不同溶质类型对热源塔性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新近出现一种新型的喷淋式溶液热泵空调系统,该系统采用水源热泵机组、冷热源塔及必要的附属设备作为建筑的冷热源。冬季制热工况时,选用适当的盐溶液在热泵机组蒸发器及冷热源塔之间循环,盐溶液在冷热源塔中喷淋从空气中吸收热量;夏季制冷工况时,将盐溶液替换为水,其运行原理与常规的冷水机组+冷却塔相同。该系统与常规空调冷热源形式相比,可同时满足建筑冷热量的需求,这种冷热源塔热泵空调系统运行稳定、寿命长,系统的适应性及运行性能高,设备使用率高,系统初始投资低,不受地质条件与场地限制。
     然而以冷热源塔提供热量和冷量的空调系统目前正处于初始阶段,其部分技术和运行情况还正在进行研究和改良。本文就是针对冷热源塔在冬季作为热源(简称为热源塔)为空调系统提供热量时,塔内溶液采用不同种类的溶质(LiCl和CaCl_2)、是否在储液罐与溶液循环管路之间加装电动三通阀这两方面对系统运行性能的不同影响以及初始投资的差别进行的研究和分析。
     本文采用现场实验和理论分析相结合的方式,首先对热源塔内空气与溶液直接接触的传热传质过程进行分析,并建立热质交换数学模型。然后在长沙某单位安装实际的热源塔热泵空调系统,并使系统在冬季实际运行一个月。在此期间内采集所有必要的实验数据,用以对先前建立的数学模型进行验证和修正,以保证模型的准确性和适用性。然后以准静态分析方法使用编程软件对模型进行编程,计算出热源塔内采用不同种类溶液(LiCl和CaCl_2)、以及是否在储液罐与溶液循环管路之间加装电动三通阀等不同情况下空气与溶液的逐时传质系数,从而模拟出溶液在系统运行期间内凝水量和冰点的变化过程。
     最后,以凝结水量、造价和安全运行三个评价指标分析不同种类溶液(LiCl和CaCl_2)、以及是否在储液罐与溶液循环管路之间加装电动三通阀等不同因素的优势和劣势,从而选择出最适合长沙地区冬季热源塔热泵空调系统的溶液种类和设备配置方案。
A new type of air conditioning system, named as spring solution heat pump system presents itself recently. It uses heat pump, cooling&heating tower and ancillary equipment necessary as cold and heat source of constructions. In heating condition, appropriate solution is selected as circulation medium between the tower and the evaporator of heat pump in this system, which can absorb heat energy from ambient air in the tower. In cooling condition, solution is replaced with water, and the system is similar with tranditional ones which is equipped with water chilling unit and cooling tower. Compared with other conventional forms of air-conditioning systems, the spring solution heat pump system can satisfy both the need of heating and cooling of the building. And the advantage of it is self evident. Because it can run steadily, is more efficient in equipment using, has longer life-span, has adaptability to new surroundings, has higher COP or EER coefficient and cost lower in initial investment.
     However, air-conditioning system that includes a cooling&heating tower which is used for heating and cooling is currently in the initial stage of operation. So some of its technology is also being improved. When providing heat for the air-conditioning system in winter, the tower can be named as reversibly used cooling tower (RUCT). This paper present the research and analysis about the different running performance and initial investment of the system if using electrically operated valve between the liquid storage tank and the circular pipeline of the solution or not, or using different types of solute (LiCl and CaCl_2).
     In this paper, first, field experiments and theoretical analysis are combined to analyse the heat and mass transfer process between the solution and the ambient air when they contact directly in the RUCT, and a mathematical model of the heat and mass transfer process is established based on it. Second, in the winter, a reversibly used cooling tower heating system using heat pump (RUCTHPS) was installed in a test office building, which is located in Changsha, Hunan province. This running of the system lasted for a whole month, and all the necessary experimental data collected from the system during this period were used to validate and modify the mathematical model established previously to ensure the accuracy and applicability of the model. Third, program of the model is made by using programming software in quasi-static process, so that it could be used to calculate the mass transfer coefficient between the solution and the ambient air in the RUCT under different condition if using electrically operated valve between the liquid storage tank and the circulation pipeline of the solution or not, or using different types of solute (LiCl and CaCl_2). So that the condensation process in the RUCT and the freezing point of the solution could be simulated in every hour of the month.
     Finally, condensation of water, cost and safe operation of the system could be used to evaluate the advantages and disadvantages if using electrically operated valve between the liquid storage tank and the circulation pipeline of the solution or not, or using different types of solute (LiCl and CaCl_2). So that, in winter the most suitable type of solution and equipment configuration can be chosen for the RUCTHPS in Changsha.
引文
[1]安玉彬,刘旭东,田永春.二十一世纪中国能源发展的总趋势.能源工程, 1999(1):1-4
    [2] Robert Gross, Matthew Leach, etc. Progress in renewable energy. Environment International, 2003, 29(1): 105-122
    [3]戴彦德.我国可持续发展中的能源问题节能,2003,247(2):3-5
    [4] S.Iniyan, K .Sumath. An optimal renewable energy model for various end-uses. Energy, 2000, 25(6): 563-575
    [5] Ibrahim Dincer. Renewable energy and sustainable development:a crucial review.Renewable and Sustainable Energy Reviews, 2000, 4(2): 157-175
    [6]中华人民共和国建设部.贯彻落实科学发展观大力发展节能与绿色建筑http://www.cin.gov.cn/green/yj/,2005-02-23
    [7] Takao Nishimura.“Heat pumps-status and trends”in Asia and the Pacific. International Journal of Refrigeration, 2002, 25(4): 405-413
    [8]吴家正,肖郴松,朱彤.二十一世纪中国能源矛盾和可持续发展.同济大学学报(社会科学版),1999,10(3):45-50
    [9]华安增.能源发展方向.中国矿业大学学报,2002,31(1):14-18
    [10] H.J. Laue. Regional report Europe:“heat pumps-status and trends”. International Journal of Refrigeration, 2002, 25(4): 414-420
    [11]范维唐.关于中国能源未来发展趋势的探讨.中国煤炭,1997,23(12):1-4,57
    [12] Thore Berntsson. Heat sources-technology, economy and environment. International Journal of Refrigeration, 2002, 25(4): 428-438
    [13]曹熔泉,张小松,彭冬根.溶液除湿蒸发冷却空调系统及其若干重要问题.暖通空调,2009,39(9):13-19
    [14] Mehmet Yilmaz. Performance analysis of a vapor compression heat pump using zeotropic refrigerant mixtures. Energy Conversion and Management, 2003, 44(2): 267-282
    [15]龙惟定,王长庆,丁文婷.试论中国的能源结构与空调冷热源的选择取向.暖通空调,2000,30(5):27-32
    [16] Arif Hepbasli, Ozay Akdemir, Ebru Hancioglu. Experimental study of a closed loop vertical ground source heat pump system. Energy Conversion andManagement, 2003, 44(4): 527-548
    [17]郁永章.热泵原理与应用.北京:机械工业出版社,1993,5-11
    [18]蒋能照.空调用热泵技术及应用.北京:机械工业出版社,1997,1-11
    [19]徐邦裕,陆亚俊,马最良.热泵.北京:中国建筑工业出版社,1988,14-17
    [20]李村男,王瑾,柳建华等.液体除湿空调系统应用分析.制冷与空调,2006,6(5):43-45
    [21] Oberg V, Goswami DY. Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier. Journal of Solar Energy Engineering, 1998, 120 (4) : 289-297
    [22] D.I.Stevens, J.E Braun., S.A.Klein. An effectiveness model of liquid desiccant system heat/mass exchangers. Solar Energy, 1989, 42(6): 449-455
    [23] Zografos AI, Petroff C. A liquid desiccant dehumidifier performance model. ASHRAE Trans 1991, 97(1): 650-661
    [24]曹峰,喻李葵.液体除湿技术在建筑环境与设备中的应用及发展趋势.制冷空调与电力机械,2007,28(6):69-72
    [25] Tan KX, Deng SM. Desuperheater heat recovery hot water heating systems in subtropics: using water cooling towers to extract heat from ambient air as heat source. ASHRAE Transactions 2001(2): 608–612
    [26] Kunxiong Tan, Shiming Deng. Asimulation study on a water chiller complete with a desuperheater and a reversibly used water cooling tower (RUWCT) for service hotwater generation. Building and Environment, 2002, 37(7): 741-751
    [27] Kunxiong Tan, Shiming Deng. A method for evaluating the heat and mass transfer characteristics in a reversibly used water cooling tower (RUWCT) for heat recovery. International Journal of Refrigeration, 2002, 25(5): 552-561
    [28] Kunxiong Tan, Shiming Deng. Anumerical analysis of heat and mass transfer inside a reversibly used water cooling tower. Building and Environment, 2003, 38(1): 91-97
    [29] M.S. Park, J.R. Howell, G.C. Vliet, et al. Numerical and experimental results for coupled heat and mass transfer between a desiccant film and air in cross-flow. International Journal or Heat and Mass Transfer, 1994, 37(1): 395-402
    [30] M. S. Park, John R. Howell, Gary C. Vliet, et al. Numerical and experimental results for coupled heat and mass-transfer between a desiccant film and air in cross-flow. International Journal of Heat and Mass Transfer, 1994, 37(1): 395-402
    [31] Liu XH, Zhang Y, Qu KY, et al. Experimental study on mass transferperformances of cross-flow dehumidifier using liquid desiccant. Energy Conversion and Management, 2006,47(15-16): 2682–2692
    [32] D.R. Olander. Design of direct contact cooler-condensers. Industrial and Engineering hemistry, 1961, 53(2): 121-126
    [33] Grossman G. Simultaneous heat and mass transfer in film absorption under laminar flow. International Journal of Heat and Mass Transfer, 1983, 26(3): 357-371
    [34] M. Sadasivam, A.R. Balakrishnan. Effectiveness-NTU method for design of packed bed liquid desiccant dehumidifiers. Chemical engineering research & design, 1972, 70(9): 572-577
    [35] Ullah, M. R., Kerrleborough, C. F., Gandhidasan, P. Effectiveness of moisture removal for adiabatic counterflow packed tower absorber operating with CaCl_2-air contact system. Journal of Solar Energy Engineering, 1988, 110(5): 98-101
    [36]路则锋,陈沛霖,张旭.逆流填料式液体除湿系统传热传质过程解析解.同济大学学报,2000,28(3):342-347
    [37]路则锋.一种新的空气状态参数—热力学盐球温度.暖通空调,2001,31(3):77-79
    [38]路则锋,陈沛霖.逆流填料式液体除湿系统传热传质过程的分析解法及应用.太阳能学报,2000,21(3):439-446
    [39]路则锋,闫新华.逆流填料式液体除湿系统设计计算的ε-NTU法.暖通空调,2002,32(3):123-125
    [40]刘晓华,江亿,曲凯阳,等.叉流除湿器中溶液与空气热质交换模型.暖通空调,2005,35(1):86,115-119
    [41]陈晓阳,刘晓华,李震,等.溶液除湿/再生设备热质交换过程解析解法及其应用.太阳能学报,2004,25(4):509-514
    [42]刘晓华,江亿,曲凯阳.叉流溶液除湿装置全热交换过程的解析解.太阳能学报,2006,27(8):774-781
    [43]刘晓华,张岩,张伟荣,等.溶液除湿过程热质交换规律分析.暖通空调,2005,35(1):110-114
    [44]刘晓华,江亿,常晓敏.溶液除湿空调系统中叉流再生装置热质交换性能分析.暖通空调,2005,35(12):10-15,83
    [45]丁育红.液体除湿剂和空气热质传递过程的分析.节能,2007,(5):18-19,48
    [46]李震.溶液-湿空气热质交换过程的匹配研究.暖通空调,2005,35(1):103-109
    [47] Kashinath R. Patil, Atri D. Tripathi, Gopal Pathak, et al. Thermodynamic Properties of Aqueous Electrolyte Solutions.1:Vapor Pressure of Aqueous Solutions of LiCl, LiBr, and LiI. Journal of Chemical and Engineering Data, 1990, 35(2): 166-168
    [48] Kashinath R. Patil, Atri D. Tripathi, Gopal Pathak, et al. Thermodynamic properties of aqueous electrolyte solutions.2:Vapor pressure of aqueous solutions of NaBr , NaI , KCl , KBr , KI , RbCl ,CsCl , CsBr , CsI , MgCl_2 , CaCl_2 , CaBr2 , CaI2. Journal of Chemical and Engineering Data, 1991, 36(2): 225-230
    [49]易晓勤.常用溶液除湿剂的性质研究:[清华大学硕士学位论文] .北京:清华大学,2009,10-28
    [50] Manuel R. Conde. Properties of aqueous solutions of lithium and calcium chlorides:formulations for use in air conditioning equipment design. International Journal of Thermal Sciences, 2004, 43(4): 367-382
    [51]杨英,李心刚,李惟毅,等.液体除湿特性的实验研究.太阳能学报,2000,21(2):155-159
    [52]董岩,李惟毅,方承超.溶液型空气除湿实验研究.天津大学学报,2001,34(1):81-84
    [53]赵云,施明恒.太阳能液体除湿空调系统中除湿剂的选择.工程热物理学报,2001,22(S1):165-168
    [54]徐学利,张立志,朱冬生.液体除湿研究与进展.暖通空调,2004,34(7):22-26,59
    [55]魏宝明.金属腐蚀理论及应用.北京:化工工业出版社,1984,199-207
    [56]宫小龙,孙健,施明恒,等.除湿溶液除湿性能的对比实验研究.制冷与空调, 2005,5(5):81-84
    [57]孙健,宫小龙.除湿溶液蒸汽压的研究.制冷学报,2004,(1):27-30
    [58]赵云,施明恒.太阳能液体除湿空调系统中除湿器型式的选择.太阳能学报,2002,23(1):32-35
    [59]宣永梅,肖赋.香港地区溶液除湿与蒸发冷却复合系统的节能分析.建筑科学,2009,25(2):63,84-87
    [60]刘晓华,曲凯阳,江亿.盐溶液与空气接触的除湿单元模块性能研究.太阳能学报,2006,27(5):456-462
    [61]安守超,王谨,柳建华,等.液体除湿填料塔液体夹带和压降问题研究.暖通空调,2007,37(4):109-112
    [62]李惟毅,董岩,方承超.液体除湿系统的实验研究.太阳能学报,2000,21(4):391-395
    [63]魏宝明.金属腐蚀理论及应用.北京:化工工业出版社,1984,199-207
    [64]张欢,李春茹,李博佳.金属填料型吸收式除湿器的除湿性能研究.暖通空调,2009,39(9):46-50
    [65]殷勇高,张小松,赖融冰.两种盐溶液除湿器的建模与对比.化工报.2006,57(12):2828-2833
    [66]杜强,刘韫刚.热湿地区溶液除湿系统处理空调新风的实验研究.暖通空调, 2008,38(7):102-105
    [67]刘晓华,江亿,曲凯阳.使用吸湿溶液的叉流除湿模块尺寸优化分析.太阳能学报,2006,27(9):878-884
    [68]柳建华,顾卫国,路阳.液体除湿器的数值模拟分析.暖通空调,2006,36(6):57-59,76
    [69]刘光启,马连湘,刘杰.化学化工物性数据手册.北京:化学工业出版社,2002,451-506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700