工业多业务流实时网络建模与优化策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业信息化与自动化的不断融合,石油、化工、能源、冶金、制药、交通、船舶、装备制造等系统规模越大越大,复杂度越来越高,需要传输的业务信息量也越来越多。其中可能既含有传统的低速流程控制业务,又有高速强实时运动控制业务,甚至还有故障恢复检测等业务。这种应用特征对网络通信系统信息传输的实时性、稳定性、可靠性提出了严峻的要求。在传统工业网络中,对业务特性要求不同的控制系统通常被分隔为若干个互不相关的业务子系统,并加以独立的分析和研究。这些相互独立的网络系统构成了一个个“信息化孤岛”,导致工业实时应用中的信息集成、互访问和互操作困难,实时性也得不到良好保证。为此,迫切需要将工业实时应用中的各种信息传输融合集成到同一个网络系统中,以实现一个不同信息流能够实时互访与融合的多业务实时网络。
     然而,目前学术界的研究基本仅限于单一业务的工业以太网,很少有多业务工业网络的相关成果。而在实际应用中,现阶段也没有一个实质性的多业务网络解决方案。因此研究工业多业务流实时网络的建模与优化策略不论在理论上还是在应用上都显得格外迫切。
     本文在综述了不同业务流的工业实时以太网模型以及相关的调度和优化策略的国内外研究现状后,首次提出和定义了工业多业务实时网络的概念,将多业务流分类归纳为RT, FRT,以及DR等三种业务。以中国自主制定的工业自动化领域的第一个国际标准EPA为基础,研究了多业务流的分类与建模,工业实时以太网通信模型,强实时业务的调度与优化,控制回路在工业实时网络中的稳定性,故障检测恢复业务建模与自愈时间分析,以及多业务流融合网络构架与调度策略。所做的具体研究工作包括:
     1.以EPA网络为基础,定量划分了RT,FRT和DR三种业务的区间。分析了工业实时以太网的通信调度机理。针对现有EPA相关研究中缺乏定量理论模型的问题,通过对基于角色平等的分布式协议机理的分析,建立了相关的数据模型、调度模型、时间模型,给出了调度规划算法及可调度性判断依据。
     2.针对面向传统流程工业而制定的原版EPA协议的一些不足,提出了若干改进实时性并增强FRT业务性能的方案。在通信机理,同步方法,网段划分,静态时间窗口调度等方面提出了优化策略。提出了一种多网段矩形阵列拓扑结构和相应的时间片规划方案。
     3.分析了报文传输时延和时钟同步精度对EPA网络控制系统实时性和稳定性的影响,提出了新的基于马尔科夫链的时延模型。分析了系统稳定时通信宏周期、协议传输时延和时钟同步精度应满足的条件。建立了EPA网络控制系统模型。给出了EPA控制系统稳定时可以设置的最小通信宏周期的计算方法。
     4.针对以往故障检测和恢复业务没有考虑到现有实时业务的问题,在原有DRP协议基础上提出了全新的DR业务。基于网络演算理论,给出了恢复时间和带宽占用率模型。对整合了实时业务和DR业务的分布式冗余网络进行了性能分析,给出了优化方案。
     5.提出了一种多业务流融合网络的整体框架与解决方案。给出了一种基于广义宏周期的业务融合策略与动态宏周期调度算法。建立了多业务流网络中的宏观数据模型,流量模型以及有效网络利用率模型。针对业务流实时性需求的差异提出了多层子网结构,给出了相应的数据聚合方法和调度策略,并研究了基于最优树概念的多层子网结构最优拓扑以及时间片规划问题。
With the increasing integration of informatization and automation in industries like petroleum, chemical, energy, metallurgy, pharmacy, transportation, shipbuilding and manufacturing, we are now building systems with larger scale and higher complexity wherein more service data needs to be transmitted. Among those services there may exist traditional low-speed process control services, high-speed motion control services or even fault detection and recovery services. The challenges to real-time, stability and reliability of communication networks are becoming more and more severe. In traditional industry network systems, different services are usually transmitted in separated networks, and the research on them are also independent. These independent networks lead to information islands that have become a major obstacle to information integration. The real-time requirements of the network are also hard to be satisfied. As a result, it is important to integrate all these services into a single network to form a multi-service real-time network that ensures mutual access, interoperability and information fusion.
     However, most of the existing researches are restricted to single-service industrial Ethernet. There are few works on multi-service industrial networks and no substantial application solution is presented either. A research on this topic is thereotically important and practically urgent.
     After a thorough review of researches on RTE (Real-Time Ethernet) modeling, scheduling and optimization for different industrial services, this paper defines a new conception of industrial multi-service real-time network for the first time. The services are divided into three categories named RT (Real-Time), FRT(Fast Real-Time) and DR (Distributed Redundancy) services. Based on the real-time protocol EPA (Ethernet for Plant Automation) proposed by China, this paper studies the classification and modeling of services, the communication model of RTE, the scheduling and optimization of FRT services, the stability of control loops in RTE, the modeling of DR services with an analysis of recovery times, and the structure of the multi-service fusion network with a scheduling scheme. Specific results can be summarized as follows:
     1. The categories of RT, FRT and DR services are established based on EPA. The scheduling mechanism of EPA networks is analyzed. As a first attempt to quantitatively model EPA, the data, scheduling and timing models are built based on a comprehensive analysis of the distributed EPA protocol. The scheduling algorithm and criterion of schedulability of EPA networks are given.
     2. Some shortcomings inherent in legacy EPA protocol are analyzed and modifications are made to improve the real-time performance of EPA networks in FRT scenarios. Optimization schemes for communication process, synchronization, network segmentation and static time window allocation are proposed. A multi-segmented matrix network structure with a set of scheduling rules is presented.
     3. A new model of Markovian jump discrete-time networked control systems (NCS) is proposed based on the analysis of the influences that the packet transmission delay and the precision of clock synchronization exert on EPA control systems. The system stability conditions that must be satisfied by the transmission delay and the precision of clock synchronization are studied. An NCS based on EPA is modeled. An algorithm is proposed to obtain the shortest communication macrocycle for an EPA system to be stable.
     4. The original DRP (Distributed Redundancy Protocol) is modified and a new DR service is defined to accommodate the RT service which is not allowed for in existing researches. The recovery time and service occupancy rate models are given based on the network calculus. The performance of DRP is studied while the RT service is considered. The optimization scheme of DRP is proposed.
     5. A network structure of the multi-service fusion network is proposed. A service fusion scheme and a dynamic macrocycle scheduling algorithm are given. The models of data, flow and effective bandwidth utilization are developed for the multi-service network. A multi-level network structure is proposed according to different real-time requirements of the services. A data aggregation policy, a scheduling scheme and a conception of optimal tree are proposed to solve the problems of network structure optimization and timeslot allocation in the multi-level network.
引文
[1]Thomesse J.P., A Review of the Fieldbuses[J]. Annual Reviews in Control,22,1998,pp. 35-45.
    [2]Felser M., Sauter T., The Fieldbus War:History or Short Break Between Battles[C]. Proc. of the 4th IEEE International Workshop on Factory Communication Systems, Vasteras, Sweden, 2002,pp.73-80.
    [3]冯冬芹,金建祥,褚键.工业以太网关键技术初探[J].信息与控制,32(3),2003,221-224.
    [4]Decotignie J. D., The Many Faces of Industrial Ethernet [J]. IEEE Ind. Electron. Mag.,3 (1), 2009, pp.8-19.
    [5]Gaj P., Jasperneite J.D., Felser M., Computer Communication within Industrial Distributed Environment - a Survey [J]. IEEE Transactions on Industrial Informatics,9(1),2013, pp.182-189.
    [6]Chu Jian, Deterministic and Real-Time Communication over Ethernet in EPA Control System [C]. Proc. of the Sixth World Congress on Intelligent Control and Automation, Hangzhou, China,2006,pp.Ⅺ-Ⅻ.
    [7]Decotignie J. D., Ethernet Based Real-time and Industrial Communications [J]. Proceedings of the IEEE,93(6),2005, pp.1102-1117..
    [8]Felser M., Real-time Ethernet - Industry Prospective[J]. Proceedings of the IEEE, 93(6),2005, pp.1118-1129..
    [9]Cena G., Seno L., Valenzano A., Vitturi S., Performance Analysis of Ethernet Powerlink Networks for Distributed Control and Automation Systems[J]. Computer Standards and Interfaces,31 (3),2009, pp.566-572.
    [10]Sauter T., Vasques F., Editorial:Special Section on Communication in Automation [J]. IEEE Transactions on Industrial Informatics,2(2),2006, pp.73-77.
    [11][11] Sauter T., The Three Generations of Field-Level Networks [J]. IEEE Transactions on Industrial Electronics,57(11),2010, pp.3585-3595.
    [12]IEC 61158 parts 3 to 6:Digital Data Communications for Measurement and Control: Fieldbus for Use in Industrial Control Systems[S].2000.
    [13]Espanha J. P., Naghshtabrizi P., Xu Y., A Survey of Recent Results in Networked Control Systems[J]. Proceedings of the IEEE,95 (1),2007, pp.138-162.
    [14]IEEE Std 802.3, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications[J]. New York, USA,2005.
    [15]邱占芝,张庆灵,刘明.有时延和数据包丢失的网络控制系统控制器设计[J].控制与决策,21(6),2006,625-630.
    [16]Nilsson J., Real-time Control Systems with Delays[D]. Ph. D. Dissertation, Dept. Automatic Control, Lund Institute of Technology, Lund, Sweden, January 1998.
    [17]Zhang W., Branicky M.S., Phillips S.M., Stability of Networked Control Systems[J]. IEEE Control Systems Magazine,21,2001, pp.84-99.
    [18]Costa O. L. V., Fragoso M. D., Marques R. P., Discrete-Time Markov Jump Linear Systems (Probability and its Applications) [M]. Springer,2004.
    [19]Liu C., Layland J. W., Scheduling Algorithms for Multiprogramming in a Hard Real-time Environment[J]. Journal of the ACM,20 (1),1973, pp.46-61.
    [20]Stankovic J. A., Spuri M., Ramamritham K. et al., Deadline Scheduling for Real-Time Systems:EDF and Related Algorithms[M]. Boston, MA, USA, Kluwer Academic Publishers, 1998.
    [21]Walsh G. C.,Ye H., Bushnell L., Stability Analysis of Networked Control SystemsfC]. Proc. of the American Control Conf.,1999,pp.2876-2880.
    [22]Walsh G. C.,Ye H.,Bushnell L., Scheduling of Networked Control Systems[J]. IEEE Control Systems Magazine,21(1),2001,pp.57-65.
    [23]Raja P., Ulloa G., Lausanne E. P., Priority Polling and Dynamic Time-window Mechanisms in a Multicycle Fieldbus[C]. Proc. of the Computers in Design, Manufacturing and Production Conference, Los Alamitos, CA,USA,IEEE Computer Society Press, 1993,pp.452-460.
    [24]Hang S. H., Scheduling Algorithm of Data Sampling Times in the Integrated Communication and Control Systems[J]. IEEE Transactions on Control Systems Technology,3 (2),1995, pp.225-230.
    [25]Guo C.X.,SRR:An O(1) Time Complexity Packet Scheduler for Flows in Multi-Service Packet Networks[C].Proc. of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications,2001,pp.211-222.
    [26]Yavatkar R., Pai P., Finkel R., A Reservation-based CSMA Protocol for Integrated Manufacturing Networks[R].Technical Report 216-92, Department of Computer Science, University of Kentucky,1992.
    [27]Gburzynski P., Rudnicki P., A Virtual Token Protocol for Bus Networks:Correctness and Performance[J]. INFOR.,27(2),1989, pp.183-205.
    [28]Malcolm N., Zhao W., Hard Real-time Communication in Multiple-access Networks[J]. Real-Time Systems,8(1),1995, pp.35-77.
    [29]Zhao W., Stankovic J., Ramamritham K., A Window Protocol for Transmission of Time Constrained Messages[J]. IEEE Transactions on Computers,39(9),1990,pp 1186-1203.
    [30]Seok-Kyu Kweon, Kang G. S., Workman G., Achieving Real-Time Communication over Ethernet with Adaptive Traffic Smoothing[C]. Proc. of IEEE Real-Time Technology and Applications Symposium,2000,pp.90-100.
    [31]Cruz R.L., A Calculus for Network Delay, Part I:Network Elements in Isolation[J]. IEEE Transactions on Information Theory,37(1),1991, pp.114-131.
    [32]Cruz R.L., A Calculus for Network Delay, Part II:Network Analysis[J]. IEEE Transactions on Information Theory,37(1),1991, pp.132-141.
    [33]Le Boudec J. Y., Application of Network Calculus to Guaranteed Service Networks[J] IEEE Transactions on Information Theory,44 (3),1998, pp.1087-1096.
    [34]Le Boudec J. Y., Thiran P., Network Calculus:A Theory of Deterministic Queuing Systems for the Internet[M]. Springer Verlag, Berlin,2004.
    [35]Chang C., Cruz, R.L., Le Boudec J.-Y., Thiran P., A min-plus System Theory for Constrained Traffic Regulation and Dynamic Service Guarantees[J]. IEEE/ACM Transactions on Networking,10,2002, pp.805-817.
    [36]Georges J. P., Krommenacker N. et al., A Design Process of Switched Ethernet Architectures According to Real-time Application Constraints[J]. Engineering Applications of Artificial Intelligence,19 (3),2006, pp.335-344.
    [37]Andrew S.T., Computer Networks[M]. Fourth Edition, London, Pearson Education,2004.
    [38]Georges J. P., Rondeau E., Divoux T., Evaluation of Switched Ethernet in an Industrial Context by Using the Network Calculus[C].Proc.of the 4th IEEE International Workshop on Factory Communication Systems, Vasteras, Sweden,2002,pp.19-26.
    [39]Georges J. P., Rondeau E., Divoux T., How to Be Sure That Switched Ethernet Networks Satisfy the Real-time Requirements of an Industrial Application[C].Proc.of the 2002 IEEE International Symposium on Industrial Electronics, L'Aquila, Italy,2002,pp.158-163.
    [40]Lee K.C., Lee S., Performance Evaluation of Switched Ethernet for Real-time Industrial Communications[J]. Computer Standards and Interfaces,24(5),2002, pp.411-423.
    [41]Pierre S., Hyppolite M.A., Bourjolly J.M., Topological Design of Computer Communication Networks Using Simulated Annealing[J]. Engineering Applications of Artificial Intelligence,(8)1,1995, pp.61-69.
    [42]Atiqullah M.M., Rao S.S., Reliability Optimization of Communication Networks Using Simulated Annealing [J]. Microelectronics Reliability,33(9),1993,pp.1303-1319.
    [43]Fencl T., Burget P., Bilek J., Network Topology Design[J]. Control Engineering Practice, 9(11),2011, pp.1287-1296.
    [44]Pierre S., Elgibaoui A., A Tabu-search Approach for Designing Computer-network Topologies with Unreliable Components[J].IEEE Trans., on Reliability,46(3),1997, pp.350-359.
    [45]Krommenacker N., Divoux T., Rondeau E.. Using Genetic Algorithms to Design Switched Ethernet Industrial Networks[C]. Proc. of the 2002 IEEE International Symposium on Industrial Electronics, France,2002,pp.152-157
    [46]Krommenacker N., Rondeau E., Divoux T., Study of Algorithms to Define the Cabling Plan of Switched Ethernet for Real-time Applications[C]. Proc.of Int.Conf. on Emerging Technologies and Factory Automation, Antibes-Juan les Pins, France,2001,pp.223-230.
    [47]张奇智,唐幼纯,孙华丽,张卫东.使用遗传算法划分交换式工业以太网[J].化工自动化及仪表,32(3),2005,31-34
    [48]张雷.工业以太网拓扑设计与优化研究[D].浙江大学,2012.
    [49]Ruping S., Vonnahme E., Jasperneite J., Analysis of Switched Ethernet Networks with Different Topologies Used in Automation Systems[C].Proc.of the Field-bus Technology Conference, Magdeburg, Germany,1999,pp.351-358.
    [50]IEC 61784-2 Industrial Communication Networks-Part 14:Additional Fieldbus Profiles for Real-time Networks Based on ISO/IEC 8802-3[S]. International Electrotechnical Commission, Geneva, Switzerland,2007.
    [51]IEC 61784-1 Industrial Communication Networks:Digital Data Communications for Measurement and Control - Part 1:Profile Sets for Continuous and Discrete Manufacturing Relative to Fieldbus Use in Industrial Control Systems[S]. International Electrotechnical Commission, Geneva, Switzerland,2007.
    [52]IEC61784-2 Industrial Communication Networks:Digital Data Communications for Measurement and Control-Part2:Additional Profiles for ISO/IEC8802-3 Based Communication Networks in Real-Time Applications[S].2007.
    [53]冯冬芹,金建祥,褚健.工业以太网及其应用技术讲座一第8讲EPA在纯碱碳化装置中的应用[j].自动化仪表,26(11),2003,12-15.
    [54]冯冬芹,袁剑蓉,朱玲芬.工业以太网及其应用技术讲座一第9讲基于EPA的分布式控 制系统网络通信模型[J].自动化仪表,27(12),2003,8-10.
    [55]冯冬芹金建祥 王为民 褚健.工业以太网及其应用技术讲座--第6讲基于EPA的分布式网络控制系统结构[J].自动化仪表,24(9),2003,68-70.
    [56]Zhang L., Lehmann R., Wang Z., A Risk Metric for Designing a Highly Reliable Real-time Ethernet Network[C].Proc. of IEEE Conf. on Emerging Technologies and Factory Automation, Mallorca, Spain,2009,pp.1-4.
    [57]Han K., Pei G., Ravindran B. et al., RTRD:Real-Time and Reliable Data Delivery in Ad Hoc Networks[C].Proc. of IEEE Wireless Communications and Networking Conference, Las Vegas, USA,2008,pp.2253-2258.
    [58]Wang Y.Q., Ye H., Ding S., Wang G.Z.,Fault Detection of Networked Control Systems Subject to Access Constraints and Random Packet Dropout[J]. Acta Automatica Sinica,35 (9),2009, pp.1230-1234.
    [59]Huynha M., Goose S., Mohapatra P., Resilience Technologies in Ethernet[J]. Computer Networks,54(1),2010, pp.57-78.
    [60]Kleineberg O., Felser M., Network Diagnostics for Industrial Ethernet [C]. Proc.of IEEE Int. Conf. on Emerging Technologies and Factory Automation, Hamburg, Germany, 2008,pp.476-479.
    [61]IEC 62439 High Availability Automation Networks[S].2008.
    [62]IEC62439-6(CDV) Industrial Communication Networks:High Availability Automation Networks-Part6:Distributed Redundancy Protocol(DRP)[S].International Electrotechnical Commission, London,2009.
    [63]郭远星,船舶综合控制系统的研究与设计[D],浙江大学,2010.
    [64]Jamsa-Jounela S.L., Future Trends in Process Automation[J]. Annual Reviews in Control,31 (2),2007, pp.211-220.
    [65]Zhang X., Tang X., Chen J., Hierarchical Real-time Networked CNC System Based on the Transparent Model of Industrial Ethernet[J]. The International Journal of Advanced Manufacturing Technology,34(1-2),2006, pp.161-167.
    [66]Hashim H., Abdul Kadir H., Implementing Ethernet in Computer Integrated Manufacturing System[C]. Proc. of the 6th International Symposium on Mechatronics and its Applications, Sharjah, United Arab Emirates,2009,pp.1-4.
    [67]Kanehiro F., Ishiwata Y., Saito H. et al., Distributed Control System of Humanoid Robots Based on Real-time Ethernet[C].Proc.of Int. Conf. on Intelligent Robots and Systems, Beijing, China,2006,pp.2471-2477.
    [68]Ebert D., Henrich D., Safe Human-robot-cooperation:Problem Analysis, System Concept and Fast Sensor Fusion[C].Proc. of Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany,2001,pp.239-244.
    [69]Liu Q., Li Y., Modeling and Stability Analysis of Networked Robot System with Network-induced Delay and Data Dropout[C].Proc. of the 1st Int. Conf. on Communications and Networking in China, Beijing, China,2006,pp.l-5.
    [70]Dietrich D., Bruckner D., Zucker G., Palensky P., Communication and Computation in Buildings:A Short Introduction and Overview[J]. IEEE Trans, on Industrial Electronics, 57(11),2010, pp.3577-3584.
    [71]张先富,冯冬芹.基于复合处理的EPA通信调度算法研究与实现[J].高技术通讯,19(4),2009.434-439.
    [72]冯冬芹,褚健,金建祥,章涵.EPA系列技术标准与应用[C].2009中国自动化大会暨两化融合高峰论坛,2009
    [73]冯冬芹,谭平.基于EPA的分布式网络控制系统在纯碱碳化装置中的应用[J].电气时代,7.2004,84-85.
    [74]修红学.基于EPA烟气脱硫控制系统的研究[D].武汉工程大学,2007.
    [75]黄文君,金建祥.基于EPA工业以太网的现场控制器研制[J].仪器仪表学报,27(8),2006,949-952.
    [76]赵联祥,冯冬芹等.基于EPA的智能温度传感器[J].机电工程,19(6)2002,53-56.
    [77]刘宁.EPA工业以太网实时性分析及调度方法的研究[D].大连理工大学,2010.
    [78]姜秀柱.基于EPA的煤矿工业以太网实时调度算法研究[D].中国矿业大学,2011.
    [79]章涵.EPA实时可靠通信协同调度与优化研究[D].浙江大学,2010.
    [80]许剑新.工业无线网络实时通信的研究与开发[D].浙江大学,2008.
    [81]张先富.基于FPGA的EPA协议栈研究与开发[D].浙江大学,2008年.
    [82]赵飞翔.EPA-FRT及其在运动控制中的应用研究[D].浙江大学,2010年
    [83]Sauter T., The Continuing Evolution of Integration in Factory Automation[J]. IEEE Industrial Electronic Magazine,1(1),2007, pp.10-19.
    [84]Prytz G., A Performance Analysis of EtherCAT and PROFINET IRT[C]. Proc. of IEEE ETFA, Hamburg, Germany,2008,pp.408-415.
    [85]Vitturi S., Peretti L., Seno L., Zigliotto M., Zunino C., Real-time Ethernet Networks for Motion Control[J]. Computer Standards & Interfaces,33(5),2011, pp.465-476.
    [86]Jasperneite J., Schumaker M., Weber K., Limits of Increasing the Performance of Industrial Ethernet Protocols[C]. Proc. of IEEE ETFA, Patras, Greece,2007,pp.17-24.
    [87]Cena I., Bertolotti C., Scanzio S., Valenzano A. Zunino C, Evaluation of EtherCAT Distributed Clock Performance[J]. IEEE Trans. Ind. Informat.,8(1),2012, pp.20-29.
    [88]Cereia M., Bertolotti I.C., Scanzio S., Performance of a Real-time EtherCAT Master under Linux[J]. IEEE Trans. Ind. Informat.,7(4),2011, pp.679-687.
    [89]Erwinski K., Paprocki M., Grzesiak L.M., Karwowski K., Wawrzak A., Application of Ethernet Powerlink for Communication in a Linux RTAI Open CNC System[J]. IEEE Transactions on Industrial Electronics,60(2),2013, pp.628-636.
    [90]Jansen D., Buttner H., Real-time Ethernet:The EtherCAT Solution[J]. Computer Control Engineering,15(1),2004, pp.16-21.
    [91]Cena G., Valenzano A., Zunino C., An Arbitration-based Access Scheme for EtherCAT Networks[C].Proc. of IEEE Int. Conf. on Emerging Technologies and Factory Automation,Hamburg, Germany,2008,pp.416-423.
    [92]Ferrari P., Flammini A., Vitturi S., Performance Analysis of Profinet Networks[J]. Computer Standards & Interfaces,28(4),2006, pp.369-385.
    [93]Schumacher M, Jasperneite J., Weber K., A New Approach for Increasing the Performance of the Industrial Ethernet System PROFINET[C]. Proc.of WFCS,2008,pp.159-167.
    [94]Hanzalek Z., Burget P., Sucha P., Profinet IO IRT Message Scheduling with Temporal Constraints[J]. IEEE Trans, on Industrial Informatics,6(3),2010, pp.369-380.
    [95]Ferrari P., Flammini A., Rinaldi S., Sisinni E., On the Seamless Interconnection of IEEE1588-based Devices Using a PROFINET IO Infrastructure[J]. IEEE Trans. Ind. Informat.,6(3),2010, pp.381-392.
    [96]Ferrari P., Flammini A., Marioli D. et al.,Experimental Evaluation of PROFINET Performance[C].Proc. of the 5th IEEE Workshop on Factory Communication Systems, Vienna,Austria,2004,pp.331-334.
    [97]Yilmaz C., Gurdal O., Kosalay I., Network Induced Delay of Asynchronous Motor Connected to Profibus-DP Networks Using Fuzzy Logic Control Algorithm[J]. Expert Systems with Applications,37(4),2010, pp.3248-3255.
    [98]Gao T., Yu D., Yue D., Hu Y., Design and Implementation of Communication Platform in CNC System[C]. Proc. of IEEE/ASME Int. Conf. MESA,2010,pp.355-360.
    [99]Kim K., Sung M., Jin H.W., Design and Implementation of a Delay-guaranteed Motor Drive for Precision Motion Control[J]. IEEE Trans. Ind. Informat,8(2),2012, pp.351-356.
    [100]Felser M. Media Redundancy for PROFINET IO[C].Proc. of IEEE International Workshop on Factory Communication Systems,2008,pp.325-330.
    [101]Imtiaz J., Jasperneite J., A Novel Method for Auto Configuration of Realtime Ethernet Networks[C].Proc. of IEEE Int. Conf. on Emerging Technologies and Factory Automation, Hamburg, Germany,2008,pp.861-868.
    [102]Kirrmann H., Hansson M., Muri P., IEC 62439 PRP:Bumpless Recovery for Highly Available, Hard Real-time Industrial Networks[C].Proc. of IEEE Conf. on Emerging Technologies and Factory Automation,2007,pp.1396-1399.
    [103]Xu A.D., Jiang L.Q., Yu H.B., Research of Fault-tolerance Technique for High Availability Industrial Ethernet[C].Proc. of Int. Conf. on Information and Automation, Zhuhai/Macau, China,2009,pp.301-305.
    [104]李志强.DRP系统故障自愈时间的优化研究与设计[D].浙江大学,2012年.
    [105]Hong S. H., Bandwidth Allocation Scheme for Cyclic-service Fieldbus Networks[J]. IEEE/ASME Trans, on Mechatronics,6(2),2001, pp.197-204.
    [106]Hong S. H., Choi I. H., Experimental Evaluation of a Bandwidth Allocation Scheme for Foundation Fieldbus[J]. IEEE Trans, on Instrument and Measurement,52(6),2003, pp.1787-1791.
    [107]朱予辰.基于EPA的网络控制系统多媒体复合传输研究[D],浙江大学,2012.
    [108]IEEE 1588 IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems[S]. New York, USA,2008.
    [109]Yang F., Fang H., Control Structure Design of Networked Control Systems Based on Maximum Allowable Delay Bounds[J]. Journal of the Franklin Institute,346(6),2009, pp.626-635.
    [110]桂本烜,冯冬芹,褚健,金建祥.基于单神经元的网络同步补偿算法研究[J].仪器仪表学报,27(12),2006,1573-1577.
    [111]Giorgetti A., Cugini F., Paolucci F., Valcarenghi L., Pistone A., Castoldi P., Performance Analysis of Media Redundancy Protocol (MRP)[J]. IEEE Trans.on Industrial Informatics, 9(1),2013, pp.218-227.
    [112]Kirrmann H., Weber K., Kleineberg O., HSR Zero Recovery Time and Low-cost Redundancy for Industrial Ethernet(High Availability Seamless Redundancy, IEC 62439-3)[C].Proc. of IEEE Conf. on Emerging Technologies and Factory Automation, 2009,pp.1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700