微反应器中快速氧化反应和低温锂卤交换反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:微反应器技术作为一种全新的有机合成方法受到科研工作者的广泛关注,在各科研领域都发挥越来越重要的作用。微反应器是直径在10-1000μm的管道式反应器。与传统反应容器相比,微反应器提高了反应的安全性和选择性,并且方便于工业放大。
     第二章:随着微反应器应用的不断推广,在微反应器中进行的有机反应种类也越来越繁多。针对的不同的反应类型和所需要的最佳反应条件,科研工作者尝试制作各种不同类型的微反应器来满足不同的需求。本章主要介绍了本课题组构建微反应器的方法和在使用过程中的故障排除等相关知识。
     第三章:我们对微反应器中进行的叔丁基过氧化氢和次氯酸钠体系进行研究,我们设计构建了两进样的绿色微反应器系统并用此系统成功的进行了该氧化反应,在很短的时间内高效的合成了产物。相对于传统的反应容器,微反应器大大提高了反应效率。
     第四章:本章主要对微反应器中进行的以锂卤交换为代表反应的初步探索。根据常规反应容器中的相关信息和参数,我们将反应导入微反应器中,并成功的进行了探索。我们建立的这一套微反应体系也可以应用到其他低温反应的研究中去,为优化低温类型的反应提供了新的方案。
Chapter 1:As a new type of organic synthesis methods, micro reactor technology has received lots of attentions from both the academic and industrial viewpoints. Micro reactor is sort of pipe line reactor with diameter from 10 to 1000μm. Compared with conventional macroscale batch reactors, it exhibit numerous practical advantages, including safety, easy modulation, and easy scale up for industrial production. In this chapter, the development and application of micro reactor was reviewed.
     Chapter 2:Along with the further promotion of micro reactor application, more and more organic reaction types were introduced in. According to the different reaction type and conditions, all sorts of types were created by research workers to meet different needs. In this chapter, materials, drives and potential application devices of micro reactor were introduced, and current fabrication of micro reactor were compared.
     Chapter 3:An efficient procedure of benzylic compounds oxidation was described, which is facile, economical and environmentally friendly. The oxidation can be accomplished in a good yield within 10 seconds at room temperature. A new synthetic method in microreactor to synthesize carbonyl compounds which tolerates various substrates is developed. Compared with the conventional method, good to excellent yields have been obtained within a very short reaction time.
     Chapter 4:Micro reactors also enable the precise control of reactive intermediates and thereby facilitate highly selective reactions which difficult to achieve in conventional reactors. The Li-Br exchange reaction in micro reactor at low temperature were studied. And the micro reactor was used to control the active intermediates. Using our micro reactor, a really good performance in Li-Br exchange reaction can be achieved.
引文
[1]Hessel, V; Hofmann, C. L; We, H; Sylectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors. Org. Process Res.& Dev.2004,8 (3),511-523.
    [2]黄南平,钟平.微反应器技术在有机合成中的应用.化学试剂2007,29(6),339~344
    [3]Andraos, J., Unification of reaction metrics for green chemistry:Applications to reaction analysis (vol 9, pg 149,2005). Org Process Res Dev 2005,9 (4),519-519.
    [4]Helmut P; Paul W; Stephen J; Haswell; Volker H; Holger L; Reviews: Benchmarking of Microreactor Applications. Org. Process Res.& Dev.2004,8, 422-439
    [5]Ducry, L.; Roberge, D. M., Controlled autocatalytic nitration of phenol in a microreactor. Angew. Chem. Int. Edit.2005,44 (48),7972-7975.
    [6]Watts, P.; Haswell, S. J.; Pombo-Villar, E., Electrochemical effects related to synthesis in micro reactors operating under electrokinetic flow. Chem. Eng. J.2004, 101,237-240.
    [7]Zhang, X.; Haswell, S. J., Micro-fluidic and lab-on-a-chip technology. Ernst Schering Found.2007,3,21-37.
    [8]Kobayashi, J.; Mori, Y.; Kobayashi, S., Triphase hydrogenation reactions utilizing palladium-immobilized capillary column reactors and a demonstration of suitability for large scale synthesis. Adv. Synth. Catal.2005,347 (15),1889-1892.
    [9]Miller, P. W.; Long, N. J.; de Mello, A. J.; Vilar, R.; Audrain, H.; Bender, D.; Passchier, J.; Gee, A., Rapid multiphase carbonylation reactions by using a microtube reactor:Applications in positron emission tomography C-11-radiolabeling. Angew. Chem. Int. Edit.2007,46 (16),2875-2878.
    [10]Fountain, G. O.; Khakhar, D. V.; Ottino, J. M. Science 1998,281,683.
    [11]Alvarez, M. M.; Zalc, J. M.; Shinbrot, T.; Arratia, P. E.; Muzzio, F. J. AIChE J.2002, 48,2135.
    [12]Alvarez, M. M.; Arratia, P. E.; Muzzio, F. J. Can. J. Chem. Eng.2002,80,546.
    [13]Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M., Chemistry in microstructured reactors. Angew. Chem. Int.Edit.2004,43 (4),406-446.
    [14]Yasuhiro U.; Yoichi M. A.; Yamada; Tomohiko B.; Naoshi F; Masaharu U.; Takehiko K, Yasuhiro Instantaneous Carbon-Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane J. AM. CHEM. SOC.2006,128, 15994-15995
    [15]Hisamoto, H.; Saito, T.; Tokeshi, M.; Hibara, A.; Kitamori, T., Fast and high conversion phase-transfer synthesis exploiting the liquid-liquid interface formed in a microchannel chip. Chem. Commun.2001,2662-2663.
    [16]Seiji S.; Aiichiro N.; Jun-icih Y.; Highly selective Friedel-Crafts monoalkylation using micromixing. Chem Commun,2003,354-355
    [17]Kobayashi, J.; Mori, Y.; Kobayashi, S., Triphase hydrogenation reactions utilizing palladium-immobilized capillary column reactors and a demonstration of suitability for large scale synthesis. Adv. Synth. Catal 2005,347,1889-1892.
    [18]Miller, P. W.; Long, N. J.; de Mello, A. J.; Vilar, R.; Audrain, H.; Bender, D.; Passchier, J.; Gee, A., Rapid multiphase carbonylation reactions by using a microtube reactor:Applications in positron emission tomography C-11-radiolabeling. Angew. Chem. Int. Edit.2007,46 (16),2875-2878.
    [19]Wootton, R. C. R.; Fortt, R.; de Mello, A. J., A microfabricated nanoreactor for safe, continuous generation and use of singlet oxygen. Org. Process. Res. Dev.2002,6 (2),187-189.
    [20]Hook, B. D. A.; Dohle, W.; Hirst, P. R.; Pickworth, M.; Berry, M. B.; Booker-Milburn, K. I., A practical flow reactor for continuous organic photochemistry.J. Org. Chem 2005,70,7558-7564.
    [21]Maeda, H.; Mukae, H.; Mizuno, K., Enhanced efficiency and regioselectivity of intramolecular (2 pi+2 pi) photocycloaddition of 1-cyanonaphthalene derivative using microreactors. Chem. Lett 2005,34 (1),66-67.
    [22]Fukuyama, T.; Hino, Y.; Kamata, N.; Ryu, I., Quick execution of [2+2] type photochemical cycloaddition reaction by continuous flow system using a glass-made microreactor. Chem. Let 2004,33 (11),1430-1431.
    [23]Fletcher, P. D. I.; Haswell, S. J.; Pombo-Villar, E.; Warrington, B. H.; Watts, P.; Wong, S. Y. F.; Zhang, X. L., Micro reactors:principles and applications in organic synthesis. Tetrahedron 2002,58 (24),4735-4757.
    [24]Doku, G. N.; Haswell, S. J.; McCreedy, T.; Greenway, G. M., Electric field-induced mobilisation of multiphase solution systems based on the nitration of benzene in a micro reactor. Analyst 2001,126 (1),14-20.
    [25]Nikbin, N.; Watts, P., Solid-supported continuous flow synthesis in microreactors using electroosmotic flow. Org. Process. Res. Dev.2004,8 (6),942-944.
    [26]Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D., Multistep Synthesis Using Modular Flow Reactors:Bestmann-Ohira Reagent for the Formation of Alkynes and Triazoles. Angew. Chem. Int. Edit.2009,48 (22),4017-4021.
    [27]Haswell, S. J.; Middleton, R. J.; O'Sullivan, B.; Skelton, V.; Watts, P.; Styring, P., The application of micro reactors to synthetic chemistry. Chem. Commun.2001, (5),391-398.
    [28]Geyer, K.; Codee, J. D. C.; Seeberger, P. H., Microreactors as tools for synthetic chemists-The chemists'round-bottomed flask of the 21st century? Chem. Eur. J. 2006,12 (33),8434-8442.
    [29]Murphy, E. R.; Martinelli, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F., Accelerating reactions with microreactors at elevated temperatures and pressures: Profiling aminocarbonylation reactions. Angew. Chem. Int. Edit.2007,46 (10), 1734-1737.
    [30]Pennemann, H.; Hessel, V.; Lowe, H., Chemical microprocess technology-from laboratory-scale to production. Chem. Eng. Sci.2004,59 (22-23),4789-4794.
    [31]Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M., Chemistry in microstructured reactors. Angew. Chem. Int. Edit.2004,43 (4),406-446.
    [32]Singh, B. K.; Kaval, N.; Tomar, S.; Van der Eycken, E.; Parmar, V. S., Transition metal-catalyzed carbon-carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org. Process. Re. Dev.2008,12 (3),468-474.
    [33]Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T., Greener approaches to organic synthesis using microreactor technology. Chem. Rev. 2007,707(6),2300-2318.
    [34]Watts, P.; Haswell, S. J., The application of micro reactors for organic synthesis. Chem SocRev 2005,34 (3),235-246.[16]Gustafsson, T.; Gilmour, R.; Seeberger, P. H., Fluorination reactions in microreactors. Chem. Commun.2008, (26), 3022-3024.
    [35]Ahmed-Omer, B.; Brandt, J. C.; Wirth, T., Advanced organic synthesis using microreactor technology. Org. Biomol. Chem.2007,5 (5),733-740.
    [36]Wang, S. C.; Lee, C. Y.; Chen, H. P., Thermoplastic microchannel fabrication using carbon dioxide laser ablation. J.Chromatogr. A.2006,1111 (2),252-257.
    [37]Uozumi, Y.; Yamada, Y. M. A.; Beppu, T.; Fukuyama, N.; Ueno, M.; Kitamori, T., Instantaneous carbon-carbon bond formation using a microchannel reactor with a catalytic membrane. J. Am.Chem. Soc.2006,128 (50),15994-15995.
    [38]Wang, K.; Lu; Y. C.; Shao, H. W.; Luo, G. S., Improving selectivity of temperature-sensitive exothermal reactions with microreactor. Ind. Eng. Chem. Res. 2008,47 (14),4683-4688.
    [39]Hartung, A.; Keane, M. A.; Kraft, A., Advantages of synthesizing trans-1,2-cyclohexanediolin a continuous flow microreactor over a standard glass apparatus. J. Org.Chem.2007,72 (26),10235-10238.
    [40]Yang, J. L.; Li, J. F.; Lu, Y, Nitration of Benzene in a Continuous-Flow Microreactor Integrated with Microfiber-Structured Nafion/SiO2 Solid Acid Catalyst. Acta. Phys-Chim. Sin.2009,25 (10),2045-2049.
    [41]Shen, J. N.; Zhao, Y. C.; Chen, G. W.; Yuan, Q., Investigation of Nitration Processes of iso-Octanol with Mixed Acid in a Microreactor. Chinese. J. Chem. Eng.2009,17 (3),412-418.
    [42]Burns, J. R.; Ramshaw, C., A microreactor for the nitration of benzene and toluene. Chem.Eng.Commun.2002,189 (12),1611-1628.
    [43]Haider, R.; Lawal, A.; Damavarapu, R., Nitration of toluene in a microreactor. Catalysis.Today.2007,125 (1-2),74-80.
    [44]Braune, S.; Pochlauer, P.; Reintjens, R.; Steinhofer, S.; Winter, M.; Lobet, O.; Guidat, R.; Woehl, P.; Guermeur, C., Selective nitration in a microreactor for pharmaceutical production under cGMP conditions. Chim. Oggi.2009,27 (1),26-29.
    [45]Singh, B. K.; Kaval, N.; Tomar, S.; Van der Eycken, E.; Parmar, V. S., Transition metal-catalyzed carbon-carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org. Process. Res. Dev.2008,12 (3),468-474.
    [46]Basheer, C.; Shahitha, F.; Hussain, J.; Lee, H. K.; Valiyaveettil, S., Design of a capillary-microreactor for efficient Suzuki coupling reactions. Tetrahedron. Lett. 2004,45 (39),7297-7300.
    [47]He, P.; Watts, P.; Marken, F.; Haswell, S. J., Self-supported and clean one-step cathodic coupling of activated olefins with benzyl bromide derivatives in a micro flow reactor. Angew. Chem. Int. Edit.2006,45 (25),4146-4149.
    [48]Skelton, V.; Greenway, G. M.; Haswell, S. J.; Styring, P.; Morgan, D. O.; Warrington, B.; Wong, S. Y. F., The preparation of a series of nitrostilbene ester compounds using micro reactor technology. Analyst.2001,126 (1),7-10.
    [49]Tilstam, U.; Defrance, T.; Giard, T., The Newman-Kwart Rearrangement Revisited: Continuous Process under Supercritical Conditions. Org. Process. Res. Dev,2009, 13 (2),321-323.
    [50]Gustafsson, T.; Gilmour, R.; Seeberger, P. H., Fluorination reactions in microreactors. Chem. Commun.2008, (26),3022-3024.
    [51]Chambers, R. D.; Spink, R. C. H., Microreactors for elemental fluorine. Chem Commun 1999, (10),883-884.
    [52]Ceylan, S.; Friese, C.; Lammel, C.; Mazac, K.; Kirschning, A., Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors. Angew. Chem.Int. Edit.2008,47 (46),8950-8953.
    [53](a)B. Ahmed-Omer, J. C. Brandt and T. Wirth, Advanced organic synthesis using microreactor technology, Org. Biomol. Chem,2007,5,733-740. (b) Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M. Chemistry in Microstructured Reactors. Angew. Chem., Int. Ed.2004,43,406. (c) G. N. Doku, W. Verboom, D. N. Reinhoudt and A. van den Berg, On-microchip multiphase chemistry—a review of microreactor design principles and reagent contacting modes, Tetrahedron,2005,61,2733-2742. (d) Watts, P.; Haswell, S. J. The application of micro reactors for organic synthesis Chem. Soc. Rev.2005,34,235. (e) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Greener Approaches to Organic Synthesis Using Microreactor Technology Chem. Rev.2007,107,2301. (f) K. Jahnisch, V. Hessel, H. Lowe and M. Baerns, Chemistry in Microstructured Reactors, Angew. Chem.-Int. Edit.2004,43,406-446. (g) Kobayashi, J.; Mori, Y.; Kobayashi, S. Control and detection of chemical reactions in microfluidic systems Chem. Asian J.2006,1,22. (h) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan and D. T. McQuade, Greener Approaches to Organic Synthesis Using Microreactor Technology. Chem. Rev,2007,107,2300-2318. (i) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Adventures in inner space: Microflow systems for practical organic synthesis. Synlett 2008,151. (j) Yoshida, J.; Nagaki, A.; Yamada, T. Flash Chemistry:Fast Chemical Synthesis by Using Microreactors Chem. Eur. J.2008,14,7450. (b) Yoshida, J. Flash chemistry using electrochemical method and microsystems Chem. Commun.2005,4509. (k) Geyer, K.; Codee, J. D. C.; Seeberger, P. H. Microreactors as Tools for Synthetic Chemists—The Chemists Round-Bottomed Flask of the 21st Century? Chem. Eur. J. 2006,12,8434. (b) Doku, G. N.; Verboom, W.; Reinhoudt, D. N.; van den Berg, A. On-microchip multiphase chemistry—a review of microreactor design principles and reagent contacting modes. Tetrahedron 2005,61,2733.
    [54].W. G. Salmond, M. A. Barta and J. L. Havens, Allylic oxidation with 3,5-dimethylpyrazole. Chromium trioxide complex steroidal.DELTA.5-7-ketones J. Org. Chem,1978,43,2057-2059.
    [55].J. A. R. Salvador, M. L. S. Melo and A. S. C. Neves, Copper-Catalysed Allylic Oxidation of △5-Steroids by t-Butyl Hydroperoxide, Tetra.Lett,1997,38,119-122.
    [56].M. Harre, R. Haufe, K. Nickisch, P. Weinig, H. Weinmann, W. A. Kinney and X. H. Zhang, Some Reaction Safety Aspects of Ruthenium-Catalyzed Allylic Oxidations of △-5-Steroids in the Pilot Plant, Org. Process. Res. Dev.1998,2,100-104.
    [57].P. Marwah, A. Marwah and H. A. Lardy, An economical and green approach for the oxidation of olefins to enones, Green. Chem,2004,6,570-577.
    [58]Geyer, K.; Gustafsson, T.; Seeberger, P. H., Developing Continuous-Flow Microreactors as Tools for Synthetic Chemists. Synlett 2009, (15),2382-2391.
    [59]Greenway, G. M.; Haswell, S. J.; Morgan, D. O.; Skelton, V.; Styring, P., The use of a novel microreactor for high throughput continuous flow organic synthesis. Sensor Actuat B-Chem 2000,63 (3),153-158.
    [60]Watts, P.; Wiles, C., Micro reactors:a new tool for the synthetic chemist. Org Biomol Chem 2007,5 (5),727-732.
    [61]Cai, D. W.; Hughes, D. L.; Verhoeven, T. R., A study of the lithiation of 2,6-dibromopyridine with butyllithium, and its application to synthesis of L-739,010. Tetrahedron Lett 1996,37 (15),2537-2540.
    [62]Choe, J.; Seo, J. H.; Kwon, Y.; Song, K. H., Lithium-halogen exchange reaction using micro reaction technology. Chem Eng J 2008,135, S17-S20.
    [61]Cai, D. W.; Hughes, D. L.; Verhoeven, T. R., A study of the lithiation of 2,6-dibromopyridine with butyllithium, and its application to synthesis of L-739,010. Tetrahedron Lett 1996,37 (15),2537-2540.
    [62]Choe, J.; Seo, J. H.; Kwon. Y.; Song, K. H., Lithium-halogen exchange reaction using microreaction technology. Chem Eng J 2008,135, S17-S20.
    [63]Zhao, J.; Larock, R.C.; Synthesis of Xanthones, Thioxanthones, and Acridones by the Coupling of Arynes and Substituted Benzoates. J. Org. Chem. (2007),72(2), 583-588.
    [64]Barluenga, J; Trincado, M; Rubio, E; Gonzalez, J. M. Direct intramolecular arylation of aldehydes promoted by reaction with IPy2BF4/HBF4:synthesis of benzocyclic ketones. Angew. Chem. Int. Edit.2006,45(19),3140-3143.
    [65]Kumar, R. A; Maheswari, C. U; Ghantasala, S; Jyothi, C.; Reddy, K. R.; Synthesis of 3H-Quinazolin-4-ones and 4H-3,1-Benzoxazin-4-ones via Benzylic Oxidation and Oxidative Dehydrogenation using Potassium Iodide-tert-Butyl Hydroperoxide. Adv.Syn. Cata.2011,353,401-410.
    [66]Kumar, R. A; Maheswari, C. U; Ghantasala, S; Jyothi, C.; Reddy, K. Rr. Synthesis of 3H-Quinazolin-4-ones and 4H-3,1-Benzoxazin-4-ones via Benzylic Oxidation and Oxidative Dehydrogenation using Potassium Iodide-tert-Butyl Hydroperoxide. Adv.Syn. Cata.2011,353,401-410
    [67]Guan, B; Xing, D; Cai, G. X; Wan, X. B; Yu, N; Fang, Z; Yang, L. P; Shi, Z. J. Highly Selective Aerobic Oxidation of Alcohol Catalyzed by a Gold(Ⅰ) Complex with an Anionic Ligand. J. Am. Chem. S.2005,127(51),18004-18005.
    [68]Dohi, T; Takenaga, N; Goto, A; Fujioka, H; Kita, Y. Clean and Efficient Benzylic C-H Oxidation in Water Using a Hypervalent Iodine Reagent:Activation of Polymeric Iodosobenzene with KBr in the Presence of Montmorillonite-K10.J. Org. Chem.2008,73(18),7365-7368.
    [69]Shing, Tony K. M.; Yeung, Y. Y; Su, P. L. Mild Manganese(Ⅲ) Acetate Catalyzed Allylic Oxidation:Application to Simple and Complex Alkenes. Org. Lett.2006, 8(14),3149-3151.
    [70]Garcia-Bosch, I; Company, A; Frisch, J. R.; O2 Activation and Selective Phenolate ortho Hydroxylation by an Unsymmetric Dicoppe-1:1-Peroxido Complex. Angew. Chem. Int. Edit.2010,49(13),2406-2409,
    [71]Chernyak, N; Dudnik, A. S.; Huang, C; Gevorgyan, V. PyDipSi:A General and Easily Modifiable/Traceless Si-Tethered Directing Group for C-H Acyloxylation of Arenes. J. Am. Chem. Soc.2010,132(24),8270-8272.
    [72]Kamitori, Y; Hojo, M; Masuda, R; Izumi, T; Tsukamoto, S. Fac. E., Silica gel as an effective catalyst for the alkylation of phenols and some heterocyclic aromatic compounds. J. Org. Chem.1984,49(22),4161-5.
    [73]E1-Ghazooly, M. G.; El-Lakany, A. M.; Abou-Shoer, M.; Chemical constituents of Helichrysum conglobatum growing in Egypt. Natural Product Sciences 2003,9(4), 213-219.
    [74]Deng, L; Sundriyal, S; Rubio, V; Shi, Z. Z; Song, Y. C. Coordination Chemistry Based Approach to Lipophilic Inhibitors of l-Deoxy-D-xylulose-5-phosphate Reductoisomerase. J.Med. Chem.2009,52(21),6539-6542.
    [75]Lang, R; Mueller, C; Hofmann, T. Development of a Stable Isotope Dilution Analysis with Liquid Chromatography-Tandem Mass Spectrometry Detection for the Quantitative Analysis of Di-and Trihydroxybenzenes in Foods and Model Systems. Journal of Agricultural and Food Chemistry 2006,54(16),5755-5762.
    [76]Jazwinski, J; Duddeck, H. Pyridine and aminide derivatives as ligands in 1:1 Rh2[tfa]4 adducts:1H,13C and 15N NMR study. Magnetic Resonance in Chemistry 2003,41(11),921-926.
    [77]Chau, N. T; Meyer, M; Komagawa, S; Chevallier, F; Fort, Y; Uchiyama, Mu; Mongin, F; Gros, P. C. Homoleptic Zincate-Promoted Room-Temperature Halogen-Metal Exchange of Bromopyridines. Chemistry—A European Journal 2010,16(41), 12425-12433,
    [78]Rao, G. V; Swamy, B. N; Kumar, P. H; Reddy, G. C. Preferential reactivity of pyridylmagnesium chloride with N,N-dialkyl arylamides over carbonitriles: synthesis of 2-(aroyl) pyridines. Syn. Com.2009,39(10),1835-1846.
    [79]Yang,J. Y; Dudley, G. B.; [1,2]-Anionic Rearrangement of 2-Benzyloxypyridine and Related Pyridyl Ethers. J. Org. Chem.2009,74(20),7998-8000.
    [80]Wei, Z, L; Petukhov, P. A.; Xiao, Y; Tueckmantel, W; George, C.; Kellar, K. J.; Kozikowski, A. P. Synthesis, Nicotinic Acetylcholine Receptor Binding Affinities, and Molecular Modeling of Constrained Epibatidine Analogues. J. Med. Chem 2003,46(6),921-924.
    [81]Hatanaka, M; Takahashi, K; Nakamura, S; Mashino, T. Preparation and antioxidant activity of-pyridoin and its derivatives. Bioorganlc & Medicinal Chemistry 2005, 13(24),6763-6770.
    [82]Jazwinski, J; Duddeck, H. Pyridine and aminide derivatives as ligands in 1:1 Rh2[tfa]4 adducts:1H, C and N NMR study. Magnetic Resonance In Chemistry 2003,41(11),921-926.
    [83]Pazderski, L; Pawlak, T; Sitkowski, J; Kozerski, L; Szlyk, E. Structural correlations for 1H,13C and 15N NMR coordination shifts in Au(III), Pd(11) and Pt(II) chloride complexes with lutidines and collidine. Magnetic Resonance in Chemistry 2010, 48(6),417-426.
    [84]Havas, F; Leygue, N; Danel, M; Mestre, B; Galaup, C; Picard, C. 6,6'-Dimethyl-2,2'-bipyridine-4-ester:A pivotal synthon for building tethered bipyridine ligands. Tetrahedron 2009,65(36),7673-7686.
    [85]Schmidt, M.A.; Movassaghi, M. Synthesis of optically active imidazopyridinium salts and the corresponding NHCs. Tetra. Lett.2006, Volume Date 2007,48(1), 101-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700