支撑液膜萃取处理高浓度含酚煤气化废水工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤气化废水是一种有毒有害的、难生物降解的工业废水,废水中含有大量的酚类物质,具有较高的回收价值。支撑液膜萃取技术是结合了溶剂萃取和膜分离的新型分离技术,具有萃取剂用量小、损失少,萃取效率高、所需级数少,运行成本低、能耗少,二次污染小等优点,具有广阔的研究和应用前景。
     本论文以磷酸三丁酯(TBP)为萃取剂,以煤油为膜溶剂,以氢氧化钠溶液为反萃取剂,以PVDF为膜材料,采用中空纤维支撑液膜萃取法处理煤气化废水,并回收其中的酚类物质。考察了传质方式、反萃相浓度、相比、两相流速、膜组件装填因子、温度等操作条件对萃取效率的影响,得到了最优操作条件;分析了支撑液膜萃取酚的传质过程,建立了总传质系数模型,计算了传质过程的料液相、膜相和反萃相的分传质系数及总传质系数;并对实验逐步放大,对放大实验的操作条件进行了一定程度的优化。
     支撑液膜萃取煤气化废水的最优操作条件为:萃取体系为20%TBP-煤油、膜组件竖直放置、并流传质、反萃相浓度为0.1mol/L、相比为0、料液相流速为5L/h、反萃相流速为5L/h、膜组件装填因子为19%、温度为常温,在此条件下,萃取达到平衡所需时间为50min,萃取率为86.2%,出水酚浓度为98.64mg/L。
     建立了稳态下相应简化的支撑液膜萃取酚过程的总传质系数模型,计算得到稳态下料液相、膜相和反萃相的分传质系数及总传质系数:k_w=7.066×10~(-6)m/s,k_m=1.383×10~(-6)m/s,k_s=2.123×10~(-5)m/s,K_W=4.235×10~(-6)m/s,说明料液相和膜相传质阻力在总传质阻力中所占比重较大。
     实验放大过程比较成功,针对250L煤气化废水的处理,实验能达到较好的萃取效果,其最优操作条件为:反萃相浓度0.10mol/L、相比1:200、料液相流速为100 L/h、反萃相流速为60L/h,在此条件下,达到萃取平衡所需时间为240min,萃取率为75.71%,出水中酚浓度为262.73mg/L。
Coal gasification wastewater is a kind of toxic and hazardous industrial wastewater, which contains high concentrations of phenolic compounds with high recovery value. Supported liquid membrane extraction technique is a new separation technology combined solvent extraction and membrane separation, with advantages of a small extractant use and low extractant loss, high extraction efficiency, low running costs、energy consumption and secondary pollution, showing broad research and application prospects.
     Hollow Fiber Supported liquid membrane (HFSLM) extraction was introduced to treat coal gasification wastewater to recover the phenolic compounds, with tributyl phosphate (TBP) as carrier, kerosene as the membrane solvent, sodium hydroxide solution as the stripping agent and PVDF as the membrane material. Many factors having strong impact on the extraction efficiency were studied in detail, including the mass transfer mode, two-phase flow rate, membrane filling factor, temperature and the optimal operating conditions were obtained. On this basis, the mass transfer process of HFSLM extraction of phenol was analyzed, the overall mass transfer coefficient model was stablished and the mass transfer coefficient of feed solution, membrane phase and stripping phase and the sub-total mass transfer coefficient were calculated. The experiments were gradually enlarged and the operating conditions were optimized for a certain degree.
     The optimum operating conditions of HFSLM extraction of coal gasification wastewater were: extraction system of 20% TBP-kerosene, membrane vertically, and mass transfer, stripping phase concentration of 0.1mol/L, feed solution flow rate of 5L/h, stripping phase flow rate of 5L/h, the membrane component filling factor of 19%, experiment temperature of 300K. Under the optimum operating conditions, the time required to reach equilibrium for the extraction is 50min, extraction rate of phenol is 86.2% and the phenol concentration of effluent is 98.64mg/L.
     The paper established the mass transfer coefficient model of HFSLM extraction of phenol and calculated the mass transfer coefficient of liquid material, membrane phase and stripping phase and the sub-total mass transfer coefficient: k_w=8.044×10~(-6) m/s, k_m=5.333×10~(-6)m/s, k_s=1.404×10~(-5)m/s, K_w=4.942×10~(-6)m/s. It showed that the mass transfer resistance of feed solution and membrane phase share in total mass transfer resistance
     The pilot-scale experiments was carried out successfully and the optimum operating conditions of HFSLM extraction for 250L coal gasification wastewater were: stripping phase concentration of 0.1mol/L, phase ratio of 1:200, feed solution flow rate of 100L/h, stripping phase flow rate of 60L/h. Under the optimal operating conditions, the time required to reach extraction equilibrium is 240min, the extraction rate of phenol is 75.71% and the phenol concentration of effluent is 262.73mg/L.
引文
1黄云兵.新型煤化工技术进展[J].企业科技与发展, 2009, 12(258): 31-33.
    2张海滨.迁徙我国发展煤制天然气的必要性及其风险[J].中国高新技术企业, 2009, 6(117): 92-93.
    3高恒,刘宏建.煤气化技术现状、发展及产业化应用[J].煤化工, 2009, 1(2): 37-39.
    4张瑜,江白茹.钢铁工业焦化废水治理技术研究[J].工业安全与环保, 2002, 28(7): 5-7.
    5汪家鼎.溶剂萃取手册[M].化学工业出版社, 2001:13-14.
    6冯利波.煤气化废水萃取脱酚及其深度处理.大连理工大学硕士学位论文. 2006
    7 N.Messikhab, M.H.Samar. Neural network analysis of liquid–liquid extraction of phenol from wastewater using TBP solvent[J]. Desalination, 2007, (208): 42–48.
    8章莉娟.煤气化废水萃取脱酚工艺研究[J].环境化学, 2006, 25(4): 488-490.
    9王韬.含酚废水治理技术研究进展[J].化工进展, 2008, 27(2): 232-235.
    10孙志娟,张心亚,黄洪等.乳状液膜分离技术的发展与应用[J].现代化工, 2006, 26(9): 63-66.
    11戚秀云,李霞.液膜法处理高浓度含酚废水的模拟试验[J].黑龙江石油化工, 1999, 10:40-42.
    12秦非,张志军.液膜法处理含酚废水的研究[J].环境化学, 1997, 5: 247-250.
    13 M.Peng, L.M.Vane, S.X.Liu. Recent advances in VOCs removal from water by pervaporation[J]. Hazard. Mater. B, 2003, (98): 69–90.
    14 Barun Sinha, Ujjal K.Ghosh, Narayan C. Pradhan. Separation of Phenol from Aqueous Solution by Membrane Pervaporation Using Modified Polyurethaneurea Membranes[J]. Appl Polym Sci. 2006, (101): 1857-1865.
    15耿琰.浸没式膜—SBR反应器去除焦化废水中氨氮的研究[J].工业用水与废水, 2002, 33(1): 24-26.
    16 Li Bing, Sun Ying-lan, Li Yu-ying. Pretreatment of coking wastewater using anaerobic sequencing batch reactor(ASBR)[J]. Zhejiang Univ SCI, 2005, 6(11):1115-1123.
    17王献国. A/O脱氮技术在焦化废水处理中的应用[J].广州化工, 2009, 37(1): 127-129.
    18 Vázquez I, Rodríguez J, Maranón E, etal. Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation[J]. J. Hazard. Mater., 2006, 137(3): 1773-1780.
    19许睿. A/A/O生物脱氮工艺在焦化废水处理中的应用[J].包钢科技, 2007, 33(6): 68-70.
    20 Qi Rong, Yang Kun, Yu Zhao-xiang. Treatment of coke plant wastewater by SND fixed biofilm hybrid system[J]. Journal of Environmental Sciences, 2007, 19(2): 153-159.
    21韦朝海,贺明和,吴超飞.生物三相流化床A/O2组合工艺在焦化废水处理中的工程应用[J].环境科学学报, 2007, 27(7): 1107-1112.
    22蔡建安.三相气提升循环流化床处理焦化废水[J].水处理技术, 1997, 23(1): 110-114.
    23李日强.焦化废水处理中酚、氰降解细菌的分离选育[J].重庆环境科学, 2002, 24(3): 23-24.
    24 V.Fierro, V.TorneFernandez, D.Montane, A.Celzard. Adsorption of phenol onto activated carbons having different textural and surface properties[J]. Micropor. Mesopor. Mater, 2008(111): 276-284.
    25 N.Roostaei, F.HandanTezel. Removal of phenol from aqueous solutions by adsorption[J]. Environ Manag, 2004(70): 157-164.
    26 Ghose M K. Complete physico-chemical treatment for coke plant effluents[J]. Water Research, 2002, 36: 1127-1134.
    27 I.V′azquez,J. Rodríguez-Iglesias,E. Marano′n,L. Castrillo′n, M.A′lvarez. Removal of residual phenols from coke wastewater by adsorption[J]. Journal of Hazardous Materials, 2007, 147:395-400.
    28周静,李素芹,苍大强,等.粉煤灰深度处理焦化废水中氨氮的研究[J].能源环境保护, 2007, 21(6): 30-32.
    29蒋文新,张巍,常启刚,等.强化活性炭吸附技术深度处理焦化废水的可行性研究[J].环境污染与防治, 2007, 29(4):265-270.
    30 G.G.Stavropoulos, P.Samaras, G.P.Sakellaropoulos. Effect of activated carbons modification on porosity surface structure and phenol adsorption[J]. Hazard.Mater, 2008, 151: 414-421.
    31王红娟,奚红霞,夏启斌,等.含酚废水处理技术的现状及开发前景[J].工业水处理, 2002, 22(6): 6-9.
    32马克,陈寅生,李茜.含酚废水治理技术的现状及进展[J].化学工业与工程技术, 2009, 30(6): 21-25.
    33 Won-SeokChang, Seok-WonHong, JoonkyuPark. Effect of zeo-lite media for the treatment of textile wastewater in a biological aerated filter[J]. Process Biochemistry, 2002, 37: 693-698.
    34赖鹏,赵华章,倪晋仁.硫酸铁混凝剂处理焦化废水A/O工艺出水的研究[J].中国环境科学, 2008, 28(3): 215-219.
    35梁杰群,廖勇,覃洁.聚合硫酸铁处理终端焦化废水的研究[J].中国环境监测, 2002, 18(4):
    36赵玲.混凝澄清在焦化废水处理中的应用[J].冶金动力, 2003, 3: 61-62.
    37李东伟,高先萍,蓝天. UV-Fenton试剂处理焦化废水的研究[J].水处理技术, 2008, 34(10): 42-45.
    38陈劲松,文一波,王凯,等. Fenton氧化混凝沉淀法处理焦化废水研究[J].水科学与工程技术, 2009, 1: 18-20.
    39 E-E Chang, Hao-Jan Hsing, Pen-Chi Chiang, etal. The chemical and biological characteristics of coke–oven wastewater by ozonation[J]. Journal of Hazardous Materials, 2008, 156(1-3): 560-567.
    40 Van Leeuwen J, Badriyha B, Vaczi S. Investigation into ozonation of coal coking processing wastewater for cyanide thiocyanate and organic removal[J]. Ozone Science & Engineering. AUG 2003, 25(4): 273.
    41贾振民.臭氧在焦化酚氰废水处理中的特殊应用[J].水工业市场, 2008(1): 59-62.
    42刘金泉,李天增,王发珍,等. O3、H2O2/O3及UV/O3在焦化废水深度处理中的应用[J].环境工程学报, 2009, 3(3): 501-505.
    43刘红,刘潘.多相光催化氧化处理焦化废水的研究[J].环境科学与技术, 2006, 29(2): 103-105.
    44姚淑华,汪国庆. TiO2光催化氧化法处理苯酚废水的研究[J].沈阳化工学院学报, 2008, 22(4): 289-292.
    45杜鸿章.焦化污水催化湿式氧化净化技术[J].工业水处理, 1996, 16(6): 11-13.
    46 M Yang, Y Sun, A H Xu, etal. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in abubbling bed reactor[J]. Bull Environ Contam Toxicol, 2007, 79(1): 66-70.
    47尚重阳,李凯慧,李文亮.高级氧化技术在焦化废水处理中的应用研究[J].河南科技, 2007, (7):67-68.
    48蔺起梅,杨小红.焦化废水处理技术的应用与研究进展[J].环境研究与监测, 2006, 19(4): 40-44.
    49王真,杨勇,王珲,等.电化学氧化法降解焦化废水的研究[J].上海化工, 2008, 33(10): 1-3.
    50 Bo Wang, Xin Chang, Hongzhu Ma. Electrochemical oxidation of refractory organics in the coking wastewater and chemical oxygen demand removal under extremely mild conditions[J]. Ind Eng Chem Res, 2008, 47(21): 8478-8483.
    51吴克明.电凝聚处理高浓度焦化废水的研究[J].西南给排水, 2006, 28(2): 25-26.
    52 Suslick K S. Sonochemistry[J]. Science, 1990, 247: 1439-1445.
    53 Henglein A, Kormann C. Scavenger of OH radicals produced in the sonolysis of water[J]. International Journal of Radiation Biology, 1985, 48: 251-258.
    54 Kotronarou A, Mills G, Hoffmann M R. Decomposition of parathion in aqueous solution by ultrasonic irradiation[J]. Envion Sci Technol, 1992, 26(7): 1460-1462.
    55徐金球,贾金平,徐晓军等.超声波化效应降解焦化废水中有机物的研究[J].高校化学工程学报, 2004, 18(3): 21-24.
    56佟玉衡.实用废水处理技术[M].北京:化学工业出版社. 1998
    57程志久,殷广瑾,杨丽琴,等.烟道气处理焦化剩余氨水的研究[J].环境科学学报, 2000, 20(5): 639-641.
    58 Bloch R. Ind Eng Chem Process Des Dev, 1967(6): 231.
    59 Li N N, Somerset N J. Separating hydroearbons with liquid membrane[P]. US Pat: 3410794, 1968.
    60 Frenkenfeld J W, Cahn R P, Li N N. Extraction of copper by liquid membranes[J]. Sep Sci Technol, 1981, 16(4): 385-402.
    61 Cussler E L, Evans D F. Liquid membranes for separation and reactions[J]. J Membr Sci, 1980, 6: 113-121.
    62 Yan Z, etal. Treatment of the wastewater containing high concentration of Cr(Ⅵ)using liquid membrane[A]. Proceedings of the ICOM’90[C]. Chicago: USA, North America Membrane Society, 1990, 718.
    63 Martin T P, Davies G A. The extraction of copper from dilute aqueous solutions using a liquid membrane process[J]. Hydrometallurgy, 1977, 2: 315-334.
    64戴猷元.新型萃取分离技术的发展及应用[M].化学工业出版社, 2007, 100-103.
    65 Atchariyawut S, Jiraratananon R, Wang R. Mass transfer study and modeling of gas-liquid membrane contacting process by multistage cascade model for CO2 absorption[J]. Sep. Purif. Technol., 2008, 63: 15-22.
    66 Park H H, Deshwal B R, Kim W I, Lee K H. Absorption of SO2 from flue gas using PVD Fhollow fiber membranes in a gas-liquid contactor[J]. Journal of Membrane Science, 2008, 319: 29-37.
    67 T.Rhlalou, M.Ferhat, M.A.Froujietal. Facilitated transport of sugars by a resorcinarene through a supported liquid membrane[J]. Journal of Membrane Science, 2000, 168(1-2): 63-73.
    68 Lauritsen F, Gylling S. On-Line Monitoring of Biological Reactions at Low Parts-per-Trillion Levels by Membrane Inlet Mass Spectrometry[J]. Anal. Chem., 1995, 67: 1418-1421.
    69 Knutsson M, Mathiasson L, Jonsson J A. Supported Liquid Membrane Work-Up in Combined with Liquid Chrimatography and Electrochemical Detection for the Determination of Chlorinated Phenols in Natural WaterSamples[J]. Chromatographia, 1996, 42(3-4): 165-170.
    70任钟旗,刘君腾,张卫东,等.中空纤维更新液膜技术处理含铬废水[J].电镀与涂饰, 2006, 25(11): 49-51.
    71 F.Valenzuela, M.A.Vega, M.F.Yanez, C. Basualto Application of a mathematical model for copper permeation from a Chilean mine water through a hollow fiber-type supported liquid membrane[J]. Journal of Membrane Science, 2002, 204(1-2): 385-400.
    72 P.Venkateswaan, K.Palanivelu. Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier[J]. Hydrometallurgy. 2005, 78(1-2): 107-115.
    73 W.S.Ho, B.Wang, T.E.Neumuller, J.Roller. Supported liquid membranes for removal and recovery of metals from wastewaters and processstream[J].Environmental Progress, 2001, 20(2): 117-121.
    74 W.S.Ho, B.Wang. Strontium removal by new alkyl phenylphosphonic acids in supported liquid membranes with stripd ispersion[J]. Industrial and Engineering Chemistry Research. 2002, 41(3): 381-388.
    75 W.S.Ho. Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion[J]. Ann. N.Y. Acad. Sci.. 2003, 98(4): 97-122.
    76 Y.H.Wan, X.D.Wang, X.J.Zhang. Treatment of high concentration phenolic wastewater by liquid membrane with N503 as mobile carrier[J]. Journal of Membrane Science, 1997, 135(2): 263-270.
    77 J.Y.Luan, A.Plaisier. Study on treatment of wastewater containing nitrophenol compounds by liquid membrane process[J]. Journal of Membrane Science, 2004, 229(1-2): 235-239.
    78张建民,崔心水.支撑液膜法提取柠檬酸-膜配方的研究[J]膜科学与技术, 2006, 26(4): 88-92.
    79宋经华,张建民,吴金文.表面活性剂对支撑液膜体系提取柠檬酸的影响[J].西安工程科技学院学报, 2006, 20(6): 745-748.
    80 Yang C.F, Qian Y, Zhang L.J. Solvent extraction process development and on-site trial-plant for phenol removal from Industrial coal-gasification wastewater[J]. Chem. Eng. J, 2006, 117(2): 179-185.
    81 F.C.Ferreira, L.G.Peeva, A.Boam, etal. Pilot scale application of the membrane aromatic recovery system for recovery of phenol from resin production condensates[J]. Chemical Engineering Sience, 2005, 60: 151-166.
    82 W.C.Babcock, R.W.Baker, J.Brooke, etal. Coupled transport membranes for metal recovery-Phase II, Final Report, National Science Foundation, 1980, 31(8).
    83 T.Saito. Deterioration of liquid membrane and its improvement in permeation transport of Zn(II) ion through a supported liquid membrane containing a bathocuproine[J]. Ibid, 1992, 18(10): 871-892.
    84杜启云,王利生,胡小平.中空纤维管夹心型支撑液膜萃取体系中La3+的迁移行为[J].中国稀土学报, 1995, 13(4): 303-307.
    85 M.Teramoto, Y.Sakaida, S.S.Fu, etal. An attempt for the stabilization of supported liquid membrane[J]. Separation and Purification Technology. 2000,21(1-2): 137-144.
    86 R.Chiarizia, E.P.Horwiz, P.G.Rickert, etal. Application of supported liquid membranes for removal of uranium from groundwater[J]. Separation science and technology, 1990, 25(13-25): 1571-1586.
    87李建平,冯伟民,赵毅,等.磷酸三丁酯萃取酚类的机理性研究[J].华南理工大学学报, 1996, 22(4): 388-392.
    88 M.C.Yang, E.L.Cussler. Designing hollow-fiber contactors[J]. AIChE Journal, 1989, 32(11): 1910-1916.
    89 Danesi P R. Separation of metal species by supported liquid membrane[J]. Sep Sci Technol, 1984, 84(19): 857-894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700