输配水系统水力与水质安全研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全供水是供水事业的首要课题,输配水系统的安全应包括两个方面,即水力安全和水质安全。本论文“输配水系统水力与水质安全”,旨在建立安全供水的整体观念,把输水——配水——用户用水的安全作为一个整体综合考虑。
     输水系统的水力安全研究是以“哈尔滨磨盘上长距离输水项目”为依托,研究内容是项目的组成部分。配水系统水质安全研究是以国家“863”课题为依托,研究内容是“863”课题的组成部分。
     论文深入研究了长距离输水管线集气、排气的原理,对形成的气泡进行了分析,求出了管线临界俯角。根据这个理念复核排气阀设置是否合适;对于磨盘山长距离输水管线221个排气阀进行复核计算,证明其布置合理,能保证排气通畅,不产生因气囊引起的水锤。长距离输水管线,地形复杂起伏较大,管线沿地形铺设,形成多个长度不等、高差不等的U形管,论文首次提出当竣工后首次通水,或维修灌水时,将产生U形管振荡,如果通水时流量过大,必将会引起振荡,导致爆管。因此,根据U形管振荡原理,提出水力平稳过渡的新理念,控制初次进水流量,使其逐步增加,从0.4m3/s逐步增加到设计流量5.5m3/s;保证了通水安全,使通水一次成功。通过实测和数值分析,得出PCCP管n值为0.0116,比沿用的钢筋混凝土管的n值(0.013~0.014)降低10.8%,对PCCP管的设计和运行具有指导意义。
     论文建立了长距离输水系统的瞬变流模型,用运动方程和连续方程对输水管线水锤进行模拟,用特征线法和反问题理论进行求解,获得满意结果,并将其应用于磨盘山输水管线水锤计算中,求出不同工况下的水锤包络线,模拟出输水运行过程中,最不利工况下不产生水锤的安全关闸时间应大于32分20秒。将该研究成果应用于实际输水运行中,避免了输水系统经常发生的水锤事故,保障了该系统的安全运行。利用实测和数值计算得出RKV DN600的活塞式调流调压阀阻力系数与开度之间的关系式,它为输水管线运行中的水力安全模拟奠定了基础。
     论文深入分析了配水管网“生长环”生成的机理,阐明“生长环”是电化学腐蚀、水中微生物、管网后沉淀共同作用的结果,它引起了管网水质恶化。通过实验论证了管径越小,水与管壁“生长环”接触率越大,消耗的余氯越多,铺设年代越长,管内的水质越差,停留时间(水龄)越长,水质污染越严重。而对我国的大、中、小城市管网状况统计可知,管网中水多在小管径低流速状况下流动,“生长环”对其影响程度增加。同时用分散分析法分析了在各种影响因素同时存在下,各因素及各因素的交互作用对配水系统内三卤甲烷形成的影响程度,得出加氯量的变化对三卤甲烷形成的影响最大,为55%。降低加氯量,对减少三卤甲烷的形成具有重要作用。对配水管网余氯在管道中传输与节点混合数学方程进行探讨,同时推求出不同连接方式的水龄模型。探讨了模型的求解方法,确定用基于时间驱动的拉格朗日算法求解余氯衰减模型。
     论文从水质、水量和水压全方位考虑,提出了管网规划、设计及改造的新方法—配水系统区块化;并将其应用到某市配水系统的水质模拟,结果表明,区块化后配水系统的综合平均水龄减小约20.1%,余氯消耗减小约12.6%。同时水压分布更加趋于均匀,平均水压减小约12.1%,与此相对应配水系统的漏水量也减小13.8%。这些结果充分验证了配水系统区块化的有效性。
Safety is the most important subject to water supply, which includes two aspects, hydraulic safety and water quality safety. The major purpose of this study is to build an overall concept of water supply safety by considering water transmission- water distribution- water users as a system.
     The hydraulic safety of water transmission system was studied in this study as a part of the project named "Long-distance Water Transmission from Mopanshan Reservoir to Harbin City", while the water quality safety of water distribution system was studied as a part of the national "863" research project.
     Detailed studies on gas gathering and exhausting mechanism in long-distance transfer pipeline were conducted, and critical angle of the pipeline was also estimated by analyzing the mechanism of trapped air pocket formation. The results of calibration on 221 air valves installed along Mopanshan long-distance transfer pipeline showed that the locations of these air valves were appropriate and water hammer could not be occurred by air bag. Due to rough terrain, various U-tubes with different spans and levels were inevitable, which may result in oscillation even the destruction of the pipelines. Based on oscillation mechanism of hydraulic drop, a new concept of hydraulic stable transition was developed and it was recommended that flow test should be increased from 0.4 m3/d to 5.5 m3/d gradually. Finally, successful flow test was obtained by using the developed method. Moreover, roughness coefficient n value (0.0116) for PCCP pipe used was also calculated by actual measurement, which was lower than (reduced by 10.8%) current n value (0.013~0.014), and will provides an important basis in the design and operation for other similar projects.
     In this study, a transient flow model of long-distance water transfer system was developed, and motion equation and continuity equation were used for the simulation of water hammer in water transfer system. By using inverse theory and characteristic method, water hammer calculations of Mopanshan long- distance transfer pipeline were carried out under different working conditions. The simulation results showed that valve closing time should be longer than 32.3 minutes at the worst working condition. This value was applied to valve closing operation of Mopanshan long-distance water transmission and satisfied results were obtained. In addition, a relationship between opening extent and friction coefficient of valve (RKV DN600) was calculated and measured, which has laid the foundation for hydraulic safety simulation.
     The mechanism of "growth ring" in distribution system was comprehensive analyzed and studied. The results of the study indicated that "growth ring" is the results of joint activities of the chemical corrosion, physical deposition and biological reaction. The smaller diameter could result in bigger contact rate of water in pipeline with "growth ring". Aged pipeline and longer water age could result in contamination of water quality in distribution system. In this study, statistical analysis on the distribution pipelines of big, mid and small cities in Chine was carried out. The results indicated that in most cities the velocities in distribution pipelines were in lower levels, which may cause the contamination of water quality. Analysis of variance was used to analyze the influence of each factor and the interaction between the factors on the THMs formation. The result showed that the chlorine dosage variation had the greatest impact (55% in influence) on the formation of THMs. Therefore, reducing the chlorine dosage is of great significance to reduce the formation of THMs. Finally, the hybrid chlorine decay dynamics model was developed, and model solution methods were examined, then Lagrange algorithm method was developed for simulating the decay of residual chlorine.
     In accordance with current situations in water quality, water quantity and pressure of distribution systems in China, a new method-distribution blocking system (DBS) for network planning, design, and reconstruction was developed in this study. The new method was applied in the water quality simulation of water distribution system in a city, and results showed that the average water age and residual chlorine decay in the distribution system were reduced by 20.1% and 12.6%, respectively. Moreover, the pressure ranges in the distribution system trended to be more equal and average pressure in the distribution system could be reduced by 12.1%. Consequently, water leakage quantity could be reduced by 13.8% by using the developed DBS method.
引文
1张亚平,赵铁军.世界最大的输水工程利比亚大人工河.中国建筑工业出版社, 2003:25~32
    2陈涌城,张洪岩.长距离输水工程有关技术问题的探讨.给水排水. 2002, 28(12): 1~4
    3贲克平,沈进建,黄正夫.国内外跨流域调水研究扫描.水利经济. 2000, 3:25~34
    4王学芳,叶宏开,汤荣鸣.工业管道中的水锤.北京:科学出版社, 1995:10~14
    5 W. Steicher. Minimizing the risk of water hammer and other problems at the begging of stagnation of solar thermal plants. Solarenergy. 2000(69):187~196
    6 J. L. Marklea. Removal of Soft Deposits from the Distribution System Improves the Drinking Water Quality. Water Research, 2004,38(2):601~610
    7 M. Edwards. Controlling Corrosion in Drinking Water Distribution Systems: a Grand Challenge for the 21st Century. Water Science and Technology, 2004,49(2):1~8
    8 P. Sarin, V.L. Snoeyink, J. Bebeeb, et a1. Physico-Chemical Characteristics of Corrosion Scales in Old Iron Pipes.Water Research. 2001, 35(12): 2961~2969
    9 Y. Lee, S. G. Bochberger. Migration of Pollutants in Dead-End Zones of Water Distribution Systems. Proceeding of the 1999 AWWA Water Quality Technology Conference, 1999:17~24
    10 R. M. Clark, M. Sivaganesan. Chlorine Demand and TTHM Formation Kinetics: A Second-Order Model. J. of Environment Engineering. ASCE. 1998, 124(1): 16~24
    11江夏輝行,渡辺正仁.配水システムにおける残留塩素濃度低減化対策の検討.水道協会雑誌. 2005, 74 (5): 23~32
    12 N. B. Hallam, J. R. West, C. F. Forster, et al. The Potential for Biofilm Growth in Water Distribution Systems. Water Research. 2001, 35(17): 4063~4071
    13 D. Van der Kooij. Assessment of the Biofilm Formation Potential of Synthetic Materials in Contact with Drinking Water during Distribution. AWWA. WQTC, Miami, 1993:20~25
    14 I. Frateur, C. Deslouis, M. E. Orazem, et al. Modeling of the Cast Iron in Drinking Water System by Electrochemical Impedance Spectroscopy. Electrochimica Acta. 1999, 44(24): 4345~4356
    15 P. W. Butterfield, A. K. Camper, J. A. Biederman and A. M. Bargmeyer, Minimizing Biofilm in The Presence of Iron Oxides and Humic Substances, Water Research. 2002,36 (15): 3898~3910
    16中国城市供水协会.城市供水行业2010年技术进步发展规划及2020年远景目标.中国建筑工业出版社, 2005:120~127
    17舒诗湖,赵洪宾.我国配水管网系统建模的机遇与挑战.中国给水排水, 2008, 24(8):5~7
    18陈家琦,王浩,杨小柳.水资源学.北京:科学出版社,2002,4:40~50
    19彭珂珊.走向21世纪困扰中国经济发展的水资源问题.社会科学战线.1999, (1):52-57
    20李辉.重力流压力管道输水系统的水力学问题.山西建筑, 2004, 30(8):73~74
    21 B. B. Sharp, Water Hammer: Problems and Solutions, London, Edward Amold, 1981, (2): 1~3
    22 P. Sarin. Iron Release from Corrosion Scales in Old Iron/Steel Drinking Water Distribution Pipes, USA:UIUC, 2001:108~112
    23吴红伟,刘文君.配水管网中管垢的形成特点和防治措施.中国给水排水, 1998, 14(3): 37~39
    24杜俨,王汉玉,王敬哲.城市配水管网中的管垢及防治措施.环境科学动态, 2004, (4): 22~23
    25 S. Tokajian, F. Hashwa. Water Quality Problems Associated with Intermittent Water Supply. Water Science and Technology, 2003, 47(3): 229~234
    26袁一星,赵洪宾.配水管网生长环研究.哈尔滨建筑大学学报. 1998, 31(1): 72~76
    27 Y. H. Huang,T. Q. Zhang,X. G. Wu. A Hybrid PSO Based Method for Optimizing Water Quality Monitoring Stations in Water DistributionSystems. Intelligent Control and Automation, The Sixth World Congress. 2006,(1):3109~3113
    28丁浩.水电站压力引水系统非恒定流.北京:水利电力出版社, 1986:19~27
    29 E. B.怀利, V. L.斯特里特著.清华大学流体传动与控制教研组译.瞬变流.水力电力出版社, 1983:30~40
    30刘竹溪,刘光临.泵站水锤及其防护.北京:水利电力出版社, 1988:40~47
    31 J.A.福克斯著.董启贤译.管网中不稳定流动的水力分析.石油工业出版社, 1983:20~28
    32秋元德三著,支培法译.水击与压力脉冲.电力工业出版社, 1981:60~64
    33 W.K. Bryan, D. McInnis. Transient Analysis of Water Distribution System. Management and Operations. American Water Works Association. 1990, (7):62~70
    34 R.A. Humpherys, J.R.Kroon. Computer Modeling as a Tool for Selecting Appropriate Air Valves for Pipeline Surge Protection. Water Resources Planning and Management and Urban Water Resources. 1991:939~943
    35 A. Khamlichi, L. Jezequel, F. Tephany. Elastic-plastic Water Hammer Analysis in Piping Systems. Wave Motion, 1995 ,22: 279~295
    36 Q. Awni, D.E. Guastella, J.H. Dillingham. Proceedings of the 2nd International Conference on Advances in Underground Pipeline Engineering.1995: 425~436
    37 D. Stephenson. Effects of Air Valves and Pipework on Water hammer Pressures.J. of Transportation Engineering,1997, 3:101~106
    38 A. Garth, W. K. Bryan. Efficient Inverse Transient Anaylysis in Series Pipe Systems. J. of Hydraulic Engineering, 1999, 125(7):761~764
    39 J. Izquierdo and P. L. Iglesias.Mathematical Modelling of Hydraulic Transients in Simple Systems. Mathematical and Computer Modelling, 2002, 35:801~812
    40 R.F. Yves, W.K. Bryan. Extended-Period Analysis with a Transient Model. J. of Hydraulic Engineering, 2002, 128(6):616~624
    41 M.R. Ansari, A. Davari. Numerical Analysis of Pipeline Equipment Effect on Water Hammer Using Characteristic Method. Proceedings of the ASME/JSME Joint Fluids Engineering Conference. 2003: 2821~2826
    42 B.S. Jung, W.K. Bryan. Proceedings of the ASME/JSME Joint Fluids Engineering Conference. 2003: 2877~2883
    43 J. Izquierdo, P.L. Iglesias. Hydraulic Transients in Complex Systems. Mathematical and Computer Modelling. 2004, 39:529~540
    44 J. Kochupillai, N. Ganesan, C. Padmanabhan. A New Finite Element Formulation Based on The Velocity of Flow for Water Hammer Problems . International J. of Pressure Vessels and Piping, 2005, 82:1~14
    45 J.W. Don. Waterhammer Analysis-Essential and Easy and Efficient. J. of Environmental Engineering, 2005,8:1123~1131
    46 M. Shimada, J. Brown, A. Vardy. Estimating Friction Errors in MOC Analyses of Unsteady Pipe Flows. Computers and Fluids, 2007, 36:1235~1246
    47 G. L. Guymon, I Fellow, M. N. Khan elt. Diffusion Hydrodynamic Model of Shallow Estuary. J. of Water Resources Planning and Management, 1994, 120(2):253~266
    48 M. Alex. Modeling Mixed Flow in Storm Sewers. J. of Hydraulic Engineering,1999,11:1170~1180
    49 A. Scott, P. Rao. A Multiple Grid Algorithm for One-dimensional Transient Open Channel Flow.Advances in Water Resources, 2000, 23:645~651
    50朱承军,杨建东.非棱柱体管道的一维水击计算及分析.水力发电学报, 1998, (61):59~68
    51侯建国,郭亚洁.有气阀的长距离输水管道流动特性分析与应用.水利学报, 2002, 1:86~91
    52郑源,刘德有.有压输水管道系统气液两相瞬变流研究综述.河海大学学报(自然科学版), 2002, 30(6):21~25
    53彭新民,穆祥鹏.水头压力及管道特性对水击波速变化的影响.水利水电技术, 2004, 35(11):84~86
    54杨丽明,吴秀云.缓闭止回阀防护水锤的研究.中国安全科学学报, 2004, 14 (11):83~87
    55樊希葆,谢水波.水泵站停泵水锤数值计算理论研究-模型求解与应用.南华大学学报(自然科学版), 2005, 19(2):6~9
    56郑源,屈波.有压输水管道系统含气水锤防护研究.水动力学研究与进展, 2005, 20(4): 436~441
    57万晖.明渠非恒定流的特征线解法.黑龙江水专学报, 2006, 33(1): 21~22
    58谭平,徐蕾.动力管道水锤激振分析.南京理工大学学报, 2006, 20(2): 182~185
    59 M. L.Zhang, Y.M. Shen. Study and Application of Steady Flow and Unsteady Flow Mathematical Model for Channel Networks. J. of Hydrodynamics, 2007, 19(5): 572~578
    60 M. L.Zhu, X.H.Zhang. Study on Water Hammer Prevention in Pumping Water Supply Systems by Multi-valves. International Conference on Hybrid Information Technology, 2006: 10~13
    61梁兴,张进国.含有空气释出的水锤分析与计算.水科学与工程技术, 2006, (2) :21~22
    62范杰,王长德.渠道非恒定流水力学响应研究.水科学进展, 2006, 17 (1):55~60
    63刘志勇,刘梅清.梯级供水泵站停泵水力过渡过程分析及控制.中国农村水利水电, 2006, (7): 32~34
    64杨敏,李强.有压管道充水过程数值模拟.水利学报, 2007, 38(2):171~175
    65 D.J.Wood. Slurry Flow in Pipe Networks. J. of Hydraulic Engineering, ASCE, 1980, 106:57~70
    66 R. M. Clark, W. M. Grayman, R. M. Males. Predicting Water Quality in Distribution Systems. Proceedings of the AWWA Distribution System Symposium, Minneapolis, Minnesota, J. of American Water Works Association, 1986, 9, New York: 2~7
    67 R. M. Clark, W. M. Grayman, R. M. Males, Contaminant Propagation in Distribution Systems. J. of Water Resource Planning and Management, 1988, 114(4): 929~943
    68 D. G. Chun, H. L. Selznick. Computer Modeling of Distribution System Water Quality. Proceeding ASCE Conference on Computer Application in Water Resource. ASCE. 1985, New York:50~62
    69 R. M. Males, R.M. Clark. P.J. Wehrman, et al. Algorithm for Mixing Problems in Water Systems. J. of Hydrulic Engineering. ASCE. 1985, 111(2): 206~219
    70 M. Shah, G. Sinai. Steady State Model for Dilution in Water Networks. Hydraulic Diversions. ASCE. 2005,114(2): 192~206
    71 P. F. Boulos, T. Altman, R.W. Bowcock, et al. A Explicit Algorithm for Modelling Distribuiton Dystem Water Quality with Application. 2nd BHR Int. Conf. On Water Pipeline Systems. Civil-Comp Press. 1994: 405~432
    72 M. Shah. A DynamiModel for Dilution in water Distribution Systems. Master Degree thesis. Technion, Haifa of Israel.1985: 32~43
    73 F.L. Hart, J.L. Meader, S.M. Chiang. A Simulation Model for Tracing Chlorine Residuals in a Potable Water Distribution Networks. AWWA Distribution System Symposium Proceeding. 1987:20~31
    74 C.P. Liou, J.R. Kroon. Modeling the Propagation of Waterborne Substances in Distribution Networks. J. of America Water Works Association. 1987, 79(11): 54~58
    75 W. M. Grayman, R. M. Clark, R. M. Males. Modeling Water Quality in Distribution Systems. J. of Water Resource Planning and Management. 1988, 114(3): 295~312
    76 L. A. Rossman, P. F. Boulos, T. Altman. Discrete Volume Element Method for Network Water Quality Models. J. of Water Resoure Planning and Management. ASCE. 1993, 119(5): 505~517
    77 L. A. Rossman, P. F. Boulos. Numerical Method for Modeling Water Quality in Distribution Systems: A Comparison. J. of Water Resource Planning and Management. ASCE. 1996, 122(2): 137~146
    78 H. M. Stefan, S.P. Roger, A. W. Cliver. Calibration and Comparision of Chlorine Decay Models for a Test Water Distribution System. Water Research. 2000, 34(8): 2301~2309
    79 S. B. Murphy. Modeling Chlorine Concentration in Municipal Water Systems. Master Degree thesis. Montana State University. 1985:35~42
    80 A. Ostfeld, A Review of Modeling Water Quality in Distribution Systems, Urban Water Joural, 2005, 2(2): 107~114
    81 M. C. Robert, M. Sivaganesan. Predicting Chlorine Residuals in Drinking Water: Second Order Model. J. of Water Resource Planning and Management. 2002, 128(2): 152~161
    82周建华,赵洪宾,薛罡.配水管网中与有机物反应的余氯衰减动力学模型.环境科学. 2003, 24(3): 45~49
    83许仕荣,李斌,李黎武.城市输配水管网水质变化模型及其数值方法.湖南大学学报. 2001, 28(4): 94~99
    84 C.P. James, J.R. West, N.B. Hallam, et al. Performance of Various Kinetic Models for Chlorine Decay. J. of Water Resource Planning and Management. 2000, 126(1): 13~20
    85李君文,于祚斌.饮用水中三卤甲烷预测模型的研究.环境与健康志. 1996, 13(6): 251~253
    86 M. Shafy, A. Grunwald. THM Formation in Water Supply in South Bohemia, Czech Republic. Water Resource. 2000, 34(13): 3453~3459
    87 L.A. Rossman, R.A. Brown, P.C. Singer, et al. DBP Formation Kinetics in a Simulated Distribution System. Water Resource. 2001, 35(14): 3483~3489
    88 P. Piriou, S. Dukan, L. Kiene. Modelling Bacteriological Water Quality in Drinking Water Distribution Systems. J. of Water Science and Technology. 1998, 38(8-9): 299~307
    89 P. Servais, G. Billen, P. Laurent, et al. Development of a Model of BDOC and Bacterial Biomass Fluctuation in Distribution System. J. of Water Science and Technology, 1995, 8(4): 427~462
    90 L. Patrick, P. Michele, C. John, et al. Biodegradable Organic Matter Removal in Biological Filters: Evaluation of the CHABROL model. Water Resourse., 1999, 33(6): 1387~1398
    91 S. Dukan, Y. Levi, P. Piriou, et al. Dynamic Modeling of Bacterial Growth in Drinking Water Networks. Water Research. 1996, 30(9): 1991~2002
    92徐毓荣,徐钟际,徐玮.贵阳市城市配水管网黄、黑水成因分析.贵州环保科技. 1993, 3(5): 15~18
    93王琳,王宝贞.饮用水深度处理技术.化学工业出版社, 2002: 8~11
    94杜英林,任立民.浅析配水管网水质污染原因及防止措施.山东水利. 2000, 9: 43~44
    95 W. G. Characklis, K. E. Looksey. Biofilms and Microbial Function in Water Distribution Systems. Advances in Applied Microbiology. 1983,29: 93~133
    96 V. B. Lazarova, L. Nikolov. Biofilm Performance of a Fluidized Bed Biofilm Reactor for Drinking Water Denitrification. Water Science and Technology. 1992, 26(3/4): 555~566
    97 M. J. Allen, E. E. Geldreich. The Occurrence of Microorganisms in Water Main Encrustations. AWWA, 1980:614~625
    98 B. H. Olson. Assessment and Implications of Bacterical Regrowth in Water Distribution Systems. EPA-600/52-82-072. Cincinnati, Ohio, 1982:120~125
    99 O.H. Tuovinen, J.C. Hsu. Aeribic and Anaerobic Microorganisms in Tubercles of the Columbus.Water Distribution System Application Environmnet Microbiology. 1982, (44): 761~764
    100宋仁元.要重视金属管道的内壁腐蚀.城镇供水.1993, (2): 12~15
    101王汝贤,黄敏.给水管道的腐蚀原因及处理方法.江西能源. 2004,1 :45~46
    102黄建新,马艳玲,陈志昕.长庆油田金属管材的腐蚀性细菌类群研究.石油大学学报(自然科学版). 2002, 26(2): 66~72
    103赵洪宾.给水管内生长环对水质水压的影响.安徽建筑工业学院学报(自然科学版). 1993(1): 20~24
    104洪乃丰.防冰盐与腐蚀.材料保护. 1995, 28(6): 33~34
    105 I. Kimio, On The New Possibility of The Iron Corrosion Mechanism by Sulphate Reducing Bacterium. Rust Prevention and Control Japan, 2007, 51 (2): 48~52
    106雷仲存,钱凯,刘念华.工业水处理原理及应用.化学工业出版社. 2003: 215~217
    107陈野,刘贵昌.硫酸盐还原菌腐蚀的防治方法及其研究进展.腐蚀与防护. 2004, 25(3): 102~108
    108 World Health Organization. Guidelines for Drinking-water Quality, First Addendum to the Third Addition.Geneva:WHO,2006:80~86
    109 M. M. Polycarpou,J. G. Uber, E. Wang,et al. Feedback Control of Waterquality. J. of Control Systems, IEEE ,2002,22(3):68~89
    110 H.C. Emming, J. Wingender. Relevance of Microbial Excellular Polymeric Substances (EPSs) part I: Structureal and Ecological Aspects. Water Science Technology, 2001, 43(6): 1~8
    111 P. C. Singer. Formation and Control of Disinfection By-Products in Drinking Water, American Water Works Association, 1999, USA: 65~93
    112 P.C. Singer, A. Obolensky, A. Greiner. DBPs in Chlorinated North Carolina Drinking Waters. AWWA, 1995, 87(10): 83~92
    113 J. Sketchell, H.G. Peterdon, N. Christofi. Disinfection Byproduct Formation After Biologically Assisted GAC Treatment of Water Supplies with Different Bromide and DOC Content. Water Resource, 1995, 29(12):635~2642
    114 S. Chellam. Effects of Nanofiltration on Trihalomethane and Haloacetic Acid Precursor Removal and Speciation in Waters Containing Low Concentrations of Bromide ion. Environment Science Technology, 2000, 34(9):1813~1820
    115 W. J. Chen, C. P. Weisel. Halogenated DBP Concentrations in a Distribution System . AWWA, 1998, 90(4):151~163
    116 World Health Organization, Trihalomethanes in Drinking Water. Geneva: WHO, 2005:152~168
    117 DWI, Review of Drinking Water Quality Aspects of Serviceability Relating to Infrastructure and Non-onfrastructure Assets, London, 2001, 5:10~14
    118 R. A. Breach, Overview of Residual Disinfection Practice by European Water Suppliers, Aqua, 1999. 48(2): 39~43
    119 Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council, Drinking Water Distribution Systems: Assessing and Reducing Risks, The National Academies Press, 2006, USA: 192~220
    120 Document of the World Bank, Project Appraisal Document for the Dushane Water Supply Project in Republic of Tajikistan,2005:14~26
    121 M. Farley, Leakage Management and Control: A Best Practice Training Manual, WHO, 2001:65~73
    122 M.Farley, S. Trow. Losses in Water Distribution Networks: A Practitioner’s Guide to Assessment, Monitoring and Control, IWA, 2003:15~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700