour N, Manusow J, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes [J]. J Immunol.2005,175(7): 4320-30.
    [1]Gonzalez-Scarano F, Li J, Martin-Garcia J. The neuropathogenesis of AIDS [J]. Nat Rev Immunol,2004,5(1):69-81.
    [2]Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair [J]. Nat Rev Neurosci,2007,8(1):33-44.
    [3]Buckner CM, Luers AJ, Calderon TM, Eugenin EA, Berman JW. Neuroimmunity and the blood-brain barrier:molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS [J]. J Neuroimmune Pharmacol,2006,1(2):160-81.
    [4]Anderson E, Zink W, Xiong H, Gendelman HE. HIV-1-associated dementia:a metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes [J]. J Acquir Immune Defic Syndr,2002,31(S2): S43-S54.
    [5]Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia [J]. Nature,2001,410(6831):988-994.
    [6]Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy [J]. Science,1986,233(4768):1089-1093.
    [7]黄秀艳,曾耀英,张彩,朱斌.人小胶质细胞的分离、纯化、培养与鉴定[J].中国病理生理杂志,2008,24(5):939-944.
    [8]Song X, Tanaka S, Cox D, Lee SC. Fcgamma receptor signaling in primary human microglia:differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction [J]. J Leukoc Biol,2004,75(6):1147-55.
    [9]Farber K, Kettenmann H. Physiology of microglial cells [J]. Brain Res. Rev, 2005,48(2):133-43.
    [10]Liu QH, Williams DA, McManus C, Baribaud F, Doms RW, Schols D, De Clercq E, Kotlikoff MI, Collman RG, Freedman BD. HIV-1 gp120 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation [J]. Proc Natl Acad Sci U S A,2000,97(9):4832-37.
    [11]Albright AV, Martin J, O'Connor M, Gonzalez-Scarano F. Interactions between HIV-1 gp120, chemokines, and cultured adult microglial cells [J]. J Neurovirol, 2001,7(3):196-207.
    [12]Melar M, Ott DE, Hope TJ. Physiological levels of virion-associated human immunodeficiency virus type 1 envelope induce coreceptor-dependent calcium flux [J]. J Virol,2007,81(4):1773-85.
    [13]Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macropahges (microglia):suppression of receptor-evoked calcium signaling and control of release function [J]. J Neurosci,2003,23(2):4410-19.
    [1]Gonzalez-Scarano F, Li J, Martin-Garcia J. The neuropathogenesis of AIDS [J]. Nat Rev Immunol,2004,5(1):69-81.
    [2]Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair [J]. Nat Rev Neurosci,2007,8(1):33-44.
    [3]Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS [J]. Nat Rev Immunol,2004,5(1):69-81.
    [4]Buckner CM, Luers AJ, Calderon TM, Eugenin EA, Berman JW. Neuroimmunity and the blood-brain barrier:molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS [J]. J Neuroimmune Pharmacol,2006,1(2):160-81.
    [5]Kaul M, Lipton SA. Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS [J]. J Neuroimmune Pharmacol,2006, 1(2):138-51.
    [6]Perkins ND. Integrating cell-signalling pathways with NF-kB and IKK function [J]. Nat Rev Mol Cell Biol,2007,8(1):49-62.
    [7]Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Accelerated Tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy [J]. Acta Neuropathol,2006,111(6):529-38.
    [8]黄秀艳,曾耀英,张彩,朱斌.人小胶质细胞的分离、纯化、培养与鉴定[J].中国病理生理杂志,2008,24(5):939-944.
    [9]Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW Jr, Vasquez GM, Wiltrout TA, Chertova E, Grimes MK, Sattentau Q, Arthur LO, Henderson LE, Lifson JD. Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins [J]. J Virol,1998,72(10):7992-8001.
    [10]Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo:virion clearance rate, infected cell life-span, and viral generation time [J]. Science,1996,271(5255):1582-1586.
    [11]Albright AV, Martin J, O'Connor M, Gonzalez-Scarano F. Interactions between HIV-1 gpl20, chemokines, and cultured adult microglial cells [J]. J Neurovirol, 2001,7(3):196-207.
    [12]Melar M, Ott DE, Hope TJ. Physiological levels of virion-associated human immunodeficiency virus type 1 envelope induce coreceptor-dependent calcium flux [J]. J Virol,2007,81(4):1773-85.
    [13]Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macropahges (microglia):suppression of receptor-evoked calcium signaling and control of release function [J]. J Neurosci,2003,23(2):4410-19.
    [14]Zhang R, Fichtenbaum CJ, Hildeman DA, Lifson JD, Chougnet C. CD40 ligand dysregulation in HIV infection:HIV glycoprotein 120 inhibits signaling cascades upstream of CD40 ligand transcription [J]. J Immunol,172(4):2678-2686.
    [15]Trubey CM, Chertova E, Coren LV, Hilburn JM, Hixson CV, Nagashima K, Lifson JD, Ott DE. Quantitation of HLA class II protein incorporated into human immunodeficiency type 1 virions purified by anti-CD45 immunoaffinity depletion of microvesicles [J]. J Virol,2003,77(23):12699-709.
    [1]Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+T cells [J]. Nat Immunol,2007,8(12):1353-62.
    [2]Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance [J]. Immunity,2007,27(4):635-46.
    [3]Boissonnas A, Scholer-Dahirel A, Simon-Blancal V, Pace L, Valet F, Kissenpfennig A, Sparwasser T, Malissen B, Fetler L, Amigorena S. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes [J]. Immunity,2010,32(2):266-78.
    [4]Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death [J]. Immunity,2004,21(4):589-601.
    [5]Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells [J]. Blood,2004,104(9):2840-8.
    [6]Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+T cell subsets [J]. J Immunol,182(7):4137-49.
    [7]Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis:mechanistic description of dead and dying eukaryotic cells [J]. Infect Immun,2005,73(4): 1907-16.
    [8]Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J. Granzyme A cleaves a mitochondrial complex Ⅰ protein to initiate caspase-independent cell death [J]. Cell,2008,133(4):681-92.
    [1]Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes [J]. Trends Immunol,2002,23(11):549-55.
    [2]Mantovani A, Sica A, Locati M. Macrophage polarization comes of age [J]. Immunity,2005,23(4):344-6.
    [3]Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections [J]. J Immunol,2008,181(6):3733-9.
    [4]Mantovani A, Locati M. Orchestration of macrophage polarization [J]. Blood, 2009,114(15):3135-6.
    [5]Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation [J]. Nat Rev Immunol,2008,8(12):958-69.
    [6]Pelegrin P, Surprenant A. Dynamics of macrophage polarization reveal new mechanism to inhibit IL-lbeta release through pyrophosphates [J]. EMBO J, 2009,28(14):2114-27.
    [7]Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression [J]. J Exp Med,2007,204(6):1303-10.
    [8]Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression [J]. J Exp Med,2007,204(6):1257-65.
    [9]Johann AM, Barra V, Kuhn AM, Weigert A, von Knethen A, Briine B. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production [J]. FASEB J,2007,21(11):2704-12.
    [10]Won JS, Lee JK, Suh HW. Forskolin inhibits expression of inducible nitric oxide synthase mRNA via inhibiting the mitogen activated protein kinase in C6 cells [J]. Brain Res Mol Brain Res,2001,89(1-2):1-10.
    [1]Stevenson M. HIV-1 pathogenesis [J]. Nat Med,2003,9(7):853-60.
    [2]Kornfeld C, Ploquin MJ, Pandrea I, Faye A, Onanga R, Apetrei C, Poaty-Mavoungou V, Rouquet P, Estaquier J, Mortara L, Desoutter JF, Butor C, Le Grand R, Roques P, Simon F, Barre-Sinoussi F, Diop OM, Miiller-Trutwin MC. Anti-inflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS [J]. J Clin Invest,2005, 115(4):1082-91.
    [3]Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, Allan JS. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease [J]. J Virol,2001,75(5):2262-75.
    [4]Rey-Cuille MA, Berthier JL, Bomsel-Demontoy MC, Chaduc Y, Montagnier L, Hovanessian AG, Chakrabarti LA. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease [J]. J Virol,1998,72(5): 3872-86.
    [5]Eggena MP, Barugahare B, Jones N, Okello M, Mutalya S, Kityo C, Mugyenyi P, Cao H. Depletion of regulatory T cells in HIV infection is associated with immune activation [J]. J Immunol,2005,174(7):4407-14.
    [6]Kinter AL, Hennessey M, Bell A, Kern S, Lin Y, Daucher M, Planta M, McGlaughlin M, Jackson R, Ziegler SF, Fauci AS. CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status [J]. J Exp Med,2004, 200(3):331-43.
    [7]Chase AJ, Yang HC, Zhang H, Blankson JN, Siliciano RF. Preservation of FoxP3+ regulatory T cells in the peripheral blood of human immunodeficiency virus type 1-infected elite suppressors correlates with low CD4+ T-cell activation [J]. J Virol,2008,82(17):8307-15.
    [8]Akkina SK, Zhang Y, Nelsestuen GL, Oetting WS, Ibrahlm HN. Temporal stability of the urinary proteome after kidney transplant:more sensitive than protein composition [J]? J Proteome Res,2009,8(1):94-103.
    [9]Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15 [J]. Proc Natl Acad Sci U S A,2006,103(5):1440-5.
    [10]Neil SJ, Sandrin V, Sundquist WI, Bieniasz PD. An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein [J]. Cell Host Microbe,2007,2(3): 193-203.
    [1]Mehandru S, Poles MA, Tenner-Racz K, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract [J]. J Exp Med,2004,200(6):761-70.
    [2]Veazey RS, Lackner AA. Getting to the guts of HIV pathogenesis [J]. J Exp Med, 2004,200(6):697-700.
    [3]Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system [J]. Mucosal immunology.2007,1(1):1-8.
    [4]Mehandru S, Poles MA, Tenner-Racz K, et al. Mechanisms of gastrointestinal CD4+ T-cell depletion during acute and early human immunodeficiency virus type 1 infection [J]. J Virol.2007,81(2):599-612.
    [5]Picker LJ, Hagen SI, Lum R, et al. Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection [J]. J Exp Med.2004,200(10):1299-314.
    [6]Guadalupe M, Reay E, Sankaran S, et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy [J]. J Virol.2003,77(21):11708-17.
    [7]Guadalupe M, Reay E, Sankaran S, et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active an tire tro viral therapy [J].J Virol.2003,77(21):11708-17.
    [8]Wang X, Rasmussen T, Pahar B, et al. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection [J]. Blood.2007,109(3):1174-81.
    [9]Brenchley JM, Price DA, Douek DC. HIV disease:fallout from a mucosal catastrophe [J]? Nat Immunol.2006,7(3):235-9.
    [10]Stevenson M. HIV-1 pathogenesis [J]. Nat Med,2003,9(7):853-60.
    [11]Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection [J]. Nat Med.2006, 12(12):1365-71.
    [12]Silvestri G, Paiardini M, Pandrea I, et al. Understanding the benign nature of SIV infection in natural hosts [J]. J Clin Invest.2007,117(11):3148-54.
    [13]Grossman Z, Meier-Schellersheim M, Paul WE, et al. Pathogenesis of HIV infection:what the virus spares is as important as what it destroys [J]. Nat Med. 2006,12(3):289-95.
    [14]Fumero E, Garcia F, Gatell JM. Immunosuppressive drugs as an adjuvant to HIV treatment [J]. J Antimicrob Chemother.2004,53(3):415-7.
    [15]Rizzardi GP, Harari A, Capiluppi B, et al. Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy [J]. J Clin Invest.2002,109(5):681-8.
    [16]McMichael AJ. HIV vaccines [J]. Annu Rev Immunol.2006,24:227-55.
    [17]Neutra MR, Kozlowski PA. Mucosal vaccines:the promise and the challenge [J]. Nat Rev Immunol.2006,6(2):148-58.
    [18]Heeney JL, Plotkin SA. Immunological correlates of protection from HIV infection and disease [J]. Nat Immunol.2006,7(12):1281-4.
    [19]Bourinbaiar AS, Root-Bernstein RS, Abulafia-Lapid R, et al. Therapeutic AIDS Vaccines [J]. Cur Pharmaceutical Design.2006,12(16):2017-30.
    [20]Bourinbaiar AS, Abulafia-Lapid R. Autoimmunity, alloimmunization, and immunotherapy of AIDS [J]. Autoimmune Rev.2005,4(6):403-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700