水下传感器网络组网通信协议研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络在民用和军事领域有着广阔的应用前景,因此得到了国内外的高度重视。随着人们对辽阔海洋探索的迫切渴望和沿海地区军事防御、商业开发等需求的日益增加,以无线传感器网络为基础的水下传感器网络,也同样已经引起了学术界和工业界的密切关注,它将在未来的水下监视预警系统中发挥重要作用,因此对水下传感器网络的研究是一项具有重大意义的研究课题。
     高效的网络拓扑结构和通信协议对于无线传感器网络至关重要。而水下声信道极为特殊,时延大且易变、多径效应和多普勒频率偏移严重,使得陆基无线通信网络的技术不能直接应用于水下。因此水下传感器网络存在能量消耗均衡、高效的拓扑结构、能量有效的通信协议等方面的诸多挑战。基于此,本文在组网相关技术难点方面展开研究。首先针对网络拓扑结构进行理论研究,并设计能量消耗均衡的拓扑结构模型。然后分别研究和设计了适应于水下高传输延迟和高能耗特性的路由协议和MAC协议。最后通过仿真(实验)结果论证这些协议和拓扑结构的良好性能和可行性。
     本文所做的工作主要有以下几个方面:
     (1)建立了网络拓扑结构与能量消耗分析模型:针对水下传感器网络的网络结构进行分析。利用能耗模型,分析水下信道多跳传输的能量消耗,水下环境分簇网络结构的优势及其网络能量消耗最优的簇头数目。以此为基础,给出水下环境下的分簇多跳网络拓扑结构,并指出了后续章节的研究重点和思路。
     (2)提出了适合多跳结构的传感器网络非均等分簇算法:通过网络结构分析模型和水下声信道能耗模型,以几何规划理论推导为基础,提出了一种能量消耗均衡的分簇策略BECS。该策略通过距离向量和能量水平智能地改变节点成为簇头的概率,并使簇头自适应的确定其“管辖”范围大小。同时还引入簇头协商机制,使得簇头分布均匀,较好地均衡了网络负载,有效的延长网络的生命周期。
     (3)提出了水下传感器网络中基于前向簇头和前向网关的路由算法:针对水下的高传输延迟和高能耗问题,以分簇结构为基础,提出了以前向簇头和前向网关为基础的路由协议FFBR。此协议充分利用节点的地理位置信息,使得网络在拓扑结构初始化的过程中就能够基本形成方向性节能路由,同时通过前向簇头和前向网关的选择策略,保证网络能量消耗均衡,并减小了路由建立造成的开销和时延。
     (4)提出水下网络中基于预约的能量有效的MAC协议:针对水下声信道传输时延长、多变、同步难等特点,结合分簇结构提出了一种基于预约的能量有效MAC协议。此协议运用时间标记的方法,解决水下传感器网络中数据传送接收同步的问题,同时运用“保护时间”的方法,尽量减少和避免水下传感器网络中,由于信道变化而引起的数据传输冲突,提高通信效率。
     本文的研究工作对水下传感器网络提出了一种较优的网络结构组织方法,并针对水下传感器网络特点提出了切实可行的通信协议,有一定的理论意义和实际应用前景。
With the wide application in both civilian and military domains, wireless sensor network (WSN) has been highly focused on in the world. Furthermore, along with the urgent requirement for exploring wide ocean area and the constant growing developments of military defense and business exploiture, underwater acoustic wireless sensor network (UAWSN) based on WSN is also being concerned and expected to play a very important role in future underwater monitoring system. Therefore, UAWSN are becoming those research topics with great significances.
     As known, an efficient design of network topology and communication protocol is very important for UAWSN. Besides that, long transmission delay, serious multi-path reflection and Doppler frequency spread are also very serious in the underwater acoustic channel. These problems prevent many techniques used in the land wireless sensor network transplanting into UAWSN directly. So the UAWSN confronts several challenges such as balanced energy consumption, network topology and energy efficient communication protocol.
     Based on above discussion, this thesis addresses those problems relative to the network organization. First of all, theoretical researches are developed on the network topology, and the topology model of balanced energy consumption is also designed. After that, deep researches on the routing and MAC protocols of UAWSN are developed and designed to be able to avoid long transmission delay and heavy energy consumption. Finally, sufficient simulations are made and experimental results demonstrate the better performance and feasibility of those proposed protocols.
     Main works in this thesis fall into following aspects:
     (1) Network topology and energy consumption analysis. By the usage of energy consumption model for the underwater acoustic channel, the energy consumption of node on multi-hop path, the advantage of underwater clustered network and the optimal number of cluster head for energy consumption are analyzed in detail, which become the theoretical basis for the next research on the selection of network topology.
     (2) Propose adaptive clustering algorithm in underwater multi-hop sensor network. By using the network analysis model and the underwater energy consumption model, an efficient balanced energy consumption strategy (BECS) is proposed based on the geometrical programming theory. BECS makes use of the distance vector and node energy level to adaptively dynamically change the probability for a node becoming the cluster head, and enables the cluster head to adaptively determine its managing radii. As expected, BECS balances the network burden very well and prolongs the life time of network.
     (3) Propose routing algorithm based on the forward cluster head and forward gateway in the UAWSN. A routing protocol based on the forward cluster head and forward gateway is proposed to solve the long delay and heavy energy consumption problems in acoustic transmission.
     (4) Propose energy efficient MAC protocol in the acoustic network. An energy efficient MAC protocol based on the real-time delay estimation is proposed to overcome the problems such as long delay, synchronization difficulty and uncertain variation in the UAWSN.
     The research of this thesis optimized the topology of the underwater sensor networks to certain extend, especially, propose feasible communication protocol for the UAWSN, it can expedite the ocean explore and research.
引文
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramanisam, et al. Wireless sensor networks: a survey. Computer Networks, Elsevier, 2002, 38(4): 393-422
    [2] Sensor Webs. http: //sensorwebs. jpl. nasa. gov/
    [3] Pottie J G and Kaiser J W. Wireless Integrated Network Sensors. In Proceedings of the ACM Communications. New York: ACM Press, 2000: 551-558
    [4] University of California at Los Angeles. WINS: Wireless Integrated Network Sensors. http: //www. janet. ucla. edu/WINS/biblio. htm
    [5] Warneke B, Last M, Liebowitz B, et al. Smart Dust: Communicating with a Cubic-millimeter Computer. IEEE Computer Magazine, 2001, 34(1): 44-51
    [6]李石坚,徐从富,吴朝晖等.面向目标跟踪的传感器网络布局优化及保护策略.电子学报, 2006, 34(1): 71-76
    [7]刘丽萍,王智,孙优贤.无线传感器网络部署及其覆盖问题研究.电子与信息学报, 2006, 28(9): 1752-1757
    [8]于海斌,曾鹏,王忠锋等.分布式无线传感器网络通信协议研究.通信学报, 2004, 25(10): 102-110
    [9] I. F. Akyildiz, D. Pompili, and T. Melodia. Underwater acoustic sensor networks: research challenges. Ad Hoc Networks (Elsevier), 2005, 3(3): 257–279
    [10] Second field test for the AOSN program. Monterey Bay August 2003. http: //www. mbari. org/aosn/MontereyBay2003/MontereyBay2003Default. htm
    [11] J. A. Rice, R. K. Creber, C. L. Fletcher, et al. Seaweb Undersea Acoustic Nets. Biennial Review 2001, SSC San Diego Technical Document TD3117: 234-250
    [12] J. A. Rice. Telesonar Signaling and Seaweb Underwater Wireless Networks. Proceeding of NATO Symposium on New Information Processing Techniques for Military Systems, Turkey, RTO, MP-049: 1-13
    [13] P. S. Bogden, et al. Front-Resolving Observational Network with Telemetry. Proceeding of. AGU Ocean Sciences Mtg., San Antonio, 2000: 15-22
    [14] S. McGirr, K. Raysin, C. Ivancic, and C. Alspaugh. Simulation of underwater sensor networks. Proceeding of IEEE Oceans’99 Conference, Seattle WA, IEEE Press.1999: 21-27
    [15] M. Grund, L. Freitag, J. Preisig, K. Balll. The PLUSNet Underwater Communications System: Acoustic Telemetry for Undersea Surveillance. In Proceeding of IEEE OCEANS 2006, Singapore, IEEE Press, 2006: 1-5
    [16] J. Proakis, E. Sozer, J. Rice, and M. Stojanovic. Shallow Water Acoustic Networks. IEEE Communications Magazine, 2001, 11(1): 114-119
    [17] M. Stojanovic, Acoustic (underwater) communications. In J. G. Proakis (Ed. ), Encyclopedia of Telecommunications, Wiley, New York, 2003
    [18]许俊.水声语音通信研究: [博士学位论文].厦门大学图书馆. 2001
    [19] Adam Zielinski, Young-Hoon, et al. Performance Analysis of Digital Acoustic Communication in a Shallow Water Channel. IEEE Journal of Oceanic Engineering, 1995, 20(4): 293-299
    [20] Daniel B. Kifoyle and Arthur B. Baggeroer. The State of the Art Underwater Acoustic Telemetry, IEEE Journal of Oceanic Engineering, 2000, 25 (5): 4-26
    [21] Millica Stojanovic. Recent Advances in High-Speed Underwater Acoustic Communications. IEEE of Oceanic, 1996, 21(2): 125-136
    [22]张玉良等.高速数字水声通信系统的研究.声学与电子工程, 2002, 4(4): 6-12
    [23] Geller, J, M. Transmission Brossier, V Capellano. Equalizer for High Data Rate in Underwater Communications. In Proceeding of Oceans’94. IEEE Press, 1994: 302-306
    [24] Georgios B. Giannakis. Highlighs of Signal Processing for Communications. IEEE Signal Processing Magazine, 1999, 3(3): 14-50
    [25] LinkQuest Inc. Underwater Acoustic Modem Datesheet. http: //www. o-vations. com/
    [26] I. F. Akyildiz, D. Pompili, and T. Melodia. Challenges for Efficient Communication in Underwater Acoustic Sensor Networks. IEEE ACM Sigbed Review, 2004, 1(2): 10-24
    [27] J. Heidemann, Y. Li, A. Syed, et al. Underwater sensor networking: Research challenges and potential applications. USC/ISI Technical Report ISI-TR-2005-603, 2005
    [28] J. Proakis, E. M. Sozer, J. A. Rice, et al. Shallow Water Acoustic Networks. IEEECommunications Magazines, 2001, 32(11): 114-119
    [29] J. G. Proakis, E. M. Sozer, J. A. Rice, et al. Shallow water acoustic networks, IEEE Communications Magazine, 2001, 33(11): 114-119
    [30] R. J. Urick. Principles of Underwater Sound. McGraw-Hill, 1983
    [31] E. Sozer, M. Stojanovic, and J. Proakis. Underwater Acoustic Networks. IEEE Journal of Oceanic Engineering, 2000, 25(1): 72–83
    [32] V. Ravelomanana. Extremal properties of three-dimensional sensor networks with applications. IEEE Transactions on Mobile Computing, 2004, 3(3): 246-257
    [33] R. Davis, C. Eriksen, C. Jones, Autonomous buoyancy driven underwater gliders, In G. Griffiths (Ed. ), The Technology and Applications of Autonomous Underwater Vehicles, Taylor and Francis, London, 2002
    [34] P. Ogren, E. Fiorelli, N. E. Leonard. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control, 2004, 49 (8): 1292-1302
    [35] E. Fiorelli, N. Leonard, P. Bhatta, et al. Multi-AUV control and adaptive sampling in Monterey Bay. IEEE Journal of Oceanic Engineering, 2006, 31(4): 935-948
    [36]熊桂喜,王小虎等译.计算机网络(第3版).清华大学出版社, 1998
    [37] Joseph A. Rice, Robert K. Creber, Christopher L. Fletcher. Seaweb Underwater Acoustic Nets. http: //www. nosc. mil/stilpublications/pubs/td/3117/234. pdf
    [38] Joseph A. Rice. Seaweb Undersea Acoustic Networks. http: //www. dtnrg. org/workshop-slides/rice-seaweb. pdf
    [39] http: //cordis. europa. eu/mast/src/project. htm
    [40] M. W. Nelisse. Networking Counsiderations for Acoustic Communication within Multi-Node Underwater Sensor Networks. In proceedings of the 7th European Conference on Underwater Acoustic (ECUA 2004), Netherlands, IEEE Press, 2004: 43-51
    [41] http: //www. ncl. ac. uk/eece/underwater-acoustics/acme/index. htm
    [42] R. Jurdak, C. V. Lopes, P. Baldi. Battery life estimation and optimization for underwater sensor networks. In IEEE Sensor Network Operations. New York: IEEE Press, 2006: 397-420
    [43] L. Freitag, J. Stojanovic. A Bidirectional acoustic communication system forunderwater vehicles. In Proceedings of the OCEAN'98. Nice: IEEE Press, 1998: 482-486
    [44] L. Freitag, J. Stojanovic. A Bidirectional acoustic communication system for underwater vehicles. In Proceedings of the OCEAN'98. Nice: IEEE Press, 1998: 482-486
    [45] J. H. Fischer, K. H. Bennett. High-Data-rate, underwater acoustic data communication, Sea Tech., 1993, 5(1): 10-13
    [46] M. Stojanovic. Communications Recent Advances in High-Speed Underwater Acoustic. IEEE Journal of Oceanic, 1996, 21(2): 125-136
    [47] Mhatre V, Rosenberg C. Design guidelines for wireless sensor networks: communication, clustering and aggregation. Ad Hoc Network Journal, 2004, 2(1): 45-63
    [48] Bao L and Garcia-Luna-Aceves J. J. Topology Management in Ad Hoc Networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2003), Annapolis: ACM Press, 2003: 129-140
    [49]孙力娟,郭剑,陆凯等.基于量子遗传算法的传感器网络拓扑结构控制.通信学报, 2006, 27(12): 1-5
    [50] N. N. Soreide, C. E. Woody, S. M. Holt. Overview of ocean based buoys and drifters: Present applications and future needs. In proceeding of the 16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, January 2004, New York, IEEE Press, 2004: 112-123
    [51] AUV Laboratory at MIT Sea. http: //auvlab. mit. edul
    [52] L. Berkhovskikh and Y. Lysanov, Fundamentals of Ocean Acoustics. New York: Springer, 1982
    [53] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An Application- specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions On Wireless Communications, 2002, 1(4): 660-670
    [54]唐勇,周明天,张欣.无线传感器网络路由协议研究进展.软件学报, 2006, 17(3): 410-421
    [55] Estrin D, Culler D, Pister K, et al. Connecting the Physical World with Pervasive Networks. IEEE Pervasive Computing Archive, 2002, 1(1): 59-69
    [56] Elson J, Estrin D. Wireless Sensor Networks: A Bridge to the Physical World. Wireless Sensor Networks, 2004, 1(1): 3-20
    [57]孙利民,李建中,陈渝等.无线传感器网络.北京:清华大学出版社, 2005
    [58] Liang Zhao, Qilian Liang. Optimum Cluster Size for Underwater Acoustic Sensor Networks. In Proceedings of the IEEE Military Communications Conference (MILCOM 2006). Washington: IEEE Press, 2006: 1-5
    [59] Makhija D., Kumaraswamy P., Roy R.. Challenges and Design of Mac Protocol for Underwater Acoustic Sensor Networks. In Proceedings of the 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. Boston: IEEE Press, 2006: 1-6
    [60] Shih E, Cho S, Ickes N, et al. Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In Proceedings of the ACM seventh annual international conference on Mobile computing and networking (MobiCom 2001). Rome: ACM Press, 2001: 272-286
    [61] Heidemann J., Wei Ye, Wills J., et al. Research challenges and applications for underwater sensor networking. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2006). Las Vegas: IEEE Press, 2006: 228-235
    [62] Lotfi Benmohamed, Chimento, P., Bharat Doshi, et al. Sensor Network Design for Underwater Surveillance. In Proceedings of the IEEE Military Communications Conference (MILCOM 2006). Washington: IEEE Press, 2006: 1-7
    [63]任丰原,黄海宁,林闯.无线传感器网络.软件学报, 2003, 14(7): 1282-1291
    [64] Ganesan, Deepak, Cerpa, et al. Networking Issues in Wireless Sensor Net-works. Journal of Parallel and Distributed Computing, Elsevier, 2004, 64(7): 799-814
    [65] Ahmed A. Ahmed, Hongchi Shi, and Yi Shang. A Survey on Network Protocols for Wireless Sensor Networks. In International Conference on Information Technology: Research and Education, 2003 (ITRE 2003). Washington: IEEE Press, 2003: 301-305
    [66] Arati Manjeshwar and Dharma P. Agrawal. TEEN: A Routing Protocol forEnhanced Efficiency in Wireless Sensor Networks. In Proceeding of the IEEE 15th Parallel and Distributed Processing Symposium. San Francisco: IEEE Press, 2001: 2009-2015
    [67] Wook Choi, Sajal K. Das, et al. Angle-based Dynamic Path Construction for Route Load Balancing in Wireless Sensor Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2004), Atlanta: IEEE Press, 2004: 2474-2479
    [68] Ram Ramanathan and Regina Rosales-Hain. Topology Control of Multihop Wireless Networks Using Transmit Power Adjustment, In Nineteenth Annual 95 Joint Conference on IEEE Computer and Communications Societies (INFOCOM2000), Tel-Aviv: IEEE Press, 2000: 404-413
    [69] Tzung-Shi Chen, Hua-Wen Tsai, Chih-Ping Chu. Gathering-Load-Balanced Tree Protocol for Wireless Sensor Networks. In Proceeding of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. Taichung: IEEE Press, 2006, 2: 8-13
    [70] J. Li and P. Mohapatra. An analytical model for the energy hole problem in many-to-one sensor networks, In Proceedings of the IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall). Dallas: IEEE Press, 2005: 2721-2725
    [71] Raghunathan V, Schurgers C, Park S, et al. Energy-aware wireless micro-sensor networks. IEEE Signal Processing Magazine, 2002, 19(2): 40-50
    [72] S. Lindsey and C. Raghavendra. PEGASIS: Power-Efficient GAthering in Sensor Information Systems. In Proceedings of the IEEE Aerospace Conference. Big Sky: IEEE Press, 2002: 1125-1130
    [73] Dasgupta K, Kalpakis K, Namjoshi P. An efficient cluste-ring-based heuristic for data gathering and aggregation in sensor networks. In Proceedings of the IEEE Wireless Communications and Networking Conference. New Orleans: IEEE Press, 2003: 1948-1953
    [74] Younis O., Fahmy S., HEED: A Hybrid, Energy- Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks, IEEE Transactions on Mobile Computing, 2004, 4(3): 366-379
    [75] Li C F, Ye M, Chen G H, Wu J. An energy-efficient unequal clustering mechanismfor wireless sensor networks. In Proceedings of the 2nd IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2005), Washington: IEEE Press, 2005: 7803-7811
    [76] Gupta I, Riordan D, Sampalli S. Cluster-Head election using fuzzy logic for wireless sensor networks. In Proceedings of the 3rd Annual Communication Networks and Services Research Conf. Halifax: IEEE Press, 2005: 255-260
    [77]郑增威,吴朝晖,林怀忠等.可靠传感网聚类路由算法研究.浙江大学学报(工学版), 2005, 39(10): 1461-1464
    [78] Zhang Q, Xie ZP, Ling B, et al. A maximum lifetime data gathering algorithm for wireless sensor networks. Journal of Software, 2005, 16(11): 1946-1957
    [79] C. F. Chiasserini, I. Chlamtac, P. Monti, et al. Energy Efficient Design of Wireless Ad Hoc Networks. In Proceedings of the Networking 2002, Lecture Notes in Computer Science (LNCS). Pisa: Springer Press, 2002: 387-398
    [80] S. Ghiasi, A. Srivastava, X. Yang, et al. Optimal Energy Aware Clustering in Sensor Networks. Sensors Magazine, 2002, 19(2): 258-269
    [81] Soro S, Heinzelman W. Prolonging the lifetime of wireless sensor networks via unequal clustering. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium(IPDPS 2005). Denver: IEEE Press, 2005: 1530-1538
    [82]李成法,陈贵海,叶懋等.一种基于非均匀分簇的无线传感器网络路由协议.计算机学报, 2007, 30(1): 27-36
    [83]胡宁,张德运.无线传感器网络的能量平衡路由.西安交通大学学报, 2006, 40(6): 666-680
    [84] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, et al. Directed Diffusion for Wireless Sensor Networking. IEEE/ACM Transactions on Networking, 2003, 11(1): 2-16
    [85]崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展.计算机研究与进展, 2005, 42(1): 163-174
    [86] S. J. Park, R. Vedantham, R. Sivakumar, et al. A scalable approach for reliable downstream data delivery in wireless sensor networks, in Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2004). Roppongi Hills: ACM Press, 2004: 78-89
    [87] C. F. Chiasserini and M. Garetto, Modeling the performance of wireless sensor networks. In Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2004), Hong Kong: IEEE Press, 2004: 540-559
    [88] Tao Shu, Marwan Krunz, Sarma Vrudhula. Power Balanced Coverage-Time Optimization for Clustered Wireless Sensor Networks. In Proceeding of MobiHoc’05, IIinois, USA. 2005: 111-121
    [89] J. G. Ecker. Geometric programming: methods, computations and applications, Society of Industrial and Applied Mathematics, SIAM Review, 1980, 22(3): 338-362
    [90] J. Kong, J. -H. Cui, D. Wu, et al. Building Underwater Ad-hoc Networks and Sensor Networks for Large Scale Real-time Aquatic Applications. In Proceeding of IEEE Military Communications Conference (MILCOM 2005), Atlantic: IEEE Press, 2005: 1535-1541
    [91] J. -H. Cui, J. Kong, M. Gerla, et al. Challenges: Building Scalable and Distributed Underwater Wireless Sensor Networks(UWSNs) for Aquatic Applications. Technical report, UCONN CSE Technical Report: UbiNet-TR05-02 (BECAT/CSE-TR-05-5), Jan. 2005
    [92] J. G. Proakis, J. A. Rice, E. M. Sozer, et al. Shallow water acoustic networks, In: J. G. Proakis (Ed. ), Encyclopedia of Telecommunications, John Wiley and Sons, 2003
    [93] Shigang Chen and Klara Nahrstedt. Distributed Quality-of-Service Routing in Ad-hoc Networks. IEEE Journal on Selected areas in Communications, 1999, 17(8): 1488-1505
    [94] T. W. Chen, J. T. Tsai, and M. Gerla. QoS Routing Performance in Multihop Multimedia Wireless Networks. In Proceedings of the IEEE Sixth International Conference of Universal Personal Communications, San. Diego: IEEE Press, 1997: 557-561
    [95] R. Sivakumar, P. Sinha, and V. Bharghavan. CEDAR: Core Exraction Distributed Ad Hoc Routing Algorithm. IEEE Journal on Selected Areas in Communications, 1999, 17(8): 1454-1465
    [96] B. Hughes and V. Cahill. Achieving Real-time Guarantees in Mobile Ad Hoc Wireless Networks. In Proceedings of t the 24th IEEE Real-time SystemsSymposium. Rio de Janeiro: IEEE Press, 2003: 1347-1351
    [97] Cruz, R. L., Santhanam, A. V. Optimal routing, link scheduling and power control in multihop wireless networks. In Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), San Francisco: IEEE Press, 2003: 702-711
    [98] Jamal N. Al-karaki and Ahmed E. Kamal. Routing Techniques in Wireless Sensor Networks: A Survey. Wireless Communications, IEEE Personal Communications, 2004, 11(6): 6-28
    [99] Tian He, J. A. Stankovic, Chenyang Lu, et al. SPEED: A Stateless Protocol for Real-time Communication in Sensor Networks. In Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS 2003). Providence: IEEE Press, 2003: 46-55
    [100] Sohrabi K., Gao J., Ailawadhi V., et al. Protocols for self-organization of a wireless sensor network. IEEE Personal Communications Magazine, 2000, 7(5): 16-27
    [101] S. Giordano, I. Stojmenovic, and L. Blazevic. Position Based Routing Algorithms for Ad Hoc Networks: A Taxonomy. Ad Hoc Wireless Networks, 2003, 21(2): 324-329
    [102] G. G. Finn. Routing and Addressing Problem in Large Metropolitan-Scale Inter-networks. ISI res. Rep ISU/RF-87-180, March 1987
    [103] H. Takagi and L. Kleinrock. Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals. IEEE Transactions on Communications, 1984, 32(3): 246-257
    [104] E. Kranakis, H. Singh, and J. Urrutia. Compass Routing on Geometric Networks. In Proceedings of the 1lth Canadian Conference on Computational Geometry. Vancouver: IEEE Presss, 1999: 51-54
    [105] C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In Proceedings of the ACM SIGCOMM 1994, London: ACM Press, 1994: 234–244
    [106] P. Jacquet, P. Muhlethaler, T. Clausen, et al. Optimized link state routing protocol for ad hoc networks. In: Proceedings of the IEEE International Multi Topic Conference (INMIC 2001). Pakistan: IEEE Press, 2001: 62-68
    [107] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless networks. In Mobile Computing, edited by Tomasz Imielinski and Hank Korth, chapter 5, pages 153–181. Kluwer Academic Publishers, 1996
    [108] C. E. Perkins and E. M. Royer. Ad-Hoc On-Demand Distance Vector Routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’99), New Orleans: IEEE Press, 1999: 90-100
    [109] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, Routing with guaranteed delivery in ad hoc wireless networks, ACM Wireless Networks, 2001, 7(6): 609-616
    [110] G. Xie and J. Gibson, A Network Layer Protocol for UANs to Address Propagation Delay Induced Performance Limitations, in Proceedings of the IEEE OCEANS'01. Honolulu: IEEE Press, 2001: 2087-2094
    [111] T. Melodia, D. Pompili, I. F. Akyildiz, Optimal local topology knowledge for energy efficient geographical routing in sensor networks, in: Proceedings of IEEE INFOCOM’04, Hong Kong SAR, PRC, March 2004
    [112] Peng Xie, Jun-Hong Cui, et al. VBF: Vector-Based Forwarding Protocol for Underwater Sensor Networks. UCONN CSE Technical Report: UbiNet-TR05-03, Feb 2006
    [113] Emad Felemban, Chang-Gun Lee, Eylem Ekici, Ryan Boder, and Serdar Vural. Probabilistic QoS Guarantee in Reliability and Timeliness Domains in Wireless Sensor Networks. In Twenty-Fourth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005),. Miami: IEEE Press, 2005: 2646-2657
    [114] Wang, S. -C., Chen, Y. -M., et al. Performance evaluations for hybrid IEEE 802. 11b arid 802. 11g wireless networks. in: Proceeding of the 24th IEEE International Performance. Computing, and Communications Conference (IPCCC 2005). Paderborn: IEEE Press, 2005: 111-118
    [115]谢希仁.计算机网络.北京:电子工业出版社, 1999
    [116] Seokjin Sung, Hyunduk Kang, Eunchan Kim, et al. Energy Consumptlon Analysls of S-MAC Protocol in Single-Hop Wireless Sensor Networks. In Proceeding of the IEEE 12th Asia-Pacific Conference on Communications. Busan: IEEE Press, 2006: 1-5
    [117] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002). New York: IEEE Press, 2002: 1567–1576
    [118] P. Karn, MACA: a new channel access method for packet radio. in: Proceedings of the 9th ARRL Computer Networking Conference. London: IEEE Press, 1990: 341-350
    [119] V. Rodoplu, Min Kyong Park. An energy-efficient MAC protocol for underwater wireless acoustic networks. In: Proceedings of the MTS/IEEE OCEANS 2005: Brest: IEEE Press, 2005: 1198-1203
    [120] Mihail L. Sichitiu. Cross-Layer Scheduling for Power Efficiency in Wireless Sensor Networks. In Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2004), Hong Kong: IEEE Press, 2004: 1740-1750
    [121] W. Ye, J. Heidemann, and D. Estrin, Medium access control with coordinated adaptive sleeping for wireless sensor networks, Trans. on IEEE/ACM Networking, 2004, 12(6). 493-506
    [122] J. Shu and P. Variaya, PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. Information Research Frontiers, 2003, 5(3): 29-37
    [123] Y. Li, W. Ye, and J. Heidemann, Energy and latency control in low duty cycle MAC protocols. in: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2005). New Orleans: IEEE Press, 2005: 30-34
    [124] C. Enz, A. El-Hoiydi, J. -D. Decotignie, et al. WiseNET: An ultralow-power wireless sensor network solution. IEEE Computer, 37(8): 62-70
    [125] Sinha A and Chandrakasan A. Dynamic power management in wireless sensornetworks. IEEE Design and Test of Computers, 2001, 18(2): 62-74
    [126] I. P. Morns, O. Hilton, A. Adams, et al. Protocols for sub-sea communication networks. in: Proceedings of MTS/IEEE OCEANS 2001: Honolulu: IEEE Press, 2001: 2076-208
    [127] G. G. Xie and J. Gibson. A Networking Protocol for Underwater Acoustic Networks.In Technical Report TR-CS-00-02, Departmentof Computer Science, Naval Postgraduate School, 2000: 12
    [128] L. Freitag, M. Stojavnovic, S. Singh, et al. Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication. IEEE Journal of Oceanic Engineering, 2001, 26(10): 586-593
    [129] A. Kebkal, K. Kebkal, and M. Komar. Data-link protocol for underwater acoustic networks. In: Proceedings of the MTS/IEEE OCEANS 2005: Brest: IEEE Press, 2005: 1174-1180
    [130] M. Stojanovic, et al. Optimization of a data link protocol for an underwater acoustic channel. In: Proceedings of the MTS/IEEE OCEANS 2005: Brest: IEEE Press, 2005: 68-73
    [131] X. Yang, K. G. Ong, W. R. Dreschel, et al. Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment. Journal of Sensors, 2002, 12(9): 455-472
    [132] J. Kong, J. hong Cui, D. Wu, et al. Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications. In Proceeding of IEEE Military Communications Conference (MILCOM 2005), Atlantic: IEEE Press, 2005: 1535-1541
    [133] Wei Ye, Heidemann, J., Estrin, D., An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002). New York: IEEE Press, 2002: 1567-1576
    [134]李彦,罗续业.海洋监测传感器网络概念与应用探讨.海洋技术, 2006, 25(4): 33-35
    [135] Peng Xie. Jun-Hong Cui. Exploring Random Access and Handshaking Techniques in Large-Scale Underwater Wireless Acoustic Sensor Networks. In Proceedings of the OCEANS 2006. Boston: IEEE Press, 2006: 1-6
    [136] Chachra S., Marefat M. Distributed Algorithms for Sleep Scheduling in Wireless Sensor Networks. In Proceeding of the IEEE International Conference on Robotics and Automation, Orlando: IEEE Press, 2006: 3101-3107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700