1.06μm调Q光纤激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳秒(ns)量级的短脉冲激光在激光雷达、激光测距、光时域反射(OTDR)和激光加工方面有广泛的应用。尤其是波长1.06μm的短脉冲很容易被金属、塑料及陶瓷材料吸收,因此更适宜应用在激光加工方面。本文针对产生ns量级短脉冲激光的调Q掺Yb~(3+)光纤激光器进行了深入的研究。结合实验室现有条件进行了如下工作:
     (1)概述调Q光纤激光器理论,对实现高功率调Q激光器的若干种方法进行了比较分析。讨论了几个重要因素:放大的自发辐射光(ASE)、Q开关速度和效率、泵浦吸收、光纤结构对主动调Q光纤激光器性能的影响。阐述了用于进行被动调Q的光纤中受激布里渊散射(SBS)的原理。
     (2)对基于光纤中SBS相位共轭效应的自调Q掺Yb~(3+)双包层光纤激光器进行了理论和实验研究。从相位共轭的原理出发,对描述光纤中信号波与声波互相作用产生后向斯托克斯(Stokes)波的纳维-斯托克斯方程及能量传输方程数值求解得到光纤中不同信号光功率下的SBS反射率,并由此通过对描述掺Yb~(3+)双包层光纤激光器的速率方程数值求解分析了不同单模光纤长度下,脉冲重复频率和脉冲能量与泵浦功率的关系。搭建掺Yb~(3+)双包层光纤作为增益介质、多个长度单模光纤作为SBS池的调Q光纤激光器进行实验研究,在作为SBS介质的单模光纤长度为2km、泵浦功率为742mW时输出较稳定激光脉冲,脉冲宽度约8.2ns,重复频率6.3MHz,平均功率207mW。
     (3)从干涉环的滤波原理出发,对带有光纤干涉环的掺Yb~(3+)双包层自调Q光纤激光器进行了理论和实验研究。通过结合SBS相位共轭原理和干涉环原理对掺Yb~(3+)双包层光纤激光器速率方程数值求解,分析了构建光纤干涉环的耦合器的耦合率及泵浦功率对输出激光脉冲重复频率的影响;根据Patrick Even关于掺Yb~(3+)双包层光纤(YDDCF)激光器中光子数守恒的半数值模型分析了耦合器的耦合率及泵浦功率对输出脉冲平均功率和脉冲能量的影响。实验测试了不同泵浦功率下脉冲重复频率和平均功率,在泵浦功率为1.21W时,激发了波长比光纤布拉格光栅(FBG)中心反射波长红移0.12nm的二阶Stokes脉冲,输出激光脉冲的平均功率为374mW,脉冲宽度为15.7ns,重复频率约9.6kHz。
     (4)从高双折射(Hi-Bi)光纤萨格纳克(Sagnac)环形滤波器原理出发讨论了利用受压电陶瓷(PZT)周期性调制的Hi-Bi光纤Sagnac环形滤波器和窄线宽FBG对光纤激光器实现主动调Q的原理,并设计全光纤结构的调Q掺Yb~(3+)双包层光纤激光器进行了实验研究。实验中PZT驱动方波电压信号的频率为10kHz、高电平为8V。在泵浦功率3W时获得了脉冲宽度1.13μs,输出平均功率935mW的激光脉冲,激光光谱中心波长1064.18nm。实验验证了这种调Q方法是可行的。
     (5)从Sagnac干涉环原理出发,阐述了非线性放大环镜(NALM)的非线性传输特性和开关阈值功率,并利用表现为对光强依赖性的NALM开关特性设计了基于NALM的全光纤调Q掺Yb~(3+)双包层光纤激光器,并对该激光器进行了实验研究。实验在NALM放大倍数为13dB、泵浦功率1.1W时,得到稳定的激光脉冲,该脉冲3dB宽度为39.7ns,重复频率17.24kHz,平均输出功率325mW,输出激光光谱中心波长为1064.219nm。实验验证了这种调Q方法是可行的。
     (6)在不同初始边界条件下数值求解描述全光纤声光(AOM)调Q掺Yb~(3+)双包层光纤激光器的速率方程,讨论了泵浦方式和输出耦合镜反射率对激光器输出脉冲特性及光纤中储能的影响。根据仿真结果从谐振腔内腔损耗和放大自发辐射光(ASE)光的建立时间及强度对激光器输出信号光平均功率、脉冲宽度、脉冲能量、光纤中储能的影响两个角度进行分析讨论。
     (7)从描述主动调Q激光器中光子数和上能级粒子数的速率方程出发,分别导出了以获得最大脉冲能量为出发点或以获得最大脉冲峰值功率为出发点来对增益光纤长度进行优化得到的数值解;分析了一定泵浦功率和腔内往返被动损耗下,对于不同输出耦合镜反射率,激光峰值功率和脉冲能量等激光参量的特性;据此分析得到不同输出耦合镜反射率下,优化增益光纤长度的不同方法。
The short laser pulses with nanosecond magnitude have great applications forextremely Lidar, range finding, OTDR and laser machining. The short pulses on 1.06μmare proper to laser processing because they are absorbed by metals, plastic and ceramicmaterials easily. On the base of our laboratory environments, this dissertation is focusedon Q-switched yb~(3+)-doped fiber lasers which include
     1. Theory of Q-switched fiber laser was summarized. Comparison and analyseswere fulfilled for methods of realizing high-power Q-switched fiber lasers. A theoreticalanalysis of several characteristics which can be critical to performances of activelyQ-switched fiber lasers was given ,such as amplificated spontaneous emission (ASE),power and rate of pump, choices of fibers, repetition rate of acousto-optic modulator.The principle of Stimulated Brillouin Scattering (SBS) has been expatiated.
     2. The generation of pulse laser exploiting SBS phase conjugation was investigatedtheoretically and experimentally. Based on the principle of phase conjugation, theinteractivity of signal wave and acoustic wave was studied by numerical calculatingNavy-Stokes equations and energy transfer equations, thus, SBS reflectivity wasobtained for different signal power. The relationship between pulse repetition rate, pulseenergy and pump power was obtained by numerical calculating rate equations whichdescribe the ytterbium-doped double-clad fiber lasers. To investigate the relationshipbetween the length of SBS medium and the attribute of output laser, an all-fiberyb~(3+)-doped Q-switched laser was designed. When the length of SMF was 2km, a trainof pulse laser was generated with pulse duration of 8.2ns, pulse repetition rate of6.3MHz, average output power of 207mW at pump power of 742mW. The results showthat the generation of pulse laser is correlative to the length of SMF which is used asSBS pool.
     3. Based on the principle of filter action of interference ring, the generation ofpulse laser exploiting interference ring was investigated theoretically andexperimentally. The rate equations of ytterbium-doped double-clad fiber lasers were solved under principles of fiber interference loop and stimulated Brillouin scattering bynumerical simulation, to obtain the relationship between pulse repetition rate, pumppower and couple ratio of the coupler which constructed the fiber interference loop. Therelationships between average output power, pulse energy, pump power and couple ratiowere obtained by exploiting the model based on photon balance. A self-Q-switchedYb~(3+)-doped double-clad fiber laser was employed experimentally to test how the pumppower affect average power and pulse repetition rate as well. A train of pulse laser wasgenerated with pulse duration of 15.7ns, pulse repetition rate of 9.6kHz, average outputpower of 374mW at pump power of 1.21W. The results show that the increase of pumppower can increase both average power and pulse repetition rate but pulse energy, theincrease of pulse energy needs to choose appropriate couple ratio and the second-orderStokes pulse will generate if the pump power is higher.
     4. The principle of active Q-switch exploiting narrow linewidth fiber Bragg grating(FBG) and Sagnac fiber loop filter constructed by Hi-Bi fiber was studied based on theprinciple of Sagnac fiber loop filter. The filter is modulated by piezoelectric ceramic(PZT) periodically. An all-fiber Q-switched Yb~(3+)-doped double-clad fiber laser wasemployed experimentally. The modulating voltage and frequency of PZT were 8V and10kHz, respectively. A train of pulse laser was generated with pulse duration of 1.13μs,average output power of 935mW at pump power of 3W. The central wavelength ofspectrum was 1064.18nm. The experiment proved this Q-switching is feasible.
     5. The principle of passive Q-switch exploiting narrow linewidth fiber Bragggrating (FBG) and nonlinear amplification loop mirror (NALM) was studied based onthe on-off character of NALM. An all-fiber Q-switched Yb~(3+)-doped double-clad fiberlaser was employed experimentally. When the magnification times of NALM was13dB, a train of pulse laser was generated with pulse duration of 39.7ns, averageoutput power of 325mW at pump power of 1.1W. The central wavelength of spectrumwas 1064.219nm. The experiment proved this Q-switching is feasible.
     6. The rate equations of all-fiber acousto-optic Q-switched lasers was solved underdifferent initial boundary conditions by numerical simulation to obtain the distributionof upper-level population density along the doped fiber under forward pumping andbackward pumping, and to understand the relationship between pulse energy, averagepower, pulse width, stored energy and pulse repetition rate, signal transmittance of the pump coupler, pump power, coupling ratio of output coupling mirror respectively. Howthe pumping manner and output coupling mirror affect the attribute of output pulse laserwere studied. The analysis of simulation was performed from viewpoint of theestablishing time and power of amplified spontaneous emission light. The results showthat pumping manners affect performance of all-fiber acousto-optic Q-switched laserssignificantly under different pulse repetition rates, so the lasers should be forwardpumped for better characteristics of output pulses under lower pulse repetition rate, andthey should be backward pumped under higher pulse repetition rate.
     7. Based on the rate equations of Q-switched fiber lasers, the optimum fiber lengthof Q-switched fiber laser for either maximum pulse energy or maximum pulse peakpower was investigated. The relationship between the optimum fiber length and theoutput coupler reflectivity is got by using the mathematical technique of Lagrangemultipliers and numerical computation. As a result, with the fiber length optimized,output pulse energy and pulse peak power can be expressed as functions of the outputcoupler reflectivity, multiplied by a few simple constants. The results show that, at agiven pump power level and a certain round-trip parasitic loss coefficient, there is anoutput coupler reflectivity of demarcation which is inversely proportional to theround-trip parasitic loss. Fiber length should be optimized to yield maximum pulseenergy when the output mirror's reflectivity is less than the demarcation point, and itshould be optimized to yield maximum pulse peak power when the output mirror'sreflectivity is more than the demarcation point.
引文
[1]Luis Zenteno.High-power double-clad fiber lasers.Journal of lightwave technology, 1993,11(9):1435-1446
    [2]Muendel M, Engstrom B, Kea D, et al.35-watt cw single mode ytterbium fiber laser at 1.1μm.CLEO, 1997, CPD30-1
    [3]Dominic V, MacCormack S, Warts, et al.110W fiber laser.Electron Lett., 1999,35(14):1158-1160
    [4]C.H.Liu, B.Ehler, F.Doerfel, et al.810W continuous-wave and single transverse-mode fiber laser using 20μm core Yb-doped double-clad fiber.Electron Lett., 2004, 40:1471-1472
    [5]J.Kirchhof, T.Sandrock, A.Harschak.1.3kW Yb-doped fiber laser with excellent beam quality.CLEO, 2004, CPDD2
    [6]Gapontsev V, Gapontsev D, Platonav N, et al.2kW cw ytterbium fiber laser with record diffraction-limited brightness.CLEO, 2005, 508
    [7]DingWei Huang, WenFung Liu, Yang C.C.Q-switched all-fiber laser with an acoustically modulated fiber attenuator.IEEE Photonics Technology Letters, 2000, 12(9):1153-1155
    [8]Shoji Adachi, Yahei Koyamada.High-performance OTDR using Q-switched erbium-doped fiber ring laser and pulse expander.OFC, 2002, 613-614
    [9]C.C.Renaud, J.A.Alvarez-Chavez, J.K.Sahu, et al.7.7 mJ pulses from a large core Yb-doped cladding pumped Q-switched fibre laser.CLEO, 2001, 219
    [10]Haiwen Cai, Jiangzhen Xia, Hao Zhao, et al.All-fiber Q-Switched Erbium Laser Using a Fiber Bragg Grating In Loop Mirror As a Wavelength-selective Intensity Modulator.OFC, 2002,THGG31
    [11]Limpert J.100-W average-power, high-energy nanosecond fiber amplifier.Appl.Phys.(B),2002, 75:477-79.
    [12]L.Tordella, H.Djellout, B.Dussardier, et al.High repetition rate passively Q-switched Nd~(3+):Cr~(4+) all-fibre laser.ELECTRONICS LETTERS, 2003, 39(18):1307-1308
    [13]YaXian Fan, FuYun Lu, ShuLing Hu, et al.Narrow-linewidth widely tunable hybrid Q-switched double-clad fiber laser.Opt.Lett., 2003, 28(7):234-236
    [14]Anting Wang, Hai Ming, Jianping Xie, et al.Erbium-doped CW and Q-switched fiber ring laser with fiber grating Michelson interferometer.CHINESE OPTICS LETTERS, 2003, 1(1):28-30
    [15]Peter D.Dragic.Injection-Seeded Q-Switched Fiber Ring Laser.IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16(8):1822-1824
    [16]G.Ravet, A.A.Fotiadi, M.Blondel, et al.Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback.ELECTRONICS LETTERS, 2004, 40(9):528-529
    [17]A.Piper, A.Malinowski, K.Furusawa, et al.High-power, high-brightness, mJ Q-switched ytterbium-doped fiber laser.ELECTRONICS LETTERS, 2004,40(15):928-929
    [18]D.Sabourdyl, A.Desfarges-Berthelemotl, A.Barth(?)l(?)myl, et al.Coherent combining of Q-switched fibre lasers.ELECTRONICS LETTERS, 2004, 40(20):1254-1255
    [19]B.Dussardier, A.Saissy, L.Tordella.A passively Q-switched Er~(3+)-doped fiber laser using a Co~(2+)-doped fiber as saturable absorber.CLEO, 2005, 562
    [20]Andrei A.Fotiadi.All-fiber passively Q-switched Ytterbium laser.CLEO, 2005, 515
    [21]J.Limpert, N.Deguil-Robin, S.Petit, et al.Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses.CLEO, 2005, 513
    [22]K.Vysniauskas, L.M.B.Hickey, S.Alam, et al.High Pulse Energy Q-Switched Laser in MOPA Configuration.Proc.of SPIE, 2005, Vol.5709:329-337
    [23]Cheng Mingyuan.High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-mm core highly multimode Yb-doped fiber amplifiers.Opt.Lett, 2005,30(4):358-360
    [24]D.Sabourdy, D.Bouyge, A.Crunteanu, et al.Q-switched fiber laser based on deformable micro-electro-mechanical mirror.CLEO/QELS, 2006, 4628029
    [25]Cunxiao Gao, Wei Zhao, Yishan Wang, et al.Passive Q-switched fiber laser with SESAM in ytterbium-doped double-clad fiber.Proc.of SPIE, 2007, Vol.6279: 62794G1-62794G6
    [26]郭春雨,阮双琛,闫培光,等.调Q掺Yb大模面积光子晶体光纤激光器研究.深圳大学学报理工版,2007, 24(1):79-84
    [27]Tommi Hakulinen, Oleg G.Okhotnikov.8ns Q-Switched fiber laser using resonant saturable absorber mirror.Proc.of SPIE, 2008, Vol.6998:6998031-6998037
    [28]X.P.Cheng, C.H.Tse, P.Shum, et al.All-Fiber Q-Switched Erbium-Doped Fiber Ring Laser Using Phase-Shifted Fiber Bragg Grating.JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008,26(8):945-951
    [29]X.P.Cheng, P.Shum, C.H.Tse, et al.All-Fiber Q-Switched Ring Laser with Increased Repetition Rate.JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 20(10):764-766
    [30]Yanming Huo, George G.King, Peter K.Cheo.Second-Harmonic Generation Using a High-EnergyandTunableQ-SwitchedMulticoreFiberLaser.IEEEPHOTONICS TECHNOLOGY LETTERS, 2004, 16(10):2224-2226
    [31]Shoji Adachi, Yahei Koyamada.Analysis and Design of Q-Switched Erbium-Doped Fiber Lasers and Their Application to OTDR.JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002,20(8):1506-1511
    [32]Shoji Adachi, Yahei Koyamada.High-performance OTDR using Q-switched erbium-doped fiber ring laser and pulse expander.OFC, 2002, 613-614
    [33]王戎瑞.固体激光雷达技术发展现状.激光与红外,1999, 29(6):422-426
    [34]M.Delgado-Pinar.Q-switching of an all-fiber laser by Acousto-optic modulation of a fiber Bragg grating.OPTICS EXPRESS, 2006,14(3):1106-1112
    [35]P.Perez-Millan, A.Diez, M.V.Andres, et al.Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating.Opt.Express, 2005, 13:5046-5051
    [36]J.J.Degnan.Theory of Optimally Coupled Q-Switched Laser.IEEE J.Quan.Electron, 1989,25(2):214-220.
    [37]E.Desurvire, J.R.Simpson.Amplification of Spontaneous Emission in Erbium-Doped Single-Mode fibers.J.Lightwave Technology, 1989, 7(5):835-845.
    [38]J.A.Alvarez-Charez, H.L.Offerhous, J.Nilsson, et al.High-energy, high-power ytterbium-doped Q-switchedfiberlaser.Opt.Lett., 2000, 25(1):37-39
    [39]Piotr Myslinski, Jacek Chrostowski.High Power Q-Switched Erbium Doped Fiber Laser.IEEE J.Quan.Electron, 1992, 28(1):371-377
    [40]Y.A.Peter, H.P.Herzig, E.Rochat, et al.Q-Switched fiber laser using a torsional micro-mirror.IEEE J.Quant.Electron, 2001, 37(2):199-205
    [41]徐之光,戴武涛,樊亚仙,等.可调谐的调Q掺Yb ~(3+)双包层光纤激光器.光子学报,2003,32(5):520-522
    [42]Cyril C.Renaud, H.L.Offerhaus, J.A.Alvarez-Chavez, et al.Characteristics of Q-Switched Cladding-Pumped Ytterbium-Doped Fiber Lasers with Different High-Energy Fiber Designs.IEEE J.Quant.Electron, 2001, 37(2):199-205
    [43]M.J.F.Dignnet.Theory of superfluorescent fiber laser.J.Lightwave Technol., 1986, LT-4(11):1631-1638
    [44]W.克希耐尔.固体激光工程(孙文等译).北京:科学出版社,2002, 410-448
    [45]韩泽.干涉型光纤水听器研究:[硕士学位论文].长沙:国防科技大学,1999, 20-24
    [46]刘颂豪,赫光生.强光光学及其应用.广州:广东科技出版社,1995, 99
    [47]K.Rzazewski, M.Lewenstein.Statistics of stimulated stokes pulse energies in the steady state regime.Optics Comm., 1982,43(6):451-454
    [48]Liang Chen, X.Bao.Analytical and numerical solutions for steady state stimulated Bnllouin scattering in a single-model fiber.Optics Comm., 1998, 152:65-70
    [49]Valeri, I.Kovalev, Robert G.Harrison.Spectral broadening of continuous wave monochromatic pump radiation caused by stimulated Brillouin scattering in optical fiber.Optical Lett., 2004,29(4):379-381
    [50]陈军,周涛,等.光纤中的瞬态SBS过程的数值分析与探讨.强激光与粒子束,2002,14(1):65-69
    [51]Aydin Yeniay, Jean Toulouse.Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers.Journal of Lightwave Technology, 2002, 20(8):1425-1431
    [52]Yuichi Takushima, Kazuro Kikuchi.Spectral gain hole burning an modulation instability in a Brillouin fiber amplifier.Optical Lett., 1995, 20(l):34-36
    [53]Andrei A.Fotiadi, Roman Kiyan, Michel Blondel.Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold.Optics Lett., 2002, 27(2):83-85
    [54]I.Velchev, W.Ubachs.Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors.Physical Review A, 2005, 71:048310-1-048310-5
    [55]韦斌,隋青美,张桂涛.基于布里渊散射的分布式光纤传感器的发展.元器件分析与应用,2004, 7:80-88
    [56]R.Bernini, A.Minardo, L.Zeni.Stimulated Brillouin scattering frequency domain analysis in a single-mode optical fiber for distributed sensing.Optics Lett., 2004, 29(17):1977-1979
    [57]魏晓锋,袁晓东,丁磊.利用受激布里渊散射压缩效应获得高功率激光输出.强激光与粒子束,1999, 11(2):129-133
    [58]Govind P.Agrawal.非线性光纤光学原理及应用(贾东方等译).北京:电子工业出版社,2002, 223-226
    [59]R.G.Smith.Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers.Apply.Opt., 1972, 11:2489
    [60]M.O.van Deventer, A.J.Boot.Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers.J.Lightwave Technol., 1994, 12(4):585-590
    [61]J.Botineau, E.Picholle, D.Bahlou.Suppression of stimulated Brillouin scattering in a fibre by changing the core radius.Electron.Lett., 1995, 31(8):668-669
    [62]周炳琨,高以智,陈家骅,等.激光原理.北京:国防工业出版社,2002, 229-230
    [63]Hongming Zhao, Qihong Lou, Jun Zhou, et al.An acousto-optic Q-switched fiber laser using China-made double-cladding fiber.CHINESE OPTICS LETTERS, 2007, 5(9):522-523
    [64]J.A.Alvarez-Chavez, H.L.Offerhaus, J.Nilsson, et al.High-energy, High-power ytterbium-doped Q-switched fiber laser.Opt.Lett., 2000, 25(1):37-39
    [65]B.E.Chiao, C.H.Townes, B.P.Stoicheff.Stimulated Brillouin Scattering and coherent Generation of intense hypersonil waves.Phys.Rev.Lett., 1964, 12:592
    [66]B.Ya.zeldovich, V.I.Poporichev, V.V.Ragulsriy.Connection between the wavefronts of reflected and exciting light in stimulated mandel Brilliouin scattering.Jetp.Lett.1972,15:109-112
    [67]Amnon Yariv.现代通信光电子学(陈鹤鸣等译).北京:电子工业出版社,2004, 487-488
    [68]钟鸣,夏光琼,吴正茂,等.利用SBS进行调Q的饵玻璃激光器工作特性研究.半导体光电,2000, 20(1):26-32
    [69]Menzel.R, Eichler.H.J.Temporal and spatial reflectivity of focused beams in stimulated Brillouin scattering for phase conjugation.Phys.Review A, 1992, 46:7139-7149
    [70]Kummrow.A, Meng.H.Press dependence of stimulated Brillouin backscattering in glass.Opt.Commun., 1991, 83:342-348
    [71]Akhmanow.S.A, Drabovich.K.N.Stimulated Raman scattering in a field of ultra short light pulses.Sov.Phys.JETP,1971,32:226-233
    [72]Fisher.R.A.Optical Phase Conjugation.New York, London: Academic Press, 1983
    [73]J.E.Bowers, S.A.Newton, W.V.Sorin, et al.Filter response of single mode fiber recirculating delay lines.Electron.Lett., 1982, 18:110-113
    [74]Z.J.Chen, A.B.Grudinin, J.Porya; et al.Enhanced Q switched in double-clad fiber lasers.Opt.Lett., 1998, 23(6):454-456
    [75]Y.-X.Fan, F.-Y.Lu, S.-L.Hu, et al.105-kW peak-power double-clad fiber laser, IEEE Photon.Technol.Lett., 2003, 15(5):652-654
    [76]L.F.Stokes, M.Chodorow, H.J.Shaw, All-single-mode fiber resonator.Opt.Lett., 1982, 7(6):288-290
    [77]J.E.Bowers, S.A.Newton, W.V Sorin, et al.Filter response of single mode fiber recirculating delay lines.Electron.Lett., 1982, 18:110-113
    [78]Patrick Even, Vincent Roncin, Brice Kerrinckx.2001 SPIE, Lannion, 421622
    [79]Ge Chunfeng, Yuan Shuzhong, et al.All-fiber Tunable Q-Switched Laser.Acta Optica Sinica,1999, 19(12):1945-1948
    [80]Du Weichong, Tam Huayao.Novel Structure for Q-Switched Er-doped Fiber Laser Using a Fiber Grating Michelson Interferometer, Acta Optica Sinica, 1997, 17(8):1077-1079
    [81]Nathaniel J.C.Libatique, Ravinder K.Jain.A Broadly Tunable Wavelength-Selectable WDM Source Using a Fiber Sagnac Loop Filter, IEEE PHOTONICS TECHNOLOGY LETTERS,2001, 13(12):1283-1285
    [82]廖延彪.光纤光学.北京:清华大学出版社,2004,78-85
    [83]Giallorenzi T G, Buchro J A, Dandridge A, et al.Optical Fiber Sensor Technology.IEEE J Quantum Electronics, 1982, 18(4):626-636
    [84]Y.Shihata, N.Kihchi, S.Oku, et al.Filter-free all-optical wavelength conversion using Sagnac interferometer integrated with parallel-amplifier structure (SIPAS).ELECTRONICS LETTERS,2002, 38(21):1273-1275
    [85]E.A.Kuiin, N.Komeev, J.W.Haus, et al.Theory of Nonlinear Loop Mirrors with Twisted Low Birefringent Fiber.J.Opt.Soc.Am.B, 2001, 18:919-925
    [86]Carmen Vazquez, Salvador Elias Vargas, Jos(?) Manuel S(?)nchez Pena.Sagnac Loop in Ring Resonators for Tunable Optical Filters.JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005,23(8):2555-2567
    [87]何慧茹,元秀华.基于非线性放大环镜的全光开关特性研究.中国激光,2005,32(3):418-422
    [88]N.J.Doran, D.Wood.Nonlinear-optical loop mikor.Opt.Lett., 1988, 13:56-58
    [89]M.E.Fermann, F.Haberl, M.Hofer, et al.Nonlinear amplifying loop mirror.Opt.Lett., 1990, 15(13):752-754
    [90]Yong Wang, Chang-Qing Xu.Fluences of stimulated Raman scattering on Q-switched fiber lasers.Proc.of SPIE vol.6343, 2006
    [91]朱洪涛,楼祺洪,周军,等.千瓦级双包层光纤激光器冷却方案设计理论和实验研究,物理学报,2008,57:4966
    [92]Yong Wang, Alejandro Martinez-Rios, Hong Po.Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking.Opt.Commun., 2003, 224:113-123
    [93]J.J.Degnan.Theory of the Optimally Coupled Q-Switched Laser.IEEE Journal of QUANTUM ELECTRONICS, 1989,25(2):214-220
    [94]Xing-yu Zhang, Sheng-zhi Zhao, Qing-pu Wang.Optimization of Cr~(4+)-Doped Saturable Absorber Q-Switched Lasers.IEEE J.Quan.Electron., 1997, 33(12):2286-2294
    [95]J.Zayhowski, P.L.Kelley.Optimization of Q-switched lasers.IEEE J.Quan.Electron., 1991,27(9):2220-2225
    [96]Raymond J.Beach.Optimization of Quasi-Three level End-Pumped Q-switched lasers.IEEE J.Quan.Electron., 1995, 31(9):1606-1613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700