高功率主振荡功率放大光纤激光系统主放大级关键技术理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统线性腔光纤激光器相比,高功率主振荡功率放大(MOPA)光纤激光技术具有结构简单、设计灵活等优势,可进一步提高光纤激光系统输出特性,有着较高的应用和学术价值。近年来,研究工作主要集中在如何抑制主放大级系统中的非线性效应,从而进一步提高输出功率,以及具有较大模场面积和一定高阶模抑制特性的增益介质光纤的设计。本论文围绕高功率MOPA光纤激光系统主放大级的几个关键技术展开实验和理论研究,旨在探索其设计、构建和优化方法。主要内容包括:
     1.从经典光纤放大器物理模型和稳态速率方程出发,通过对信号激光沿光纤放大过程的分析,给出了放大器内各个模式信号和泵浦激光的功率传输方程;引入功率填充因子、光纤截面模场分布函数和模式耦合系数,对纤芯模式竞争的物理机制进行了研究,分析了空间激光束在光纤端面的激励特性,给出了光纤输出光束质量与出射端模式特性的关系,建立了包层泵浦大模面积光纤放大器理论模型。
     2.根据所建立的包层泵浦大模面积光纤放大器理论模型,在考虑到模式之间的增益、损耗和相互耦合的情况下,理论模拟了多模运转光纤放大器的输出特性,并研究了不同端面激励条件下,光纤长度、泵浦构型、泵浦功率和耦合系数等结构参数对输出激光特性的影响。研究结果表明:多模运转的光纤放大器中,模式之间竞争激烈,从而导致输出激光光束质量下降;降低耦合系数、减小光纤长度和优化端面激励条件可以有效改善输出光束质量。由此,提出了利用大芯径多模纤芯双包层光纤构建主放大器的思路,通过对其进行模式控制,抑制高阶模式,可改善输出激光光束质量特性。
     3.分析了高功率MOPA光纤激光系统主放大级对增益介质光纤的需求,研究了大模面积增益光纤结构参数对光纤性能的影响。从光纤模场理论和所建立的大模面积光纤放大器理论模型出发,给出了任意折射率分布和掺杂分布增益介质光纤有效模场面积和高阶模抑制特性的计算方法,并分析了弯曲所引入的模场畸变对增益介质光纤特性的影响,说明了复合折射率设计的光纤较之其它折射率分布光纤表现出较强的抗弯曲特性,具有较大的模场面积,在芯径为数十微米量级的大模面积光纤中更具实用性,光纤中稀土离子向纤芯中心集中,可以抑制高阶模,从而改善系统输出光束质量。由此,对模场面积1000μm的增益介质光纤进行了优化设计。
     4.通过对大模面积光纤放大器特性的数值模拟,分析了系统结构参数对放大器输出特性的影响,并对端面泵浦掺Yb~(3+)双包层光纤放大器的各个重要部分和关键技术进行了研究。针对放大器系统中ASE和自激现象抑制问题,对双包层光纤端面研抛角度对其光学特性的影响进行了理论和实验研究,并探索了双包层光纤端面研磨抛光工艺技术。最后,提出了高功率光纤放大器系统的设计、优化和构建方法。
     5.基于所构建的高功率包层泵浦光纤放大器平台,进行了单频、连续激光和ns级脉冲激光放大实验研究。获得了2.3W的1083nm单频激光输出;重频7kHz、平均功率73mW、脉宽<1ns的脉冲通过放大器后,输出平均功率为832mW,峰值功率约为120W。在此基础上,对多模运转光纤放大器系统弯曲选模方法进行了实验研究,设计并构建了光束质量测试系统,通过测量增益光纤在不同缠绕半径下的输出激光光束质量,发现缠绕光纤能有效改善放大器输出光束质量,实验结果与理论计算结果具有较好的一致性。
Master-Oscillator Power-Amplifiers (MOPA) have advantages over typical high power fiber laser with linear cavity in conversion efficiency, output beam quality, availability of high power and compactness; besides, they can further improve the output features of fiber laser systems. Thus, it enjoys a good application and academic value. Recent researches on MOPA focus on the control of the nonlinear optical effects in fiber core of power amplifier to scale the output power and the design of large mode area active fiber which can suppress high-order modes. Therefore, in this thesis, theoretical and experimental study on the key techniques of the power-amplifier-stage in MOPA system is presented in an attempt to construct a better MOPA fiber laser system with high power and high beam quality. The main work included as follows:
     1. Based on the classic theoretical model and stable-state equations of fiber amplifier, the theoretical model of large-mode-area clad-pumped fiber amplifier is built up. The power equations of multimode signal and pump lights are presented by analyzing the transmission; power flowing, amplification and competition of signal transverse modes. The overlap factors, intensity distribution functions and coupling coefficients of modes are introduced, then the launching condition of free beam on the fiber facet and beam quality of the multimode fiber are studied.
     2. On the basis of the model mentioned above, the output features of multimode large-mode-area fiber amplifier are simulated by computing the gain, loss and coupling effect of transverse modes. Moreover, fiber length, pump configuration, pump power and coupling, which may influence the output features of amplifier, are considered. It is indicated that in large-mode-area fiber amplifier mode competition could result in degeneracy of the output beam quality, which may otherwise be improved by reducing coupling coefficients, shortenning fiber length and optimizing launching condition. Therefore, high power output which is produced in main-amplifier-stage of MOPA system can be obtained by using large core multimode double-clad active fiber, in which the high-order modes are suppressed by using mode control technology.
     3. The large-mode-area active fibers in different design are studied respectively to find out the most suitable fiber for the high power MOPA fiber laser system. An analytical method of effective mode area of fundamental mode and high-order mode suppressing for large-mode-area active fibers with arbitrary refractive-index profile and dopant distributions is presented. Moreover, the mode bend distortion induced by fiber coiling, which could influence the performace of active fiber, is numerical simulated. It is shown that the fiber with bybrid profiles, which demonstrate better bending resistance and larger mode area than other fibers, is comparatively applicable in the design of active fiber with core diameter of tens of microns, for the confined dopant profile can improve the output beam quality. Based on the research results, the optimizing design of large-mode-area active fiber with effective mode area 1000μm is presented.
     4. Key parameters of the amplifier system which may influence the output features are analyzed by numerically simulating the large-mode-area fiber amplifier. Design method and key techniques of yetterbium-doped double-clad fiber amplifier are introduced in detail. The reflection of fiber ends is estimated by discussing the techniques of fiber end polishing and lapping so as to explore a way to suppress the amplified spontaneous emission and restrain the self-oscillations. With the help of the finding above, an optimized high power fiber amplifier system is constructed.
     5. Based on the high power double-clad fiber amplifier system, a series of experiments are conducted to test the single-frequaency, continuous-wave and ns-regime pulse of Yb3+-doped fiber amplifiers. During the experiments, 2.3W single-frequaency output laser with 1083nm is produced, and average power 832mW and peak power 120W are obtained when seeded by a duration<1ns, 73mW-average power and 7kHz repetition rate pulse. It is worth mentioning that no nonlinear effect is observed throughout the experiments. Moreover, additional experiments are carried out to study the output characteristics of multimode fiber amplifier with coiling, thereby constructing a system to examine the beam quality. By using the system to measure the beam quality factors of amplifiers with different coiling radius, it is indicated that the beam quality can be improved by bending the active fiber, which is consistent with the calculation.
引文
[1] E. Snitzer. Optical master action of Nd in a Barium crown glass, Phys. Rev. Lett., 1961, 7(12): 444-449
    [2] E. Snitzer. Neodymium glass laser, Proc. Of the Third International conference on Solid Lasers, Paris, 1963: 999-1019
    [3] C. J. Koester and E. Snitzer. Amplication in a fiber laser. Appl. Opt., 1984, 3: 1182-1186
    [4] S. B. Poole, D. N. Payne, and M. E. Fermann. Fabrication of low-loss optical fiber containing rare-earth ions. Elect. Lett., 1985, 21(17): 737-738
    [5] E. Desurvire, J. R. Simpson, and P. C. Becker. High-gain erbium-doped traveling-wave fiber amplifier. Opt. Lett., 1987, 12(11): 888-890
    [6] R. J. Mears, L. Reekie, I. M. Jauncey and D. N. Payne, Low-noise erbium doped fibre amplifier operating at 1.54μm. Elect. Lett., 1987, 23(19): 1026-1028
    [7] E. Snitzer, F. Hakimi, H. Po, R. Tumminelli, and B. C. McCollum. Double-clad, offset corend fiber laser. In Optical Fiber Sensors. 98’OSA Technical Digest Series, 1988, 2: pstdeadline paper PD5
    [8] H. M. Pask, J. L. Archambault, D. C. Hanna. Operation of cladding-pumped Yb3+-doped silica fibre laser in 1μm region. Elect. Lett., 1994, 30(11): 863-865
    [9] http://www.spilasers.com
    [10] http://www.orc.soton.ac.uk/hpfl.html
    [11] http://www.ipgphotonics.com
    [12] http://www.ipht-jena.de
    [13] V. Dominic, S. MacCormack, R. Waarts, S. Sanders, Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker. 110W fiber laser. Elect. Lett., 1999, 35(14): 1158-1160
    [14] N. S. Platonov, D. V. Gapontsev, V. P. Gapontsev, and V. Shumilin. 135W cw fiber laser with perfect single mode output. In Conf. on Lasers and Electro-Optics, Technical Digest, 2002, volume CLEO’02, page CPDC3
    [15] J. Limpert, A. Liem, S. Hofer, H. Zellmer, A. Tunnermann, S. Unger, S. Jetsehke, and H. R. Muller. 150W Nd/Yb codoped fiber laser at 1.1μm. In Lasers and Electro-Optics, 2002. Technical Digest, 2002, Volume CLEO’02, page CTHX1
    [16] H. Jeff. The highest single-mode powers of Yb-doped fiber Lasers achieved 2kW CW output. In Conf. on Lasers and Electro-Optics Europe. 2005, 6: 508
    [17] http://www.ipgphotonics.com/products_1micron_lasers_cw_ylr-hpseries.html.
    [18] P. K. Cheo and G. G. King. Clad-Pumped Yb:Er Codoped Fiber Lasers. IEEE Photo.Tech. Lett., 2001, 13(3): 188-190
    [19] S. U. Alam, P. W. Turner, A. B. Grudinin, et al. High-power cladding pumped Erbium-Ytterbium co-doped fiber laser. Southampton Photonics, 2002: 1-5
    [20] J. Nisson, S. U. Alam, J. A. Alvarez-Chavez, et al. High-power and tunable operation of erbium-ytterbium Co-doped cladding-pumped fiber lasers. J. Quantum Electron, 2003, 39(8): 987-994
    [21] J. Nilsson, J. K. Sahu, Y. Jeong, et al. High Power Fiber Lasers: New Developments. Proc. SPIE, 2003(Vol.4974): 50-59
    [22] K. Ueda. Oyo-butsuri., 1998 (Vol.67): 513
    [23] IPG photonics newsletters,October 2004
    [24] Y. Jeong, J. K. Sahu, D. N. Payne, et.al. Ytterbium-doped large-core fiber laser with 1.36kW continuous-wave output power. Opt. Express, 2004, 12(25): 6088-6092
    [25] G. Bonati, H. Voelckel, T. Gabler, et.al. 1.53kW from a single Yb-doped photonic crystal fiber laser. Photonics West, San Jose, Late. Breaking Developments, 2005, Session 5709-2a
    [26]德国材料研究所BAM采购IPG 2万瓦光纤激光[EB/OL]. http://www.ipgbeijing.com//content/view/86_115.html [ 2008-07-31 ]
    [27] NukW: kilowatt laser amplifier platform[EB/OL]. http://www.nufern.com/kilowatt-amp.php
    [28]楼祺洪,周军,王之江.光纤激光作为激光武器的能力分析.激光技术, 2003, 27(3):161-165
    [29] http://www.ofsoptics.com
    [30] http://www.nufern.com
    [31] www.crystal-fibre.com
    [32] http://www.liekki.com
    [33] http://www.jdsu.com
    [34] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson. Ytterbium-doped large-core fibre laser with 1kW of continuous-wave output power. Elect. Lett., 2004, 40(8): 470-471
    [35] V. Reichel, S. Unger, S. Bruckner, K. Morl, H. R. Muller, J. Kirehhof, T. Sandrock, and A. Harschack. Applications of pumped-multiplexed Yb-doped fiber lasers. In Advanced in Fiber lasers, Proc. SPIE, 2003, 4974: 148-157
    [36] Liem A, Limpert J, Zellmer H et al. 100-W single frequency master-oscillator fiber power amplifier. Opt. Lett., 2003, 28(17):1537-1539
    [37] Y. Jeong, J. Nilsson, J. K. Sahu et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. Opt. Lett., 2005, 30(5): 459-461
    [38] Matthias Hildebrandt, Maik Frede, Patrick Kwee et al. Single-frequencymaster-oscillator photonic crystal fiber amplifier with 148 W output power. Optics Express, 2006, 14(23) :11071-11076
    [39] J. Limpert, A. Liem, T. Gabler, et al. High-average-power picosecond Yb-doped fiber amplifier. 2001, 26(23): 1849-1851
    [40] Limpert J, Hofer S, Liem A et al. 100-W average-power, high-energy nanosecond fiber amplifier. Appl. Phys. (B), 2002, 75: 477-479
    [41] J. Limpert, T. Schreiber, T. Clausnitzer, et al.. High-power femtosecond Yb-doped fiber amplifier. Optics Express, 2002, 10(14): 628~638
    [42]段云锋,黄榜才,张鹏,等.高能量脉冲光纤激光器的研究进展及其应用.光通信技术, 2006, 8: 55-57
    [43] A. P. Liu and Ueda. The absorption characteristics of circular, offset, and rectangular double-clad fibers. Opt. Comm., 1996, 132(5-6): 511-518
    [44] L. Philippe, V. Doya, R. Philippe, P. Dominique, and M. Fabrice. Experimental study of pump power absorption alone rare-earth-doped double clad optical fibres. Opt. Comm., 2003, 218(4-6): 249-254
    [45]楼祺洪,周军,孔令峰,薛冬.高功率脉冲双包层光纤激光器的新进展.量子电子学报, 2005, 22(4): 510-515
    [46]张芳沛,楼祺洪,周军,何兵,董景星,魏运荣,朱健强,王之江.高功率双包层光纤放大器.激光与光电子学进展, 2007, 44(1): 38-44
    [47] M. Y. Cheng, Y. C. Chang, A. Galvanauskas, et al. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifier. Opt. Lett., 2005, 30(4): 358-360
    [48] S. Yin, P. Yan, and M. Gong. End-pumped 300W continuous-wave yetterbium-doped all-fiber laser with master oscillator multi-stage power amplifier configuration. Optics. Express, 2008, 16(22): 17864-17869
    [49] L. Kong, Q. Lou, J. Zhou et al. 133-W pulsed fiber amplifier with large mode area fiber. Opt. Eng. Lett., 2006, 45(1): 010502
    [50] http://www.itflabs.com/ITFLabs
    [51] http://www.vytran.com
    [52] G. P. Valentin and S. Igor. Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length. U. S. Patent, 5999673, Dec, 7 1999
    [53] B. G. Fidrie, V. G. Dominic, and S. Sanders. Optical couplers for multimode fibers. U. S. Patent, 6434302, Aug.13 2002
    [54] D. J. Digiovanni and A. J. Stentz. Tapered fiber bundles for coupling light into and out of cladding-pumped fiber divices. U. S. Patent, 5864644, Jan.26 1999
    [55] D. J. Ripin and L. Goldberg. High efficiency side-coupling of light into opticalfibres using imbedded v-grooves. Electron. Lett., 1995, 31(25): 2204-2205
    [56] L. Goldberg, B. Cole, and E. Snitzer. V-groove side-pumped 1.5μm fibre amplifier. Elect. Lett., 1997, 33(25): 2127-2129
    [57] L. Goldberg. Method and apparatus for side pumping an optical fiber. U. S. Patent, 5854865, Dec. 29, 1998
    [58] J. P. Koplow, S. W. Moore, and A. V. Kliner. A new method for side pumping of double-clad fiber sources. IEEE J. Quantum Electron, 2003, 39(4): 529-540
    [59] J. P. Koplow. Method for coupling light into cladding-pumped fiber sources using an embedded mirror. U. S. Patent, 6704479, March 9, 2004
    [60] F. Hakimi and H. Hakimi. A new side coupling method for double-clad fiber amplifier. OSA Conf. on Lasers and Electro-Optics, Baltimore , USA, 2001, CTUD2
    [61] F. Hakimi and H. Hakimi. Side pumped optical amplifier and lasers. U. S. Patent, 6370297, Apr.9, 2002
    [62]韦文楼,欧攀,闫平等.双包层光纤的侧面抽运耦合技术.激光技术, 2004, 28(2): 116-120
    [63]聂秋华.光纤激光器和放大器技术.北京:电子工业出版社,1997
    [64] R. Paschotta, J. Nilsson, A. C. Tropper, et al. Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron, 1997, 33(7): 1049-1056
    [65] A. Hardy, R. Oron. Signal amplification in strongly pumped fiber amplifiers. IEEE J. Quantum Electron, 1997 , 33(3): 307-313
    [66] I. Zawischa, K. Plamann, C. Fallnich, et al. All-solid-state neodymium-based single frequency master-oscillator fiber power-amplifier system emitting 5.5W of radiation at 1064nm. Opt. Lett., 1999, 24(7): 469-471
    [67]陈爽,王玲,冯莹.光纤端面反射率对高功率光纤放大器的影响.强激光与粒子束, 2008, 23(12): 1997-2000
    [68] R. L. Farrow, D. A. V. Kliner, A. Hoops, and J. P. Koplow. High-peak-power (>1.2 MW) pulsed fiber amplifier. SPIE Photonics West paper 6102-22, San Jose, CA, January 21-26, 2006
    [69] F. Di Teodoro and C. D. Brooks. 1.1 MW peak-power, 7 W average-power, high spectral brightness, diffraction-limited pulses from a photonic crystal fiber amplifier. Opt. Lett., 2005, 30(20): 2694-2696
    [70] G.P. Agrawal, Non Linear Fiber Optics, Academic Press, San Diego, CA, 1989
    [71] Y. Jaouen, S. Bordais, et al. High power cladding-pumped Er3+/Yb3+ fiber amplifiers: technologies, performances and impact of nonlinear effects. Annales Des Telecommunications-Annals of Telecommunications, 2003, 58(11-12): 1640-1666
    [72] Y. Jaouen, G. Canat, et al. Power limitation induced by nonlinear effects in pulsedhigh-power fiber amplifiers. Comptes Rendus Physique, 2006, 7(2): 163-169
    [73] Kazuyuki Shiraki, Masaharu Ohashi. SBS threshold of a fiber with a Brillouin frequency shift distribution. Journal of Lightwave Technology, 1996, 14(1): 50-57
    [74] Anping Liu. Novel SBS suppression scheme for high power fiber amplifiers. Proc. of SPIE, 2006, 6102: 1-9
    [75] YongWang, Chang Qing Xu, Hong Po. Analysis of Raman and thermal effects in kilowatt fiber lasers. Optics Communications, 2004, 242: 487 - 502.
    [76]张俊,冯莹,陈爽.大功率双包层光纤激光器拉曼效应分析.量子电子学报, 2007,24(6): 757-762
    [77] Matthias Jager, Stephane Caplette, Paul Verville et al.. Fiber lasers and amplifiers with reduced optical nonlinearities employing large mode area fibers. SPIE, 2005, 5971:59710N-1~59710N-9
    [78] A.V. Smith, B.T. Do, and M. Soderlund. Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb3+ doped fused silica. SPIE, 2007, 645317-1-12
    [79] A. V. Smith, G. R. Hadley, R. L. Farrow, B. T. Do. Nolinear Optical Limits to Power in Fiber Amplifiers. OSA/CLEO/QELS, 2008: CFR2
    [80] J. Limpert, F. Roser, S. Klingebiel, et al..The Rising Power of Fiber Lasers and Amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 537-545
    [81] J. P. Cariou, B. Augere, et al. Laser source requirements for coherent lidars based on fiber technology. Comptes Rendus Physique, 2006, 7(2): 213-223
    [82] K. Schorstein, G. Scheich, et al. A fiber amplifier and an ESFADOF: Developments for a transceiver in a Brillouin lidar. Laser Physics., 2007, 17(7): 975-982
    [83] J. J. Zayhowski and A. L. Wilson. Miniature eye-safe laser system for high-resolution three-dimensional lidar. Applied Optics, 2007, 46(23): 5951-5956
    [84] G. Canat, L. Lombard, et al. High brightness 1.5 mu m pulsed fiber laser for lidar: From fibers to systems. Fiber and Integrated Optics., 2008, 27(5): 422-439
    [85] W.A. Clarkson, N.P. Barnes, P.W. Turner, J. Nilsson, D.C. Hanna, High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm, Opt. Lett.,2002, 27(22): 1989-1991
    [86]李世祥.光电对抗技术.长沙:国防科技大学出版社,2000
    [87]楼祺洪,周军,王之江.光纤激光作为激光武器的能力分析.激光技术, 2003, 27(3): 161-165
    [88] High power fiber laser(HPFL) [EB/OL]. http://www.globalsecurity.com/html
    [89]刘泽金,周朴,许晓军.高能光纤激光系统浅析.强激光与粒子束, 2008, 20(11): 1761-1767
    [90] J. Anderegg,S. Brosnan,M. Weber,etal. 8-watt coherently phased 4-element fiber array. Proc. of SPIE 4974: 1-5
    [91] M. Wickham,D. Hammons,J. Anderegg,etal. High power fiber array coherent combination demonstration. SSDLTR2003
    [92] W.C. Holton. Scalable,high-power fiber laser produces coherent output. Laser Focus World July, 2003
    [93] J. Anderegg,S. Brosnan,E. Cheung,etal. Coherently Coupled High Power Fiber Arrays. Proc. of SPIE 6102: 61020U-1~5
    [94] S. J. Augst,T. Y. Fan,A. Sanchez. Coherent beam combining of ytterbium fiber laser amplifiers. CLEO, 2003
    [95] S. J. Augst,T. Y. Fan,A. Sanchez. Coherent combining of two 10-W ytterbium fiber laser amplifiers. SSDLTR2003
    [96] S. J. Augst,T. Y. Fan,A. Sanchez. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers. Opt. Lett., 2004, 29(5): 474-476
    [97] T. M. Shay, V. Benham, Lt J. Spring, et al.. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging Proc of SPIE. 2006, 6102:61020V21-61020V25
    [98] E. J. Bochove, P. K. Cheo, G. G. King. Self-orgnization in a multicore fiber laser array. Opt. Lett., 2003, 28(14):1200-1202
    [99] P. F. McManamon. New technologies and architectures for laser systems revolutionary beam control. Proc of SPIE. 2004, 5413:1214.
    [100] A. D. Terry. Adaptive photonic phase locked element s. MTO Symposium, 2007.
    [101] A. D. Terry. Optical phased array beam control for APPLE. Directed Energy Systems Symposium , 2007.
    [102] A. Liem, J. Limpert, H. Zellmer, et al. 100-W single frequency master-oscillator fiber power amplifier. Opt. Lett., 2003, 28(17):1537-1539
    [103] Y. Jeong, J. Nilsson, J. K. Sahu et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. Opt. Lett., 2005, 30(5): 459-461
    [104] Matthias Hildebrandt, Maik Frede, Patrick Kwee, et al. Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. Optics Express, 2006, 14(23): 11071-11076
    [105] J. Limpert, A. Liem, T. Gabler, et al. High-average-power picosecond Yb-doped fiber amplifier. 2001, 26(23): 1849-1851
    [106] J. Limpert, S. Hofer, A. Liem et al. 100-W average-power, high-energy nanosecond fiber amplifier. Appl. Phys. (B), 2002, 75: 477-479
    [107] J. Limpert, T. Schreiber, T. Clausnitzer, et al. High-power femtosecond Yb-doped fiber amplifier. OPTICS EXPRESS, 2002 10(14): 628-638
    [108] J. Limpert, A. Liem, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Optics Express., 2004, 12(7): 1313-1319
    [109] J. Limpert, N. Deguil-Robin, et al. High-power picosecond fiber amplifier based on nonlinear spectral compression. Optics Letters, 2005, 30(7): 714-716
    [110] J. Limpert, N. D. Robin, et al. High-power rod-type photonic crystal fiber laser. Optics Express, 2005, 13(4): 1055-1058
    [111] J. Limpert, O. Schmidt, et al. Extended single-mode photonic crystal fiber lasers. Optics Express, 2006, 14(7): 2715-2720
    [112] Chr. Wirth, O. Schmidt, I. Tsybin, et al. 1 kW narrow-linewidth fiber amplifier for spectral beam combining. DH/LACSEA 2008: WA6
    [113] C. Wirth1, O. Schmidt, I. Tsybin, et al.. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers. Optics Express, 2009, 17(3): 1178-1183
    [114] Y. Jeong, J. Nilsson, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W. Ieee Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551
    [115] M. J. Li. Managing nonlinearity in optical fiber for high-power lasers. Proc.of SPIE the international Society for Opticsal Engineering 10.1117/ 2.1200607.0317
    [116] Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, Simulatingand designing Brillouin gain spectrum in single mode fibers, J. Lightwave Technol., 2004, 22(2): 631–639
    [117] Gregory D. Goodno, Lewis D. Book, and Joshua E. Rothenberg. Single-Frequency, Single-Mode Emission at 2040 nm from a 600-W Thulium-Doped Fiber Amplifier Chain. 2009 OSA/ASSP: MF2
    [118] M. Y. Cheng, Y. C. Chang, A. Galvanauskas et al. High-energy and hige-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers. Opt. Lett., 2005, 30(4): 358-360
    [119] J. Limpert, T. Schreiber, S. Nolte, et al. High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express., 2003,11(7): 818-823
    [120] C. Brooks and Fabio Di Teodoro,1-mJ energy, 1-MW peak-power, 10-W averagepower, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. Optics Express, 2005, 13(22): 8999~9002
    [121] Fabio Di Teodoro and Christopher D. Brooks, Multi-mJ Energy, Multi-MW Peak-Power Photonic Crystal Fiber Amplifiers with Near-Diffraction-Limited Output. In Fiber laserⅣ: Technology, systems, and Applications, Proc. Of SPIE ,2007, Vol. 6453, 645318
    [122] S. Desmoulins, and F. Di Teodoro. High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ-energy pulses. Optics Express, 2008, 16(4): 2431-2437.
    [123] P. Dupriez, A. Piper, A. Malinowski et al.. High average power, high repetition rate, picoseconds pulsed fiber master oscillator power amplifier source seeded by a gain-swithed laser diode at 1060nm. IEEE Photon. Technol. Lett., 2006, 18(9): 1013-1015
    [124]卢秀权,陈绍和. Yb3+光纤放大器.中国激光. 2001, 28(3):209-214
    [125]卢秀权,陈绍和.掺镱光纤放大器的优化设计.量子电子学报. 2001, 18(2): 120-125
    [126]孙文峰,赵长明,杨苏辉,李磊. 6.65W输出二极管抽运双包层光纤单频放大器.北京理工大学学报. 2006, 26(1): 60-62
    [127]孙文峰,赵长明,杨苏辉,杨春香. 16.1W输出1064nm连续单频光纤放大器的实验研究.北京理工大学学报. 2007, 27(6): 532-535
    [128]郭占城,贾秀杰,付圣贵,等.基于全国产器件的大模面积掺镱双包层光纤放大器的实验研究.南开大学学报(自然科学版). 2007, 40(4): 66-69
    [129] F. P. Zhang, Q. L. Lou, J. Zhou. 7.3-W single-frequency master-oscillator fiber power amplifier with China-made double--clad fiber. Chinese Optics Lett., 2007, 5(6): 322-324
    [130] P. Yan, S. P. Yin, et al. 175-W continuous-wave master oscillator power amplifier structure ytterbium-doped all-fiber laser. Chinese Optics Letters 2008, 6(8): 580-582
    [131] S. Yin, P. Yan, and M. Gong. End-pumped 300 W continuous-wave ytterbiumdoped all-fiber laser with master oscillator multistage power amplifiers configuration. Optics Express, 2008, 16(22): 17864-17869
    [132] J. Zhou,Lou Qihong,Kong Lingfeng,et al. A 115 W ytterbium-doped fiber laser. Chin.Phys.Lett., 2004, 21(6): 1083-108
    [133] L. F. Kong, Q. H. Lou, et al. 133-W pulsed fiber amplifier with large-mode-area fiber. Optical Engineering, 2006, 45(1):010502
    [134] Changgeng Ye, Mali Gong, Ping Yan, et al. Linearly-polarized single-transverse-mode high-energy multi-ten nanosecond fiber amplifier with 50W average power. Optics Express, 2006, 14( 17 ): 7604~7609
    [135] S. T. Du, J. Zhou, et al. 20-w average power, high repetition rate, nanosecond pulse with diffraction limit from an all-fiber MOPA system. Microwave and Optical Technology Letters, 2008, 50(10): 2546-2549
    [136] F. P. Zhang, Q. H. Lou, et al. Impacts of seed power on amplification performancein pulsed double-clad fiber amplifier. Chinese Optics Letters, 2008, 6(1): 19-21
    [137]王春灿,张帆,陆玉春,等.掺镱双包层光纤放大器分布泵浦方式下的优化算法.强激光与粒子束. 2006, 18(9): 1428-1432
    [138]王春灿,张帆,陆玉春,等.单频大功率光纤放大器中抑制受激布里渊散射的理论分析.中国激光. 2006, 33(12): 1630-1635
    [139]黄晶,吕新杰,李锋,等. 1053nm掺Yb3+双包层光纤放大器脉冲放大特性研究.中国激光. 2005, 32(8): 1022-1026
    [140]廖素英,巩马理.高功率光纤激光器和放大器的非线性效应管理新进展.激光与光电子学进展. 2007, 44(6): 27-33
    [141] J. Sakai and T. Kimura. Bending loss of propagation modes in arbitraryindex profile optical fibers. Appl. Opt., 1978, 17: 1499-1506,
    [142] J. M. Fini. Bend-resistant design of conventional and microstructure fibers with very large mode area. Opt. Express, 2006, 14: 69-81
    [143] D. A. V. Kliner, J. P. Koplow. Power scaling of diffiraction limited fiber sources. Proc. SPIE, 2005, 5647: 550-556
    [144] J. P. Koplow, D. A. V. Kliner, L. Goldberg. Single-mode operation of a coiled multimode fiber amplifier. Opt. Lett., 2000, 25(7): 442-444
    [145] L. B. Li, Q. H. Lou, et al.. Transverse-mode controlling of a large-mode-area multimode fiber laser. Chinese Optics Letters. 2007, 5(9): 524-526.
    [146]袁艳阳,包层泵浦大模面积光纤激光器理论及实验研究,博士学位论文,清华大学, 2008.06
    [147]陈吉欣,陈福深,隋展,等.弯曲的多模掺Yb3+双包层光纤激光器基模输出研究.激光与红外. 2005, 35(9): 644-646
    [148]王凤蕊,李明中,林宏奂,等.掺镱多模双包层光纤激光器弯曲选模研究.激光技术. 2007, 31(6): 607-609
    [149] P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson. Efficient single-mode operation of a cladding pumped ytterbium-doped helical-core fiber laser. Opt. Lett., 2006, 31(2): 226-228
    [150] C. H. Liu, G. Chang, N. Litchinitser, et al. Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling. Proc. CLEO/QELS. 2007, Baltimore,: CTuBB3
    [151] M. C. Swan, C. H. Liu, D. Guertin. et al. 33μm Core Effectively Single-Mode Chirally-Coupled-Core Fiber Laser at 1064-nm. Proc.OFC/NFOEC, 2008: OWU2
    [152] S. Ramachandran, J.W. Nicholson, S. Ghalmi et al. Light propagation with ultralarge modal areas in optical fibers. Opt. Lett., 2006, 31(12):1797~1799
    [153] Nicholson, J. W., S. Ramachandran, et al. Propagation of femtosecond pulses in large-mode-area, higher-order-mode fiber. Opt. Lett., 2006, 31(21): 3191-3193.
    [154] J. A. Alvarez-Charvez, A. B. Grudinin, J. Nilsson, et al. Mode selection in high power cladding pumped fibre lasers with tapered section. CLEO, 1999: 247-248
    [155] L. Li, Q. H. Lou, J. Zhou, et al.. High power single transverse mode operation of a tapered large-mode-area fiber laser. Optics Communication 2008, 281: 655-657
    [156] J. Limpert, H. Zellmer, A. Tunnermann. Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management(GLM). Proc. of the Advanced Solid-state Lasers Conference, Quebec city Canada, OSA, 2002: 112-114
    [157] A. E. Siegman. Propageting modes in gain-guided optical fibers. J. Opt. Soc. Am. A. 2003, 20(8): 1617-1628
    [158] A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, et al. Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber. App. Phys. Lett., 2006, 89:251101
    [159] Y. Chen, V. Sudesh, T. McComb, et al. Lasing in a gain-guided index antiguided fiber. J. Opt. Soc. Am. B, 2007, 24(8): 1683-1688
    [160] Y. Chen, T. McComb, V. Sudesh, et al. Very large-core, single-mode, gain-guided, indexantiguided fiber lasers. Opt. Lett., 2007, 32(17): 2505-2507
    [161] J. W. Dawson, R. Beach, I. Jovanovic, et al. Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers. Proc. SPIE Fiber Lasers: Technology, Systems, and Applications, Bellingham, WA, 2004, 5335: 132-139
    [162] M. L. Gong, Y. Y. Yuan, C. Li, P. Yan, H. T. Zhang and S. Y. Liao. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. Opt. Express, 2007, 15(6): 3236–3246
    [163] Andermahr, N. and C. Fallnich. Interaction of transverse modes in a single-frequency few-mode fiber amplifier caused by local gain saturation. Optics Express, 2008,16(12): 8678-8684.
    [164] Z. Jiang and J. R. Marciante. Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers. J. Opt. Soc. Am. B. 2008, 25(2): 247-254
    [165] S.Y. Liao, M. L. Gong, H. T. Zhang. Influence of mode distortion on the transverse mode competition in large-mode-area amplifiers. Optics Communications. doi: 10.1016/j.optcom.2008.10.029
    [166] M. L. Gong, S. Y. Liao, Y. Y. Yuan and H. T. Zhang. High-order modes suppression in large-mode-area fiber amplifiers and lasers by controlling the mode power allocations. J. Opt. A: Pure Appl. Opt. 11 (2009), 015701(6pp) doi: 10.1088/1464-4258/11/1/015701
    [167] J. M Fini. Bend-compensated design of large-mode-area fibers. Optics Letters, 2006, 31(13): 1963-1965.
    [168] J. M. Fini, M. D. Mermelstein, et al. Distributed suppression of stimulated Ramanscattering in an Yb-doped filter-fiber amplifier. Optics Letters 2006, 31(17): 2550-2552.
    [169] J. M. Fini. Design of large-mode-area amplifier fibers resistant to bend-induced distortion. Journal of the Optical Society of America B-Optical Physics, 2007, 24(8): 1669-1676.
    [170] R. L. Farrow, G. R. Hadley, D. A.V. Kliner, and J. P. Koplow. Design of refractive-index and rare-earth-dopant distributions for large-mode-area fibers used in coiled high-power amplifiers. Proc. of SPIE Fiber Lasers IV: Technology, Systems, and Applications 2007, 6453: 64531C
    [171] J. Nilsson, R. Paschotta, J. E. Caplen et al. Yb3+-doped fiber for high energy pulse amplification. Opt. Lett.,1997 , 22(14): 1092-1094
    [172] Y. Wang, H. Po. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification. J. LightwaveTechnol., 2003, 21(10): 2262-2270
    [173] I. Kelson, A. Hardy. Strongly pumped fiber laser. IEEE J. Quantum Electronics, 1998, 34(4):1570-1577
    [174]许党朋,李明中,吕新杰,等.高功率掺镱双包层光纤放大器放大特性理论模拟., 2007, 19(7): 1071-1075
    [175]廖延彪.光纤光学,北京:清华大学出版社, 2000
    [176] K. Petermann. Constraints for fundamental mode spot size for broadband dispersion-compensated single-mode fibers. Electron. Lett. 1983, 19(18): 712-714
    [177] A. W.斯奈德, J. D.洛夫.光波导理论.周幼威,林志瑗,姚慧海,张一龙译,北京:人民邮电出版社,1991
    [178] A. Galvanauskas. Mode Scalable Fiber-Based Chirped Pulse Amplification Systems. IEEE. Journal on Selected Topics in Quantum Electronics., 2001, 7(4): 504-517
    [179] W.克希耐尔.固体激光工程.孙文,江泽文,程国祥译,北京:科学出版社,2002
    [180] D.马库塞著.介质光波导理论.刘弘度译,北京:人民邮电出版社,1982
    [181] H. Yoda, P. Polynkin, M. Mansuripur. Beam quality factor of higher order modes in a step-index fiber. J. Lightwave Technol., 2006, 24(3): 1350-1355
    [182]傅玉青,冯国英,张大勇,陈建国,周寿恒.阶跃光纤低阶线偏振模的M2因子分析.光子学报, 2008, 37(7): 1342-1345
    [183] International Organization for Standardization. Terminology and test methods for lasers. ISO/TC 172/SC9/WG1N14, No.2, 1991.
    [184] http://www.OriginLab.com
    [185] R. Olshansky. Mode coupling effects in graded-index optical fibers. Appl. Opt., 1975, 14: 935–945
    [186] D. Gloge. Optical power flow in multimode fibers. Bell Syst. Tech. J., 1972, 51: 1767–1783
    [187] R. Olshansky. Distortion losses in cabled optical fibers. Appl. Opt., 1975, 14: 20–21
    [188] K. Kitayama and M. Ikeda. Mode coupling coefficient measurements in optical fibers. Applied Optics., 1978, 17(24): 3979-3983
    [189] W. A. Gambling, D. N. Payne and H. Matsumura. Mode conversion coefficients in optical fibers. Applied Optics., 1975, 14(7): 1538-1542
    [190] M. E. Fermann. Single-mode excitation of multimode fibers with ultrashort pulses. Opt. Lett., 1998, 23: 52–54,
    [191] D. Marcuse. Steady State Losses of Optical Fibres and Fibre Resonators. Bell Syst. Tech. J., 1976, 55: 1445-1462
    [192] D. Marcuse. Curvature Loss Formula for Optical Fibers. J.Opt. Soc. Am., 1976, 66: 216-220
    [193] D. Marcuse. Field Deformation and Loss Caused by Curvature of Optical Fibers, J. Opt. Soc. Am., 1976, 66: 311-320.
    [194]袁艳阳,巩马理.大模面积光纤中折射率和掺杂分布的设计和分析.中国激光. 2008, 35(9): 1355-1359
    [195]金建铭.电磁场有限元方法,王建国译.西安:西安电子科技大学出版社, 1998
    [196] N. Mabaya, P. E. Lagasse, and P. Vandenbulcke. Finite-element analysis of optical waveguided. IEEE Transaction of Microwave Theory and Techniques, 1981, MIT-29(6): 600-605
    [197] K. S. Chiang. Finite-element method for cutoff frequencies of weakly guiding fibres of arbitrary cross-section. Optical and Quantum Electronics, 1984, 16: 487-493
    [198] K. S. Chiang, Finite-element analysis of weakly guiding fibers with arbitrary refractive-index distribution, J. of Lightwave Technology, 1986, LT-4(8)
    [199]卫延,常德远,郑凯,简水生.光纤模式分析的伽辽金有限元模型.光子学报, 2008, 37(5): 924-930
    [200] COMSOL Multiphysics with RF Module (www.comsol.com).
    [201] J. M. Fini. Intuitive modeling of bend distortion in large-mode-area fibers. Optics Letters. 2007, 32(12): 1632-1634
    [202] J. M. Fini. Bend-resistant design of conventional and microstructure fibers with very large mode area. Optics Express, 2006, 14(1): 69-81
    [203] C. D. Poole and S. C. Wang. Bend-induced loss for the higher-order spatial mode in a dual-mode fiber. Optics Letters, 1993, 18(20): 1712-1714
    [204]黄晶.掺镱光纤放大器的模拟分析和DFB激光器的实验研究.硕士学位论文,中国科学技术大学,2005.06
    [205]李作浩.连接器端面研抛参数影响规律与机理研究,硕士学位论文.中南大学, 2006. 12
    [206] M. Kihara, S. Nagasawa, T. Tanifuji. Return loss characteristics of optical fiber connectors. Journal of Lightwave Technology, 1996, 14(9): 1986-1991
    [207] E. Avram, W. Mahmood, M. Ozer. Quantification of scattering from fiber surface irregularities. Journal of Lightwave Technology, 2002, 20(4): 634-637
    [208]陈爽,冯莹.高功率光纤放大器中光纤端面处理分析,量子电子学报,2008, 25(6): 685-691
    [209]张俊,冯莹,陈爽.高功率激光光纤耦合系统设计与分析,光学与光电技术, 2007, 5(1):
    [210]姚建铨, Y. Cui, X. W. Sun, et al.. Mixed modes coefficient and Gaussian-like distribution,光学学报, 1995, 15(12): 1633-1640
    [211]周炳琨,高以智等.激光原理.北京:国防工业出版社,2004.
    [212]李晓彤,岑兆丰.几何光学·像差·光学设计.杭州:浙江大学出版社,2003.
    [213] P. Leproux, S. Fevrier, V. Doya, et al. Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump. Optical Fiber Technology, 2001, 7(4): 324-339
    [214]刘德福,段吉安,钟掘.抛光对光纤连接器回波损耗的影响.光学技术, 2005, 31(1): 38-40
    [215]朱如曾.激光物理[M],北京:国防工业出版社, 1979
    [216]谭旭东,任钢,蔡邦维,乔裔明.斜端面光纤耦合效率理论与实验研究.激光技术, 2005, 29(1): 59-61
    [217]波恩,沃尔夫.光学原理,北京:科学出版社, 1978
    [218] Alexander Djordjevich, Svetislav Savovic. Investigation of mode coupling in step index plastic optical fibers using the power flow equation. IEEE Photonics Technology Letters, 2000,12(11):1489-1491
    [219]徐晟,王子华.用耦合功率理论分析内包层有缺陷双包层光纤的吸收效率.光电子.激光2005, 16 (4): 425-428
    [220]陈爽,冯莹,张俊.后腔镜对掺镱双包层光纤激光器输出特性影响的研究,光子学报. 2008, 37(5): 901-905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700