整体型色谱固定相在离子色谱中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,随着科技进步,离子色谱已经从简单的离子测定向着快速分离分析、新型高效色谱固定相开发以及仪器微型化等领域深入发展。整体型色谱固定相作为一种新型的分离介质,具有制备过程简单、易于改性、通透性能好、柱压低和独特的传质方式等优点,已经成为离子色谱发展中的热点。
     本文利用表面活性剂改性硅胶基质整体柱,得到具有离子交换功能的色谱固定相,研究了涂覆机理,考察了改性柱的稳定性,优化了色谱分离条件,结合整体柱良好的传质性能,应用于生物医药样品的快速分离和检测。
     以聚甲基丙烯酸缩水甘油酯整体柱为基质,通过原位聚合的方法,分别制备了常规型和毛细管型的色谱柱,利用三甲胺修饰改性成为具有阴离子交换功能的固定相,研究了聚合和改性条件对柱交换容量的影响,优化分离条件,应用于商品化离子色谱系统和自建的毛细管离子色谱系统中,分离检测常见无机阴离子;利用亚硫酸钠修饰改性带有环氧功能基的聚合物基质,制备具有阳离子交换功能基团的毛细管离子交换色谱柱,采用流速梯度淋洗方式应用于常见无机阳离子的分离检测,并在该色谱柱的基础上利用季铵型乳胶修饰改性制备成了乳胶涂覆型阴离子交换色谱柱,应用于常规阴离子的检测中。
     利用低流速泵、微量进样器以及自制的毛细管离子色谱柱,构建了毛细管离子色谱系统,并结合紫外检测器以及电导检测器,利用直接、间接紫外检测;接触式和非接触式电导检测技术对阴阳离子进行了检测,评价了不同检测器的性能,并应用于阴阳离子分离分析以及实际样品(水样、奶粉样品)的检测。
In recent years, ion chromatography (IC) has been further developed in some new research fields:fast & ultra-fast analysis; new stationary phases with higher efficiency and better selectivity; miniaturization of the whole system. For these progresses, the monolithic stationary phases have possessed key position with the special advantages like ease for preparation and modification, low flow resistance and attractive hydrodynamic characteristics, etc.
     Silica-based monolithic column coated with surfactant was used for pharmaceutical analysis in traditional IC. The process and mechanism of coating with good reproducibility and stability were studied. Due to the low pressure under a higher flow rate, the coated column can be applied for fast separation and determination of anions and ionized compounds in drug samples.
     Reactive continuous rods of macroporous poly (glycidyl methacrylate-co ethylene dimethacrylate) have been prepared by "in-situ" copolymerization of the monomers in the presence of porogens. Different sizes of anion-exchange monolithic columns (traditional ones 4.6 mm I.D. and capillaries 530 & 320μm I.D.) were obtained by the modification of the matrix with trimethylamine. With the optimized reaction conditions, these columns were used for separation of anions in commercial & capillary IC system; respectively. The GMA-based matrix also can be modified with sodium sulfite for cation-exchange column that can be used in capillary IC for the separation of cations by flow rate gradient elution. Based on the above techniques, quaternary ammonium functionalized latex was applied for the preparation of anion-exchange capillary monolithic column. With the optimized chromatographic conditions, the latex-coated column was used for separation of common anions.
     A novel capillary IC system was established composed with a LC pump (flow rate lower toμL/min), micro injector with a 500 nL injection volume, a prepared capillary monolithic column and different detectors. With a capillary UV detection cell, anions and cations were determined by direct or indirect UV detection, respectively. Two kinds of conductivity detectors-contact conductivity detector and the contactless one, were introduced into the system for determination of ions. It's compared and evaluated with different detection ways as well as the whole micro-IC system, which was successfully used for analysis of real samples such as water samples and milk powder samples.
引文
1.丁明玉,田松柏.离子色谱原理与应用.北京:清华大学出版社,2001.
    2. Small H, Stevens T S, Bauman W C. Novel Ion-exchange Chromatographic Method Using Conductimetric Detection. Anal. Chem.,1975,47(11):1801-1809.
    3. Gjerde D T, Fritz J S, Schmuckler G Anion Chromatography with Low-Conductivity Eluents. J. Chromatogr.,1979,186(DEC):509-519.
    4.牟世芬,刘克纳.离子色谱方法及应用.北京:化学工业出版社,2000.
    5.朱岩.离子色谱原理及其应用.杭州:浙江大学出版社,2002.
    6. Haddad P R, Jackson P E, Shaw M J. Developments in Suppressor Technology for Inorganic Ion Analysis by Ion Chromatography using Conductivity Detection. J. Chromatogr. A,2003,1000(1-2):725-742.
    7. Melanson J E, Wong B L Y, Boulet C A, Lucy C A, Nice, France 2000,359-365.
    8. Lucy C A. Ion Chromatography. New York:Elsevier,2004.
    9. Lucy C A. Evolution of Ion-exchange:from Moses to the Manhattan Project to Modern Times. J. Chromatogr. A,2003,1000(1-2):711-724.
    10. Paull B, Nesterenko P N. Novel Ion Chromatographic Stationary Phases for the Analysis of Complex Matrices. Analyst,2005,130(2):134-146.
    11. Tian K, Dasgupta P K, Anderson T A. Determination of Trace Perchlorate in High-Salinity Water Samples by Ion Chromatography with On-Line Preconcentration an Preelution. Anal. Chem.,2003,75(3):701-706.
    12. Pelletier S, Lucy C A. Fast and High-Resolution Ion Chromatography at High pH on Short Columns Packed with 1.8 μm Surfactant Coated Silica Reverse-Phase Particles. J. Chromatogr. A,2006,1125(2):189-194.
    13. Paull B, Nesterenko P N. New Possibilities in Ion Chromatography Using Porous Monolithic Stationary-Phase Media. TRAC-Trends Anal. Chem.,2005,24(4): 295-303.
    14. Schaeffer R, Francesconi K A, Kienzl N, Soeroes C, Fodor P, Varadi L, Raml R, Goessler W, Kuehnelt D. Arsenic Speciation in Freshwater Organisms from the River Danube in Hungary. Talanta,2006,69(4):856-865.
    15. Wendelken S C, Vanatta L E, Coleman D E, Munch D J, Montreal. Perchlorate in Water via US Environmental Protection Agency Method 331:Determination of Method Uncertainties, Lowest Concentration Minimum Reporting Levels, and Hubaux-Vos Detection Limits in Reagent Water and Simulated Drinking Water. J. Chromatogr. A,2006,1118(1):94-99.
    16. Murrihy J P, Breadmore M C, Tan A M, McEnery M, Alderman J, O'Mathuna C, O'Neill A P, O'Brien P, Advoldvic N, Haddad P R, Glennon J D. Ion Chromatography On-Chip. J. Chromatogr. A,2001,927(1-2):233-238.
    17. Kang Q H, Golubovic N C, Pinto N G, Henderson H T. An integrated micro ion-exchange separator and detector on a silicon wafer. Chem. Eng. Sci.,2001,56(11): 3409-3420.
    18. Dyke J V, Ito K, Obitsu T, Hisamatsu Y, Dasgupta P K, Blount B C. Perchlorate in Dairy Milk. Comparison of Japan versus the United States. Environ. Sci. Technol., 2007,41(1):88-92.
    19. Saccani G, Tanzi E, Cavalli S, Rohrer J. Determination of Nitrite, Nitrate, and Glucose-6-phosphate in Muscle Tissues and Cured Meat by IC/MS. J. AOAC Int., 2006,89(3):712-719.
    20. Ivey M M, Foster K L. Detection of Phosphorus Oxyanions in Synthetic Geothermal Water using Ion Chromatography-Mass Spectrometry Techniques. J. Chromatogr. A,2005,1098(1-2):95-103.
    21. McKinnon W, Lord G A, Forni L G, Peron J M R, Hilton P J. A Rapid LC-MS Method for Determination of Plasma Anion Profiles of Acidotic Patients. J. Chromatogr. B-Analytical Technologies in the Biomedical and Life Sciences,2006, 833(2):179-185.
    22. Mascolo G, Lopez A, Detomaso A, Lovecchio G. Ion Chromatography-Electrospray Mass Spectrometry for the Identification of Low-Molecular-Weight Organic Acids during the 2,4-Dichlorophenol Degradation. J. Chromatogr. A,2005,1067(1-2):191-196.
    23. Barron L, Paull B. Simultaneous Determination of Trace Oxyhalides and Haloacetic Acids using Suppressed Ion Chromatography-Electrospray Mass Spectrometry. Talanta,2006,69(3):621-630.
    24. Li J, Chen M L, Zhu Y. Separation and Determination of Carbohydrates in Drinks by Ion Chromatography with a Self-Regenerating Suppressor and an Evaporative Light-Scattering Detector. J. Chromatogr. A,2006,1155(1):50-56.
    25.申屠超,侯逸众,范云场,朱岩.双阳极电化学氢化物发生原子荧光光谱法测定砷.分析化学,2008,36(11):1592-1596.
    26. Shen-Tu C, Fan Y C, Hou Y Z, Wang K X, Zhu Y. Arsenic Species Analysis by Ion Chromatography-Bianode Electrochemical Hydride Generator-Atomic Fluorescence Spectrometry. J. Chromatogr. A,2008,1213(1):56-61.
    27. Svec F. Preparation and HPLC Applications of Rigid Macroporous Organic Polymer Monoliths. J. Sep. Sci.,2004,27(10-11):747-766.
    28. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N. Monolithic LC Columns. Anal. Chem.,2001,73(15):420A-429A.
    29. Hjerten S, Liao J L, Zhang R. High-Performance Liquid Chromatography on Continuous Polymer Beds. J. Chromatogr. A,1989,473:273-275.
    30. Svec F, Peters E C, Sykora D, Freche J M J. Design of the Monolithic Polymers used in Capillary Electrochromatography Columns. J. Chromatogr. A,2000,887(1-2): 3-29.
    31. Tanaka N. Monolithic Columns. J. High Resolut. Chromatogr.,2000,23(1):1-1.
    32. Siouffi A M. Silica Gel-Based Monoliths Prepared by the Sol-Gel Method:Facts and Figures. J. Chromatogr. A,2003,1000(1-2):801-818.
    33. Hilder E F, Svec F, Frechet J M. Development and application of polymeric monolithic stationary phases for capillary electrochromatography. J. Chromatogr. A, 2004,1044(1-2):3-22.
    34. Svec F. Preparation and HPLC Applications of Rigid Macroporous Organic Polymer Monoliths. J. Sep. Sci.,2004,27(10-11):747-766.
    35. Svec F, Tanaka N. Monolithic separation media:Where are they heading? J. Sep. Sci.,2004,27(10-11):745-745.
    36. Rieux L, Niederlander H, Verpoorte E, Bischoff R. Silica Monolithic Columns: Synthesis, Characterisation and Applications to the Analysis of Biological Molecules. J. Sep. Sci.,2005,28(14):1628-1641.
    37. Eeltink S, Svec F. Recent Advances in the Control of Morphology and Surface Chemistry of Porous Polymer-Based Monolithic Stationary Phases and Their Application in CEC. Electrophoresis,2007,28(1-2):137-147.
    38.平贵臣,袁湘林,张维冰,张玉奎.整体柱的制备方法及其应用.分析化学,2001,29(12):1464-1469.
    39.鲍笑岭,许旭.高效液相色谱整体柱技术的进展.分析化学,2005,33(11):1653-1658.
    40. Miyabe K, Guiochon G. Characterization of monolithic columns for HPLC. J. Sep. Sci.,2004,27(10-11):853-873.
    41. Yu Y H, Sun Y. Macroporous Poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) Matrix as an Anion-Exchange Resin for Protein Adsorption. J. Chromatogr. A,1999,855(1):129-136.
    42. Svec F, Tennikova T, Deyl Z E. Monolithic Materials:Preparation, Properties and Application. Amsterdam:Elsevier,2003.
    43. Motokawa M, Ohira M, Minakuchi H, Nakanishi K, Tanaka N. Performance of Octadecylsilylated Monolithic Silica Capillary Columns of 530 μm Inner Diameter in HPLC. J. Sep. Sci.,2006,29(16):2471-2477.
    44. Liao J L, Zeng C M, Palm A, Hjerten S. Continuous Beds for Microchromatography:Detection of Proteins by a Blotting Membrane Technique. Anal. Biochem.,1996,241(2):195-198.
    45. Lammerhofer M, Svec F, Frechet J M J. Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality. 2. Effect of Chromatographic Conditions on the Chiral Separations. Anal. Chem.,2000,72(19):4623-4628.
    46. Wu R, Hu L Q Wang F J, Ye M L, Zou H. Recent Development of Monolithic Stationary Phases with Emphasis on Microscale Chromatographic Separation. J. Chromatogr. A,2008,1184(1-2):369-392.
    47. Svec F, Frechet J M J. New Designs of Macroporous Polymers and Supports: from Separation to Biocatalysis. Science,1996,273(5272):205-211.
    48. Svec F. Organic Polymer Monoliths as Stationary Phases for Capillary HPLC. J. Sep. Sci.,2004,27(17-18):1419-1430.
    49. Schaller D, Hilder E F, Haddad P R. Monolithic Stationary Phases for Fast Ion Chromatography and Capillary Electrochromatography of Inorganic Ions. J. Sep. Sci., 2006,29(12):1705-1719.
    50. Ye M L, Zou H F, Lei Z D, Wu R N, Liu Z, Ni J Y. Enantiomer separation by strong anion-exchange capillary electrochromatography with dynamically modified sulfated beta-cyclodextrin. Electrophoresis,2001,22(3):518-525.
    51. Pacakova V, Coufal P, Stulik K, Gas B. Electrophoresis,2003,24(12-13): 1883-1891.
    52. Tanaka N, Nagayama H, Kobayashi H, Ikegami T, Hosoya K, Ishizuka N, Minakuchi H, Nakanishi K, Cabrera K, Lubda D. Monolithic Silica Columns for HPLC, Micro-HPLC, and CEC. J. High Resolut. Chromatogr.,2000,23(1):111-116.
    53. Fujimoto C. Preparation of Fritless Packed Silica Columns for Capillary Electrochromatography. J. High Resolut. Chromatogr.,2000,23(1):89-92.
    54. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography. Anal. Chem.,1996,68(19):3498-3501.
    55. Motokawa M, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Jinnai H, Hosoya K, Ikegami T, Tanaka N. Monolithic Silica Columns with Various Skeleton Sizes and Through-Pore Sizes for Capillary Liquid Chromatography. J. Chromatogr. A,2002,961(1):53-63.
    56. Leinweber F C, Lubda D, Cabrera K, Tallarek U. Characterization of Silica-Based Monoliths with Bimodal Pore Size Distribution. Anal. Chem.,2002,74(11): 2470-2477.
    57. Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N. Performance of Monolithic Silica Capillary Columns with Increased Phase Ratios and Small-Sized Domains. Anal. Chem.,2006,78(22):7632-7642.
    58. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J. Chromatogr. A,1997,762(1):135-146.
    59. Svec F, Frechet J M J. Continuous Rods of Macroporous Polymer as High-Performance Liquid-Chromatography Separation Media. Anal. Chem.,1992, 64(7):820-822.
    60. Augustin V, Jardy A, Gareil P, Hennion M C, Stockholm, SWEDEN 2005, pp. 80-87.
    61. Yu C, Svec F, Frechet J M J. Towards Stationary Phases for Chromatography on a Microchip:Molded Porous Polymer Monoliths Prepared in Capillaries by Photoinitiated in Situ Polymerization as Separation Media for Electrochromatography. Electrophoresis,2000,21(1):120-127.
    62. Safrany A, Beiler B, Laszlo K, Svec F. Control of Pore Formation in Macroporous Polymers Synthesized by Single-Step Gamma-Radiation-Initiated Polymerization and Cross-Linking. Polymer,2005,46(9):2862-2871.
    63. Kala R, Biju V M, Rao T P. Synthesis, Characterization, and Analytical Applications of Erbium(III) Ion Imprinted Polymer Particles Prepared via Gamma-Irradiation with Different Functional and Crosslinking Monomers. Anal. Chim. Acta,2005,549(1-2):51-58.
    64. Wang Q C, Svec F, Frechet J M J. Macroporous Polymeric Stationary-Phase Rod as Continuous Separation Medium for Reversed-Phase Chromatography. Anal. Chem., 1993,65(17):2243-2248.
    65. Podgornik A, Barut M, Strancar A, Josic D, Koloini T. Construction of Large Volume Monolithic Columns. Anal. Chem.,2000,72(22):5693-5699.
    66. Aoki H, Kubo T, Ikegami T, Tanaka N, Hosoya K, Tokuda D, Ishizuka N. Preparation of Glycerol Dimethacrylate-Based Polymer Monolith with Unusual Porous Properties Achieved via Viscoelastic Phase Separation Induced by Monodisperse Ultra High Molecular Weight Poly(Styrene) as a Porogen. J. Chromatogr. A,2006,1119(1-2):66-79.
    67. Viklund C, Svec F, Frechet J M J, Irgum K. Monolithic, "molded", Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry:Control of Porous Properties during Polymerization. Chemistry of Materials,1996,8(3):744-750.
    68. Paull B, Nesterenko P N. New Possibilities in Ion Chromatography using Porous Monolithic Stationary-Phase Media. TRAC-Trends Anal. Chem.,2005,24(4): 295-303.
    69. Bird R B, Steward W E, Lightfoot E N. Transport Phenomena. New York:J. Wiley,1960.
    70. Connolly D, Paull B. Rapid Determination of Nitrate and Nitrite in Drinking Water Samples using Ion-Interaction Liquid Chromatography. Anal. Chim. Acta,2001, 441(1):53-62.
    71. Connolly D, Paull B. Fast Separation of UV Absorbing Anions using Ion-Interaction Chromatography. J. Chromatogr. A,2001,917(1-2):353-359.
    72. Huang X J, Wang Q Q, Yan H, Huang Y, Huang B L. Octyl-type Monolithic Columns of 530 μm i.d. for Capillary Liquid Chromatography. J. Chromatogr. A, 2005,1062(2):183-188.
    73.于泓,李睿姝.整体柱离子对色谱快速分析高氯酸盐.分析化学,2008,36(6):835-838.
    74.李睿姝,于泓,艾红晶.整体柱离子相互作用色谱快速分析无机阴离子.分析科学学报,2008,24(1):6-10.
    75. Pelletier S, Lucy C A. Achieving Rapid Low-Pressure Ion Chromatography Separations on Short Silica-Based Monolithic Columns. J. Chromatogr. A,2006, 1118(1):12-18.
    76. Hatsis P, Lucy C A. Improved Sensitivity and Characterization of High-Speed Ion Chromatography of Inorganic Anions. Anal. Chem.,2003,75(4):995-1001.
    77. Ito K, Takayama Y, Makabe N, Mitsui R, Hirokawa T. Ion Chromatography for Determination of Nitrite and Nitrate in Seawater using Monolithic ODS Columns. J. Chromatogr. A,2005,1083(1-2):63-67.
    78. Li J, Wu G F, Zhu Y. Determination of Zonisamide by a Coated Monolithic Column. J. Chromatogr. A,2006,1118(1):151-154.
    79. Nesterenko P N, Haddad P R. Zwitterionic Ion-Exchangers in Liquid Chromatography. Anal. Sci.,2000,16(6):565-574.
    80. Riordain C O, Nesterenko P, Paull B. Zwitterionic Ion Chromatography with Carboxybetaine Surfactant-Coated Particle Packed and Monolithic Type Columns. J. Chromatogr. A,2005,1070(1-2):71-78.
    81. Fritz J S, Yan Z, Haddad P R. Modification of Ion Chromatographic Separations by Ionic and Nonionic Surfactants. J. Chromatogr. A,2003,997(1-2):21-31.
    82. Yan Z, Haddad P R, Fritz J S. Ion Chromatography on Reversed-Phase Materials Coated with Mixed Cationic and Nonionic Surfactants. J. Chromatogr. A,2003, 985(1-2):359-365.
    83. Xu Q, Mori M, Tanaka K, Ikedo M, Hu W Z, Haddad P R. Ion Chromatographic Determination of Hydroxide Ion on Monolithic Reversed-Phase Silica Gel Columns Coated with Nonionic and Cationic Surfactants. J. Chromatogr. A,2004,1041(1-2): 95-99.
    84. Xu Q, Tanaka K, Mori M, Helaleh M I H, Hu W Z, Hasebe K, Toada H, Monolithic Octadecylsilyl-Silica Gel Column for the High-Speed Ion Chromatographic Determination of Acidity. J. Chromatogr. A,2003,997(1-2): 183-190.
    85. Xu Q, Mori M, Tanaka K, Ikedo M, Hu W Z. Dodecylsulfate-Coated Monolithic Octadecyl-Bonded Silica Stationary Phase for High-Speed Separation of Hydrogen, Magnesium and Calcium in Rainwater. J. Chromatogr. A,2004,1026(1-2):191-194.
    86. Connolly D, Victory D, Paull B. Rapid, Low Pressure, and Simultaneous Ion Chromatography of Common Inorganic Anions And Cations on Short Permanently Coated Monolithic Columns. J. Sep. Sci.,2004,27(10-11):912-920.
    87. Sugrue E, Nesterenko P, Paull B. Ion Exchange Properties of Monolithic and Particle Type Iminodiacetic Acid Modified Silica. J. Sep. Sci.,2004,27(10-11): 921-930.
    88. Barron L, Nesterenko P N, Diamond D, O'Toole M, Lau K T, Paull B. Low Pressure Ion Chromatography with a Low Cost Paired Emitter-Detector Diode Based Detector for the Determination of Alkaline Earth Metals in Water Samples. Anal. Chim. Acta,2006,577(1):32-37.
    89. Gillespie E, Macka M, Connolly D, Paull B. Evaluation of Capillary Ion Exchange Stationary Phase Coating Distribution and Stability using Radial Capillary Column Contactless Conductivity Detection. Analyst,2006,131(8):886-888.
    90. Sugrue E, Nesterenko P, Paull B. Iminodiacetic Acid Functionalised Monolithic Silica Chelating Ion Exchanger for Rapid Determination of Alkaline Earth Metal Ions in High Ionic Strength Samples. Analyst,2003,128(5):417-420.
    91. Elefterov A I, Nesterenko P N, Shpigun O A. Simultaneous Ion-Chromatographic Determination of Alkali and Alkaline-Earth Metals:use of a Cation Exchanger with Bonded Diaminocarboxylic Groups. J. Anal. Chem.,1996,51(10):972-975.
    92. Nesterenko P N. Silica-Bonded L-Hydroxyproline and its Application to the Separation of Inorganic Anions. J. High Resolut. Chromatogr.,1991,14(11):767-768.
    93. Nesterenko P N. Application of Amino Acid-Bonded Silicas as Ion-Exchangers for the Separation of Anions by Single-Column Ion Chromatography. J. Chromatogr., 1992,605(2):199-204.
    94. Sugrue W, Nesterenko P N, Paull B. Fast ion chromatography of Inorganic Anions and Cations on a Lysine Bonded Porous Silica Monolith. J. Chromatogr. A,2005, 1075(1-2):167-175.
    95. Preinerstorfer B, Lubda D, Lindner W, Lammerhofer M. Monolithic Silica-Based Capillary Column with Strong Chiral Cation-Exchange Type Surface Modification for Enantio Selective Non-Aqueous Capillary Electrochromatography. J. Chromatogr. A, 2006,1106(1-2):94-105.
    96. Preinerstorfer B, Lubda D, Mucha A, Kafarski P, Lindner W, Lammerhofer M. Stereoselective Separations of Chiral Phosphinic Acid Pseudodipeptides by CEC using Silica Monoliths Modified with an Anion-Exchange-Type Chiral Selector. Electrophoresis,2006,27(21):4312-4320.
    97. Allen D, El Rassi Z. Silica-Based Monoliths for Capillary Electrochromatography: Methods of Fabrication and Their Applications in Analytical Separations. Electrophoresis,2003,24(22-23):3962-3976.
    98. Breadmore M C, Boyce M, Macka M, Avdalovic N, Haddad P R. Peak Shapes in Open Tubular Ion-Exchange Capillary Electrochromatography of Inorganic Anions. J. Chromatogr. A,2000, (1-2):303-313.
    99. Boyce M C, Breadmore M, Macka M, Doble P, Haddad P R. Indirect Spectrophotometric Detection of Inorganic Anions in Ion-Exchange Capillary Electrochromatography. Electrophoresis,2000,21(15):3073-3080.
    100. Glenn K M, Lucy C A, Haddad P R. Ion Chromatography on a Latex-Coated Silica Monolith Column. J. Chromatogr. A,2007,1155(1):8-14.
    101. Breadmore M C, Palmer A S, Curran M, Macka M, Avdalovic N, Haddad P R. On-Column Ion-Exchange Preconcentration of Inorganic Anions in Open Tubular Capillary Electrochromatography with Elution using Transient-Isotachophoretic Gradients. 3. Implementation and Method Development. Anal. Chem.,2002,74(9): 2112-2118.
    102. Hutchinson J P, Hilder E F, Macka M, Avdalovic N, Haddad P R. Preparation and Characterisation of Anion-Exchange Latex-Coated Silica Monoliths for Capillary Electrochromatography. J. Chromatogr. A,2006,1109(1):10-18.
    103. Svec F, Frechet J M J. Molded Rigid Monolithic Porous Polymers:an Inexpensive, Efficient, and Versatile Alternative to Beads for the Design of Materials for Numerous Applications. Ind. Eng. Chem. Res.,1999,38(1):34-48.
    104. Peters E C, Svec F, Frechet J M J. Rigid Macroporous Polymer Monoliths. Adv. Mater.,1999,11(14):1169-1181.
    105. Buchmeiser M R, Polymeric Monolithic Materials:Syntheses, Properties, Functionalization and Applications. Polymer,2007,48,2187-2198.
    106. Wulff G Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates - a Way Towards Artificial Antibodies. Angewandte Chemie-International Edition in English,1995,34(17):1812-1832.
    107. Takeuchi T, Matsui J. Miniaturized Molecularly Imprinted Continuous Polymer Rods. J. High Resolut. Chromatogr.,2000,23(1):44-46.
    108. Hilder E F, Svec F, Frechet J M J. Latex-Functionalized Monolithic Columns for the Separation of Carbohydrates by Micro Anion-Exchange Chromatography. J. Chromatogr. A,2004,1053(1-2):101-106.
    109. Hutchinson J P, Zakaria P, Bowiet A R, Macka M, Avdalovic N, Haddad P R. Latex-Coated Polymeric Monolithic Ion-Exchange Stationary Phases.1. Anion-Exchange Capillary Electrochromatography and In-Line Sample Preconcentration in Capillary Electrophoresis. Anal. Chem.,2005,77(2):407-416.
    110. Viklund C, Irgum K. Synthesis of Porous Zwitterionic Sulfobetaine Monoliths and Characterization of their Interaction with Proteins. Macromolecules,2000,33(7): 2539-2544.
    111. Xie S F, Svec F, Frechet J M J. Design of Reactive Porous Polymer Supports for High throughput Bioreactors:Poly(2-vinyl-4,4-dimethylazlactone-co-acrylamide-co-ethyl dimethacrylate) Monoliths. Biotechnol. Bioeng.,1999,62(1):30-35.
    112. Lammerhofer M, Peters E C, Yu C, Svec F, Frechet J M J, Lindner W. Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality.1. Optimization of Polymerization Conditions, Porous Properties, and Chemistry of the Stationary Phase. Anal. Chem.,2000,72(19):4614-4622.
    113. Lammerhofer M, Svec F, Frechet J M J. Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality.2. Effect of Chromatographic Conditions on the Chiral Separations. Anal. Chem.,2000,72(19):4623-4628.
    114. Lammerhofer M, Svec F, Frechet J M J, Lindner W. Capillary Electrochromatography in Anion-Exchange and Normal-Phase Mode using Monolithic Stationary Phases. J. Chromatogr. A,2001,925(1-2):265-277.
    115. Fu H J, Xie C H, Dong J, Huang X D, Zou H F. Monolithic Column with Zwitterionic Stationary Phase for Capillary Electrochromatography. Anal. Chem., 2004,76(16):4866-4874.
    116. Hahn R, Podgornik A, Merhar M, Schallaun E, Jungbauer A. Affinity Monoliths Generated by in situ Polymerization of the Ligand. Anal. Chem.,2001,73(21): 5126-5132.
    117. Tennikova T B, Belenkii B G, Svec F. High-Performance Membrane Chromatography-A Novel Method of Protein Separation. J. Liq. Chromatogr., 1990,13(1):63-70.
    118. Tennikova T B, Bleha M, Svec F, Almazova T V, Belenkii B G. High-Performance Membrane Chromatography of Proteins, A Novel Method of Protein Separation. J. Chromatogr.,1991,555(1-2):97-107.
    119. Josic D, Reusch J, Loster K, Baum O, Reutter W. High-Performance Membrane Chromatography of Serum and Plasma Membrane Proteins. J. Chromatogr. A,1992, 590(1):59-76.
    120. Podgornik A, Barut M, Jaksa S, Jancar J, Strancar A. Application of Very Short Monolithic Columns for Separation of Low and High Molecular Mass Substances. J. Liq. Chromatogr. Rel. Technol.,2002,25(20):3099-3116.
    121. Tyrrell E, Nesterenko P N, Paull B. Flow Analysis Method using Chelating CIM Monolithic Disks for Monitoring Dissolved Labile Copper in Environmental Water Samples. J. Liq. Chromatogr. Rel. Technol.,2006,29(15):2201-2216.
    122. Moravcova D, Jandera P, Urban J, Planeta J. Comparison of monolithic silica and polymethacrylate capillary columns for LC. J. Sep. Sci.,2004,27(10-11): 789-800.
    123. Wu R N, Zou H F, Ye M L, Lei Z D, Ni J Y. Separation of Basic, Acidic and Neutral Compounds by Capillary Electrochromatography using Uncharged Monolithic Capillary Columns Modified with Anionic and Cationic Surfactants. Electrophoresis,2001,22(3):544-551.
    124. Hindocha D, Smith N W. The Analysis of Basic Pharmaceutical Compounds by Capillary Electrochromatography using Continuous Bed Stationary Phase. Chromatographia,2002,55(3-4):203-209.
    125. Ueki Y, Umemura T, Li J, Odake T, Tsunoda K. Preparation and Application of Methacrylate-Based Cation-Exchange Monolithic Columns for Capillary Ion Chromatography. Anal. Chem.,2004,76(23):7007-7012.
    126.徐燕,马继平,叶荣,丁明玉.毛细管离子色谱有机聚合整体柱的制备以及在测定水硬度中的应用.分析化学,2006,25(4):108-112.
    127. J. Hutchinson, P. Zakaria, M. Macka, P. Haddad, N. Avdalovic. Latex-Coated Monolithic Stationary Phases Prepared in Small Moulds for Ion-Exchange Capillary Electrochromatography, in:IICS Symposium, Trier, Germany,2004.
    128. Zakaria P, Hutchinson J P, Avdalovic N, Liu Y, Haddad P R. Latex-Coated Polymeric Monolithic Ion-Exchange Stationary Phases. 2. Micro-Ion Chromatography. Anal. Chem.,2005,77(2):417-423.
    129. Li X, Lim L W, Takeuchi T. Rapid Separation of Common Inorganic Cations by μLC using a Monolithic Octadecyl-Bonded Silica Stationary Phase Modified with Dodecylsulfate, in:1st Japan-China-Korea Joint Symposium on Ion Chromatography, Kasugai, Japan,2004.
    130. Sugrue E, Nesterenko P N, Paull B. Solvent Enhanced Ion Chromatography of Alkaline Earth and Transition Metal Ions on Porous Monolithic Silica. Anal. Chim. Acta,2005,553(1-2):27-35.
    131. Pack B W, Risley D S. Evaluation of a Monolithic Silica Column Operated in the Hydrophilic Interaction Chromatography Mode with Evaporative Light Scattering Detection for the Separation and Detection of Counter-Ions. J. Chromatogr. A,2005, 1073(1-2):269-275.
    132. Hatsis P, Lucy C A. Ultra-fast HPLC Separation of Common Anions using a Monolithic Stationary Phase. Analyst,2002,127(4):451-454.
    133. Li J, Zhu Y, Guo Y. Fast Determination Of Anions on a Short Coated Column. J. Chromatogr. A,2006,1118(1):46-50.
    134. Jiang X P, Zhang X S, Liu M H. Ultra-Short Columns for Low-Pressure Ion Chromatography. J. Chromatogr. A,1999,857(1-2):175-181.
    135. Victory D, Nesterenko P, Paull B. Low-Pressure Gradient Micro-Ion Chromatography with Ultra-Short Monolithic Anion Exchange Column. Analyst, 2004,129(8):700-701.
    136. Paull B, Riordain C O, Nesterenko P N. Double gradient ion chromatography on a short carboxybetaine coated monolithic anion exchanger. Chem. Commun.,2005, (2):215-217.
    137. Rokushika S, Zong Y Q, Zhuo L S, Hatano H. Microbore Packed-Column Anion Chromatography using a UV Detector. J. Chromatogr.,1983,280(1):69-76.
    138. Chambers S D, Glenn K M, Lucy C A. Developments in Ion Chromatography using Monolithic Columns. J. Sep. Sci.,2007,30(11):1628-1645.
    139. Hutchison J P, Hilder E F, Shellie R A, Smith J A, Haddad P R. Towards High Capacity Latex-Coated Porous Polymer Monoliths as Ion-Exchange Stationary phases. Analyst,2006,131:215-221.
    140. Hilder E F, Zemann A J, Macka M, Haddad P R. Anion-Exchange Capillary Electrochromatography with Indirect UV and Direct Contactless Conductivity Detection. Electrophoresis,2001,22(7):1273-1281.
    141. Muller S R, Simon W, Widmer H M, Grolimund K, Schomburg G, Kolla P. Separation of Cations by Open-Tubular Column Liquid-Chromatography. Anal. Chem.,1989,61(24):2747-2750.
    142. Muller S, Scheidegger D, Haber C, Simon W. Fast Separations with Open Tubular Ion-Exchange Capillary Columns. J. High Resolut. Chromatogr.,1990,14(3): 174-177.
    143. Pyo D J, Dasgupta P K, Yengoyan L S, Fukuoka, Japan 1997, pp.185-190. Anal Sci,1997,13,185
    144. Takeuchi T, Suzuki E, Ishii D. Indirect Photometric Detection of Mono-Valent Cations via Postsuppressor Ion Replacement in Microcolumn Ion Chromatography. Chromatographia,1988,25(7):582-584.
    145. Munaf E, Zein R, Takeuchi T, Miwa T. Indirect Photometric Detection of Inorganic Monovalent and Divalent Cations by Microcolumn Ion Chromatography using 1,1'-dimethyl-4,4'-bipyridinium dichloride as Visualization Agent. Anal. Chim. Acta,1999,379(1-2):33-37.
    146. Safni, Takeuchi T, Miwa T. Application of Microcolumn Ion Chromatography using Anion Exchangers Modified with Dextran Sulfate for The Determination of Alkali and Alkaline-Earth Metal Ions. J. Chromatogr. B,2001,753(2):409-412.
    147. Kitamaki Y, Jin J Y, Takeuchi T. Simultaneous Determination of Inorganic Nitrogen Species by Microcolumn Ion Chromatography. J. Chromatogr. A,2003, 1003(1-2):197-202.
    148. Kuban P, Dasgupta P K. Capillary Ion Chromatography. J. Sep. Sci.,2004,27: 1441-1457.
    149.马继平,丁明玉.毛细管离子色谱进展.分析化学,2006,34:S272-S277.
    150. Boring C B, Dasgupta P K, Sjogren A, Santa Clara. Compact, Field-Portable Capillary Ion Chromatography. J. Chromatogr. A,1998,804:45-54.
    151. Boring C B, Poruthoor S K, Dasgupta P K. Wet Effluent Parallel Plate Diffusion Denuder Coupled Capillary Ion Chromatograph for the Determination of Atmospheric Trace Gases. Talanta,1999,48(3):675-684.
    152. Ping G C, Zhang Y K, Zhang W B, Zhang L, Zhang L H, Schmitt-Kopplin P, Kettrup A. On-Line Concentration of Neutral and Charged Species in Capillary Electrochromatography with a Methacrylate-Based Monolithic Stationary Phase. Electrophoresis,2004,25(3):421-427.
    153. Starkey J A, Mechref Y, Byun C K, Steinmetz R, Fuqua J S, Pescovitz O H, Novotny M V. Determination of Trace Isoflavone Phytoestrogens in Biological Materials by Capillary Electrochromatography. Anal. Chem.,2002,74(23): 5998-6005.
    154. Schaller D, Hilder E F, Haddad P R. Separation of Antidepressants by Capillary Electrophoresis with In-Line Solid-Phase Extraction using a Novel Monolithic Adsorbent. Anal. Chim. Acta,2006,556(1):104-111.
    155. Hutchinson J P, Macka M, Avdalovic N, Haddad P R. Use of Coupled Pen-Tubular Capillaries for In-Line Ion-Exchange Preconcentration of Anions by Capillary Electrochromatography with Elution by a Transient Isotachophoretic Gradient. J. Chromatogr. A,2004,1039:187-192.
    156. Barron L, Nesterenko P N, Paull B. Rapid On-Line Preconcentration and Suppressed Micro-Bore Ion Chromatography of Part Per Trillion Levels of Perchlorate in Rainwater Samples. Anal. Chim. Acta,2006,567(1):127-134.
    157. Liu Y, Srinivasan K, Pohl C, Avdalovic N. Recent Developments in Electrolytic Devices for Ion Chromatography. J. Biochem. Biophys.Methods,2004,60(3): 205-232.
    158. Barron L, Paull B. Direct Detection of Trace Haloacetates in Drinking Water using Microbore Ion Chromatography-Improved Detector Sensitivity using A Hydroxide Gradient and a Monolithic Ion-Exchange Type Suppressor. J. Chromatogr. A,2004,1047(2):205-212.
    159. Duval D L, Fritz J S. Coated Anion-Exchange Resins for Ion Chromatography. J. Chromatogr.,1984,295(1):89-101.
    160. Seino M, Miyazaki H, Ito T. Zonisamide. Epilepsy Res.,1991,169-174.
    161. Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Seino M, Miyamoto K. Zonisamide Blocks T-Type Calcium-Channel in Cultured Neurons of Rat Cerebral-Cortex. Epilepsy Res.,1992,12(1):21-27.
    162. Henry T R, Leppik I E, Gumnit R J, Jacobs M. Progressive Myoclonus Epilepsy Treated with Zonisamide. Neurology,1988,38(6):928-931.
    163. Nakamura M, Hirade K, Sugiyama T, Katagiri Y. High-Performance Liquid Chromatographic Assay of Zonisamide in Human Plasma using a Non-Porous Silica Column. J. Chromatogr. B,2001,755(1-2):337-341.
    164. Makino K, Goto Y, Sueyasu M, Futagami K, Kataoka Y, Oishi R. Micellar Electrokinetic Capillary Chromatography for Therapeutic Drug Monitoring of Zonisamide. J. Chromatogr. B,1997,695(2):417-425.
    165. Marquet P, Clement S, Lotfi H, Dreyfuss M F, Debord E, Dumont D, Lachatre G. Analytical Findings in a Suicide involving Sodium Azide. J. Anal. Toxicol.,1996, 20(2):134-138.
    166. Kikuchi M, Sato M, Ito T, Honda M. Application of a New Analytical Method using Gas Chromatography and Gas Chromatography-Mass Spectrometry for the Azide Ion to Human Blood and Urine Samples of an Actual Case. J. Chromatogr. B, 2001,752(1):149-157.
    167. Annable P L, Sly L A. Azide Determination in Protein Samples by Ion Chromatography. J. Chromatogr.,1991,546:325-334.
    168. Ohashi M, Kitada Y, Imai S. Determination of Azide as the 3,5-Dinitrobenzoyl Derivative by Capillary Electrophoresis. J. Chromatogr. A,2004,1045(1-2):247-252.
    169. Mayr B, Tessadri R, Post E, Buchmeiser M R. Metathesis-Based Monoliths: Influence of Polymerization Conditions on the Separation of Biomolecules. Anal. Chem.,2001,73(17):4071-4078.
    170. Svec F, Frechet J M J. Modified Poly(Glycidyl Methacrylate-Co-Ethylene Dimethacrylate) Continuous Rod Columns for Preparative-Scale Ion-Exchange Chromatography of Proteins. J. Chromatogr. A,2005,702(1-2):89-95.
    171. ZhangML,SunY. Poly(Glycidyl Methacrylate-Divinylbenzene-Triallylisocyanurate) Continuous-Bed Protein Chromatography. J. Chromatogr. A, 2001,912(1):31-38.
    172. Qi D Y, Okada T, Dasgupta P K. Direct-Current Conductivity Detection in Ion Chromatography. Anal. Chem.,1989,61(13):1383-1387.
    173. Dasgupta P K, Kar S. Measurement of Gases by a Suppressed Conductometric Capillary Electrophoresis Separation System. Anal. Chem.,1995,67(21):3853-3860.
    174. Avdalovic N, Pohl C A, Rocklin R D, Stillian J R. Determination of Cations and Anions by Capillary Electrophoresis Combined with Suppressed Conductivity Detection. Anal. Chem.,1993,65(10):1470-1475.
    175.谭峰,杨丙成,陈令新,马继平,王海龙,关亚风.几种无机阳离子的毛细管电泳—电容耦合非接触电导分离检测.色谱,2003,21(4):339-342
    176. Pal F, Pungor E, Kovats E S. Oscillometric Detector for Ion Chromatography-a Note on Detection Limit and Detector Sensitivity. Anal. Chem.,1988,60(20): 2254-2258.
    177. Zemann A J, Schnell E, Volgger D, Bonn G K. Contactless Conductivity Detection for Capillary Electrophoresis. Anal. Chem.,1998,70(3):563-567.
    178. da Silva J A F, do Lago C L. An Oscillometric Detector for Capillary Electrophoresis. Anal. Chem.,1998,70(20):4339-4343.
    179. Zemann A J. Capacitively Coupled Contactless Conductivity Detection in Capillary Electrophoresis. Electrophoresis,2003,24(12-13):2125-2137.
    180. Kuban P, Muri M A, Hauser P C. Application of a Contactless Conductivity Detector to the Determination of Inorganic Ions in Ion Chromatography. Analyst, 2004,129(1):82-86.
    181. Jackson P E, Weigert C, Pohl C A, Saini C. Determination of Inorganic Anions in Environmental Waters with a Hydroxide-Selective Column. J. Chromatogr. A, 2000,884(1-2):175-184.
    182. Tanaka K, Ohta K, Haddad P R, Fritz J S, Miyanaga A, Hu W Z, Hasebe K, San Jose. Simultaneous ion-exclusion/cation-exchange chromatography of anions and cations in acid rain waters on a weakly acidic cation-exchange resin by elution with sulfosalicylic acid. J. Chromatogr. A,2000,884(1-2):167-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700