单模光纤中偏振效应的理论研究及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏振模色散是高速通信系统的限制因素之一,其起因来自于光纤内部分布的不均匀性以及外部环境的干扰。对于偏振模色散的研究,分段模型是较优的选择。原级联模型经过数学推导,可转化为迭代模型。转化后的模型物理意义明晰,在直观上便于看出偏振模色散随光纤分段增加的累积过程,具有较强的移植性。理论分析中指明了数值方法产生误差的缘由,我们将由级联模型得出的迭代模型,应用于一阶偏振模色散的研究,指出了一阶模拟计算中必需注意的问题。在一阶分析的基础上进行二阶偏振模色散的研究,数值模拟表明,该方法简洁明了,对于二阶偏振模色散的两个正交分量的研究,提供了非常直观的方法,统计结果与理论相符。
     在偏振模色散数值模型处理中,光纤分段数N和分段长度L是两个基本的参数,直接影响偏振模色散的随机特性,其选择是比较复杂的问题。在基本级联模型的基础上,对偏振模色散的随机特性进行了分析,指出N和L的处理直接关系到级联模型的分析结果。对N和L的选择进行的分析和探讨中可以发现,分段数N的合适选取以及L的合理分布对建立模型至关重要,直接决定一阶偏振模色散的分布特征。数值模拟表明,参数特性在级联模型中起到决定性的作用。另一方面,级联模型本身含有随机特性,这是在讨论偏振模色散随机分布特性时应该考虑的因素。数值模拟给出了一阶偏振模色散矢量的随机性特征,其特征通过三个分量表现出来。在一阶的基础上,进行了二阶偏振模色散矢量的模拟计算,计算结果与理论曲线吻合较好。二阶偏振模色散可以分解为平行分量与垂直分量,模拟结果给出了这两个矢量的随机分布特性,对二阶偏振模色散的随机性分析提供了比较全面的指导作用。
     偏振相关损耗是光通信系统中另一限制因素,偏振模色散和偏振相关损耗共同的作用,影响了系统的传输性能,在偏振模色散和偏振相关损耗特征矩阵的基础上,对偏振模色散和偏振相关损耗之间的相互影响进行了分析和模拟。结果表明,偏振相关损耗的增加单向改变偏振模色散的值,可能增大也可能减少。而偏振模色散的改变对偏振相关损耗的影响表现为复杂的关系:在偏振模色散增加的情况下,偏振相关损耗的大小的改变起伏不定。
     偏振模色散的测量是目前研究的一个热点问题,在庞加莱球的基础上,对原来偏振模色散的测量方法给出理论分析,研究表明,一阶偏振模色散测量的误差影响二阶偏振模色散的测量。在偏振相关损耗很微弱可以忽略的情况下,我们提出一种全新的方法来测量二阶偏振模色散。通过新方法,二阶偏振模色可以直接测量,不需要通过一阶偏振模色散对频率求导。另一方面我们推导了偏振相关损耗的测量方程,得到了简易的偏振相关损耗的测量方法,测量速度较快。
     前面的内容主要在频域里面进行研究,在时域范围里面,偏振模色散和偏振相关损耗会导致脉冲的展宽,这就要求提出一个更完善的方案,以分析存在偏振相关损耗条件下,脉冲的传输情况。我们给出新的数学描述方法,将偏振模色散,偏振相关损耗,以及啁啾都包含在内。研究表明,啁啾高斯脉冲传输的时延不仅受到偏振相关损耗的影响,还与自身的啁啾有关。在某种程度上,系统的偏振模色散可以通过改变偏振相关损耗和啁啾以得到控制。
     最后,我们讨论了偏振态的演变规律和偏正效应的补偿方法。在无解偏的光纤通信系统中,弥勒矩阵可以用来描述输入输出偏振态之间的关系,而对于光源为准单色光的高速通信系统,严格来讲解偏效应是不能忽略的,弥勒矩阵必须加以修正以将解偏效应引入进来,通过理论推导,我们得到了严格考虑解偏效应条件下,任意输入偏振态都满足的通用方程。
One of the most serious limits to high bit-rate optical transmission systems is polarization-mode dispersion (PMD). PMD arises from the perturbations that are unavoidably induced in a real fiber by the production process and the external environment. Segment-dividing model is appropriate for research on PMD. Mathematical deduction is made to change it into iterative model. It is easy to find the new model gives clear meaning in physics and reveals the process of PMD accumulation in fiber. It is applicable for being transplanted to analysis on PMD. Theoretic analysis gives the reason for error in Numerical calculation.
     Iterative model can be attained by concatenated model and is applied to analysis on first order PMD. It is pointed out that some problems should be paid attention to in the simulation. Second order analysis on PMD is made on the basis of first order. Numerical simulation shows the method is clear and brief. It provides direct technique for research on the two orthogonal parts of second order PMD. Statistical calculation accords with theoretical result.
     In numerical model for PMD research, the number of the whole segments N and the length of each segment L are basic parameters, which affect the randomicity of PMD. The choice on them is complex. Analysis is given on randomicity of PMD on the basis of the basic concatenated model in this paper, and it is pointed out that treatment for N and L determines the analytic result. By analysis and exploration on the choice of these two parameters, it is found that appropriate N and logical L are very important in PMD modeling and determines the distributing character of first-order PMD. Numerical simulation shows the character of parameters is the decisive element in concatenated model. On the other hand, the concatenated model shows character of randomicity and this element should be taken into account for analysis on character of probability for PMD. Simulation results show randomicity of first-order PMD, which is laid out by the three orthogonal parts. On the basis of first order, calculation for second-order PMD is put in practice. Simulation results tally well with theoretic curve. It is known second-order can be decomprised of two orthogonal parts: parallel part and vertical part. Simulation for the two vectors is given, which guides analysis on the character of probability for second-order PMD comprehensively.
     Polarization dependent loss (PDL) is the other limit to optical communication system. Interaction between PMD and PDL affects performance of communication system. On basis of characteristic transfer matrix of PMD and PDL, analysis and simulation is executed on the interaction between PMD and PDL. Results show that increase of PDL can change the value of PMD in single direction. The value of PMD may increase or decrease. But affected PDL shows complex relationship with PMD according to variational value of PMD: while PMD increase, the value of PDL fluctuates.
     Measurement of polarization mode dispersion is one of the most popular topics. On the basis of Poincarésphere, theoretical analysis is given on the measurement of second order PMD. Research shows that error in measurement of first order PMD influence second order. While the effect of PDL is weak and can be neglected, a new polarization-mode dispersion measurement technique is described that allows the determination of second order PMD (SOPMD) vectors in optical fibers. SOPMD can be directly measured, not derived from first order PMD. If the effect of PDL should be taken into account, a generalized method is provided to measure the DGD. The algorithm requires the launch of three polarizations per wavelength and uses large rotation angles as well as interleaving to attain low-noise high-resolution PMD data. On the other hand, we derived the equation for measurement of PDL and obtained an easy method to measure PDL. The measurement process is fast.
     Questions discussed above are focused on the domain of frequency. However on the domain of time, a combination of PMD and PDL in optical fiber may lead to anomalous pulse broadening. It raises the issue for more complete assessments when studying the pulse propagation in the presence of polarization-dependent loss. A mathematical description is put forward to including the effect of PMD, PDL and chirp. Simulation shows the delay of a chirped Gaussian pulse depends not only on PDL, but also on the chirp of the pulse itself. To some degree, effective PMD can be controlled by PDL and chirp.
     At last, we discuss the conception of DOP and method of depolarization. In a non-depolarizing optical system, Mueller-Jones matrix can be used to describe the relation between input Stokes vector and output Stokes vector. However, even if the input light is quasi-monochromatic, effect of depolarization can not be neglected in practical optical fiber system. Mueller-Jones matrix should be modified to have the depolarizing effect included. The newly formulated equations are generalized for input light with arbitrary degree of polarization in optical fiber system where effect of depolarization is seriously considered.
引文
[1] Ning Tigang, Jian Shuisheng, Pei Li et al. 4×10 Gb/ s 412km DWDM dispersion compensation using multiwavelengthchirped fiber Bragg grating. Acta Optica Sinica, 2002, 22(7): 839~841
    [2]刘宏伟,何永琪.智能光网络一下一代光网络.电信工程技术与标准化, 2002, 6(1): 12~15
    [3] Ning Tigang, Liu Yan, Tan Zhongwei et al. 4×10 Gb/ sWDM transmission over 640 km of standard fiber using cascaded chirped FBG dispersion compensation. OECC, 2002. 262~263
    [4] Gnauck A H, Wiesenfeld J M, Garrett L D et al. 16×202 Gb/ s 4002km WDM transmission over NZDSF using a slope compensating fiber grating module. IEEE Photon Technol Lett, 2000, 12(4): 437~439
    [5] Philippe Ciprut, B. Gisin, Nicolas Gisin et al. Second order polarization mode dispersion: impact on analog and digital transmissions. J. Lightwave Technol, 1998, 16(5): 757~771
    [6] Huttner B, de Barros C, Gisin B et al. Polarization induced pulse spreading in birefringent optical fibers with zerodifferential group delay. Opt. Lett, 1999, 24(6): 370~372
    [7] Schlump D, Wedding B, Bulow H. Electronic equalization of PMD and chromatic ispersion induced distortion after 100 km standard fiber at 10 Gbit/ s. ECOC’98 Madrid, 1998. 210~212
    [8] Shtaif M, Mecozzi A, Turet M, et al. A Compensator for the effects of high order polarization mode dispersion in optical fibers. IEEE Photonics Technology Letters, 2000, 12(4): 434~436
    [9] Lee S, Khosravani R, Peng J et al. High-birefringence nonlinearly - chirped fiber Bragg grating for tunable compensation of polarization mode dispersion. Technical Digest of OFC’99, 1999. 272~274
    [10] Patscher J, Eckhardt R. Component for second order compensation of polarizationmode dispersion. Electronics Letters, 1997, 33(13): 1157~1159
    [11] Noe R, Sandel D, Yoshida2Dierolf M, et al. Polarization mode dispersion compensation at 10, 20 and 40Gb/s with various optical equalizers. Journal of Lightwave Technology, 1999, 17(9): 1602~1616
    [12] Corsi F, Galtarossa A. Continuous wave back reflection measurement of polarization mode dispersion. Photon. Technol. Lett, 1999, 11(4): 451~453
    [13] H. Sunnerud, M. Karlsson, P. A. Andrekson. Analytical theory for PMD compensation. IEEE Photon. Technol. Lett, 2000, 12(1): 50~52
    [14] Rao Min, Sun Xiaohan, Zhang Mingde. Second order PMD effects on the high speed propagation of gaussian pulse in single mode optical fiber. Acta Optica Sinica, 2002, 22(11): 1354~1357
    [15] W. Schieh. On the second order approximation of PMD. IEEE Photon. Technol. Lett, 2000, 12(3): 290~292
    [16] Zhang Xiaoguang, Li Chaoyang, Zheng Yuan, et al. An experiment of adaptive polarization mode dispersion compensation for optical communication systems. International Conference on Communication Technology Proceeding, ICCT2003, 2003. 569~573
    [17] J. M. Fini, H. A. Haus. Accumulation of polarization mode dispersion in cascades of compensated optical fibers. IEEE Photon. Technol. Lett, 2001, 13(2): 124~126
    [18] J. P. Elbers, C. Glingener, M. Duser, et al. odeling of polarization mode dispersion in singlemode fibers. Electron. Lett, 1997, 33(2): 1894~1895
    [19] L.S. Yan, Q. Yu, A. E. Willner. Demonstration of in-line monitoring and compensation of polarization-dependent loss for multiple channels, Photonics Tech. Lett, 2002, 14(6): 864~866
    [20] Phua P B, Haus H A. Deterministric approach to first and second order PMD compensation. IEEE Photon Technol Lett, 2002, 14(9): 1270~1272
    [21] Chou P C, Fini J M, Haus H A. Real time principal state characterization for use in PMD compensators. IEEE Photon Technol Lett, 2001, 13(6): 568~570
    [22] Marks B S, Lima IT, Menyuk C R. Autocorrelation function for polarization modedispersion emulators with rotator Opt Lett, 2002, 27(13): 1150~1152
    [23] Sunnerud H, Xie C J. A Comparison between Different PMD Compensation Techniques. J.Lightwave Technol, 2002, 20(3): 368~378
    [24] Merker T, Schwarzbeck A, Meissner P. PMDcompensation up to second order by tracking the principle states of polarization using a two-section compensator. Optics Communications, 2001, 10(3): 41~47
    [25] Riant L. Polarization mode dispersion compensation in fiber chromatic dispersion compensators. Tech.Digest of FC’99, 1999. 269~271
    [26] Rochette M. Polarization mode dispersion compensation of chirped Bragg gratings used as chromatic dispersion compensator. Electron Lett, 2000, 36(17): 113~115
    [27] F. Roy, C. Francia, F. Bruyere et al., A simple dynamic polarization mode dispersion compensator. Elecron. Lett, 1999, 35(2): 275~278
    [28] H. Kogelnik, R. M. Jopson, and L. E. Nelson, Polarization-mode dispersion, in Optical Fiber Telecommunications IV-B: Systems and Impairments I. P. Kaminow and T. Li, Eds. San Diego, 2002. 725~861
    [29] J. C. Rasmussen, A. Isomura, G. Ishikawa. Automatic compensation of polarization mode dispersion for 40 Gb/s transmission systems. J. Lightwave Technol, 2002, 20(12): 2101~2109
    [30] Y. Zheng, X. G. Zhang, G. T. Zhou et al. Automatic PMD compensation experiment with particle swarm optimization and adaptive dit hering algorithms for 102Gb/ s NRZ and RZ formats. Quant. Electonics, 2004, 40(4): 427~435
    [31] X. Zhang, L. Yu, Y. Zheng, Y. Shen, G. Zhou et al. Adaptive PMD compensation using PSO algorithm, in OFC 2004, Los Angeles CA, 2004. 22~27
    [32] M. Karlsson, H. Sunnerud, and P. A. Andrekson, A comparison of different PMD-compensation techniques, in Proc. ECOC, 2000. 33~35
    [33] Kikuchi N. Analysis of signal degree of polarization degradation used as contral signal for optical polarization mode dispersion compensation. Journal of Lightwave Technology, 2001, 19(4): 480~486
    [34] Walker N G, Walker G R. Polarization control for coherent communications. Journalof Lightwave Technology, 1990, 8(3): 438~458
    [35] Chou Patrick C, Fini John M, Haus Hermann A. Demonstration of a feed forward PMD compensation Technique. IEEE Photonics Technology Letters, 2002, 14(2): 161~163
    [36] Takahashi T, Imai T, Aiki M. Automatic compensation technique for time wise fluctuating polarisation mode dispersion in in-line amplifier systems. Electronics Letters, 1994, 30(4): 348~349
    [37] Pua Hok Yong, Peddanarappagari Kumar, Zhu Benyuan, et al. An adaptive first order polarization mode dispersion compensation system aided by polarization scrambling, Theory and Demonstration. Journal of Lightwave Technology, 2000, 18(6): 832~841
    [38] Fred Buchali, Henning Bülow. Adaptive PMD compensation by electrical and optical techniques. Journal of Lightwave Technology, 2004, 22(4): 1116~1126
    [39] Hakki B W. Polarization mode dispersion compensation by phase diversity detection. IEEE Photonics. Technology Letters, 1997, 9(1): 121~123
    [40]蒙红云,冯德军,赵春柳等.偏振模色散及其补偿技术,光通信技术, 2002, 26(2): 42~46
    [41]孙学明.高速光纤通信系统中偏振模色散的研究,光通信技术, 2003, 30(2): 102~103
    [42]赵文玉,王宏祥,王岚等.高速数字光通信系统中高阶PMD限制研究.北京邮电大学学报, 2002, 25(4): 6~10
    [43]刘剑飞,于晋龙,王剑等. 10 Gbit/ s的光纤通信系统中一阶偏振模色散自动补偿技术的研究.中国激光, 2004, 30(4): 349~352
    [44]周光涛,张晓光,沈昱等. 10 Gb/ s光通信传输系统中一阶PMD自适应补偿实验.光子学报, 2004, 30(4): 448~451
    [45]刘汉奎,杨莉.光纤偏振模色散补偿的监测信号和反馈控制算法分析.西华师范大学学报(自然科学版), 2003, 24(3): 291~295
    [46]王宏丽,于晋龙,于剑等.偏振模色散补偿中偏振度与差分群延时关系的理论分析和实验.光学学报, 2004, 24(11): 1533~1537
    [47]徐坤,谢世钟.高速光纤通信中的偏振模色散及其补偿技术.半导体光电, 2000, 21(1): 1~5
    [48]陈烈辉,高锦岳.用于高阶偏振模色散补偿的高效动态补偿器.光子学报, 2003, 32(6): 702~705
    [49]吴重庆,傅松年,刘海涛.偏振模色散矢量的研究.物理学报, 2002, 51(11): 2542~2546
    [50] Rashleigh S C. Origins and control of polarization effects in single mode fibers. J. Lightwave Technology, 1983, 21(2): 312~331
    [51]杨广强,张霞,林健飞等.高双折射光子晶体光纤偏振模色散测量.光子学报, 2005, 34(8): 1133~1136
    [52]陈伟成,徐文成,张书敏等.双折射光纤中偏振模色散的抑制.光子学报, 2001, 30(7): 822~826
    [53]丁攀峰,孙军强,侯睿. PMD统计模型的改进.光子学报, 2006, 35(2): 277~280
    [54] Alessandra Orlandini and Luca Vincetti. Jones transfer matrix for polarization mode dispersion, Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000. 13th Annual Meeting. IEEE, 2000. 13~16
    [55] Panfeng Ding, Junqiang Sun, Hou Rui. Stochastic Analysis on PMD Statistical Model. Asia-Pacific Optical Communications Conference, Proceeding of SPIE, 2005, (602125): 1~8
    [56] Cai Ju, Xu Ming, Yang Xianglin. Analysis of statistical characters of first and second order polarization mode dispersion. Acta Optica Sinica, 2003, 2(23): 170~175
    [57]戴无惧,张汉一,何永琪.极化模耦合效应的简化传输模型及其应用.光电子激光, 2002, 13(8): 791~794
    [58]董建军,吴重庆,王秀彦.整段光纤的PMD与各部分的PMD的关系.半导体光电, 2002, 23(1): 33~36
    [59]瘳延彪.偏振光学[M] .北京:科学出版社, 2003. 20~23
    [60]郑远,刘玉敏,杨伯君等.用琼斯传输矩阵法研究二阶偏振模色散的统计特性,2003, 30(1): 45~48
    [61] Forestieri E, Vincetti L. Exact evaluation of the Jones matrix of a fiber in the presence of polarization mode dispersion of any order. J. Light Tech, 2001, 19(12): 1898~1909
    [62] G. J, Foschini, C. D. Poole. Statistical theory of polarization dispersion in single mode fibers. J .Lightwave Technol, 1991, 9(11): 1439~1456
    [63] Gordon J P, Kogelnik. PMD fundamentals: polarization mode dispersion in optical fibers, 2000, 97(9): 4541~4550
    [64] Poole C D. Statistical treatment of polarization dispersion in single mode fiber. Opt. Lett, 1988, 13(8): 687~689
    [65] Yang Jianke, Kath W L, Menyuk C R. Polarization mode dispersion probability distribution for arbitrary distances. Opt. Lett, 2001, 26(19): 1472~1474
    [66]孙学明,张慧剑,左萌等.一阶PMD和二阶PMD的统计相关研究.光子学报, 2003, 12(3): 27~29
    [67]周赢武,郭凌伟,瞿荣辉等.偏振模色散模拟器一阶及二阶偏振模色散统计特性的分析.光子学报, 2004, 33(3): 333~337
    [68] Shtengel G, Ibragimov E, Rivera M, et al. Statistical dependence between first and second order PMD. OFC′2001, 2001. 12~14
    [69] Gisin N, Von J P, Pellaux J P. Polarization mode dispersion of short and long single mode fibers. J. Light Tech, 1991, 9(7): 821~827
    [70] Savory S J, Payne F P. Pulse Propagation in Fibers with Polarization Mode Dispersion. Journal of Lightwave Technology, 2001, 19(3): 350~357
    [71] Zheng Y, Liu Y, Yang B, et al. Study of the statistical characteristics of second orderpolarization mode dispersion by jones transfer matrix method. Chinese Journal of Lasers A, 2003, 30(1): 45~48
    [72] G. J. Foschini, R. M. Jopson, L. E. Nelson et al. The statistics of PMD induced chromatic fiber dispersion. J.Lightwave Technol, 1999, 17(9): 1560~1565
    [73] G. J. Foschini, L. E. Nelson, R. M. Jopson et al., Probability densities of second order polarization mode dispersion including polarization dependent chromatic fiber dispersion. IEEE Photon. Technol. Lett, 2000, 12(3): 293~295
    [74] Curti F, Daino B, Marchis G D, et al. Statistical treatment of the evolution of the principal states of polarization in single mode fibers. J. Lightwave Technol, 1990, 8(8): 1162~1165
    [75]赵文玉,王岚,王宏祥等.高阶PMD的统计特性研究.光子学报, 2002, 31(11): 1368~1372
    [76]郑远.偏振模色散统计特性的研究.中国激光, 2002, 29(8): 43~47
    [77]刘秀敏.波分复用系统中偏振模色散统计特性的研究.中国激光, 2001, 28(12): 57~61
    [78]薛梦驰,陈述,俞根娥.单模光纤偏振模色散的理论.光通信技术, 1999, 23(2): 119~125
    [79]薛梦驰.传输光纤偏振模色散(PMD)的统计模型.现代有线传输, 1999, 4(1): 11~15
    [80]陈颖.光信号传输中光纤模色散的补偿.仪器仪表学报, 2005, 26(8): 31~32
    [81]沈晓强,于娟,邵钟浩.光纤中的极化相关损耗.江苏通信技, 2002, 18(5): 12~14
    [82] Nelson L E, Jopson R M, Kogelnik H, et al. Measurement of depolarization and scaling associated with second orderpolarization mode dispersion in optical fibers. I EEE Photonics Technology Letters, 1999, 11(12):1614~1616
    [83] Zhang X G, Yu L, Zhou G T, et al. Adaptive PMD compensation in 10Gbit/s RZ optical communication system. Chinese optics letters, 2003, 1(8): 447~450
    [84] Heffner B L. Automated measurement to polarization mode dispersion using Jones matrix eigenalaysis. IEEE Photonics Technology Letters, 1992, 4(9): 1066~1069
    [85] P. A.Williams and C. M.Wang. Corrections to fixed analyzer measurements of polarization mode dispersion, J. Lightwave Technol, 1998, 16(12): 534~541
    [86] A. Eyal, M. Tur. Measurement of polarization mode dispersion in systems having polarization dependent loss or gain. IEEE Photon. Technol. Lett, 1997, 9(17): 1256~1258
    [87] P. A. Williams. Mode coupled artifact standard for polarization mode dispersion design. Applied optics, 1999, 38(31): 6498~6057
    [88] R. M. Jopson, L. E. Nelson, and H. Kogelnik. Measurement of second-order polarization mode dispersion vectors in optical fibers, IEEE Photon. Techol. Lett, 1999, 11(13): 1153~1155
    [89]应承平,王恒飞,贺凯谋. JME法测量光器件偏振模色散.宇航计测技术, 2005, 25(5): 59~62
    [90]毛兵成,李朝阳,赵荣华.利用琼斯矩阵特征值法测量光纤PMD.电子学报, 2002, 33(3): 441~443
    [91]刘毓.单模光纤偏振度的不变性研究.西安邮电学院学报, 2006, 11 (3): 17~19
    [92] K. Kikushima, K. Suto, H. Yoshinaga, E. Yoneda. Polarization dependent distortion in AM-SCM video transmission systems. IEEE J. Lightwave Technol, 1994, 32(12): 650~657
    [93] E. Lichtmann. Performance degradation due to polarization dependent gain and loss in lightwave systems with optical amplifiers. IEEE Electron. Lett, 1993, 29(13): 1969~1970
    [94] Huttner, N. Gisin. Anomalous pulse spreading in birefringent optical fibers with polarization-dependent losses. Opt. Lett, 1997, 22(13): 504~506
    [95] Richard Barakat. Bilinear constraints between elements of the 4x4 Mueller-Jones transfer matrix ofpolarization theory. Opt. Commun. 1981, 38(32): 159~161
    [96] Shih-Yau Lu, and Russell A.Chipman. Mueller matrices and the degree of polarization. Opt. Commun. 1998, 14(146): 11~14
    [97] R.M. Craig, S.L. Gilbert, P.D. Hale. High-resolution, nonmechanical approach to polarization-dependent transmission measurements. IEEE J. Lightwave Technol, 1998, 16(13): 1285~1294
    [98] R. C. Jones. A new calculus for the treatment of optical systems. J.Opt. Soc. Amer, 1941, 31(2): 488~493
    [99] P. Lu, L. Chen, and X. Bao. Principal states of polarization for an optical pulse in the presence of polarization mode dispersion and polarization dependent loss. in Proc. 2000 In, 2000. 12~16
    [100] Nobuhiko Kikuchi, Sinya Sasaki. Polarization mode dispersion detection sensitivityof degree of polarization method for PMD compensation. Proc. European Conference on Optical Communications, 1999. 8~9
    [101] C. Francia, F. Bruyere, J. P. Thiery et al. Simple dynamic polarization mode dispersion compensator. Electron. Lett, 1999, 35(5): 414~415
    [102]张晓光,于丽,郑远等.光纤通信系统中偏振模色散自适应补偿实验研究.光子学报, 2003, 32(12): 1474~1478
    [103]张璐,胡强高,吕增海等.不同调制方式下偏振度与偏振模色散的关系.光学学报, 2003, 24(6): 767~771
    [104]刘玉敏,俞重远,黄聪颖等.偏振度作为反馈信号的偏振模色散补偿系统的性能研究.中国激光, 2005, 32(1): 79~82
    [105]徐坤,戴一堂,毛晋.基于光信号偏振度的偏振模色散补偿系统的研究.光学学报, 2003, 23(10): 1204~1209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700