基于Markov链的网络化离散系统滤波与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络化系统具有成本低、易于安装与维护、系统柔性好的优点,在过去的二十年里不仅在理论研究方面吸引了学者,在工业领域、无人机及智能交通等实际应用领域也得到了很大的推广。由于网络共享的特点,给闭环系统的稳定性和性能分析带来了新的挑战,如量化误差的分析、数据丢包与传输时滞的补偿和采样器的设计等问题。
     本论文针对网络化控制系统中的采样、丢包、通信受限、传感器故障及传感器非线性问题,采用离散Markov跳变系统分析方法和鲁棒控制方法,通过研究取得了以下主要成果。
     1.针对网络化输出反馈控制系统,输出通道(传感器到控制器的通道)端,用Markov链描述了随机采样测量序列,输入通道(控制器到执行器的通道)端,采用了基于采样周期的事件驱动传输策略。通过设计采样诱导时滞和事件驱动诱导时滞双依赖的输出反馈控制器,有效地降低了系统的保守性。得到了闭环系统满足均方稳定、随机稳定和指数均方稳定的充分必要条件,并给出了相应控制器和观测器的增益。基于ZigBee搭建的无线传输网络和数值例子验证了算法的有效性。
     2.针对多输入和多输出网络化随机参数反馈控制系统,采用独立的Markov链描述了每个输出通道的丢包情况,基于丢包情况在输入通道中设计了多密度量化器。通过设计丢包依赖的观测器增益和量化密度依赖的控制器增益,有效地降低了系统的保守性。给出了闭环系统满足指数均方稳定的充分条件,并给出了相应控制器和观测器的增益。
     3.针对通道容量受限的多输入和多输出反馈控制系统,设计了结构简单的静态调度和保证调度传输系统能控和能观的动态调度策略以减少网络资源的使用率。采样两个独立的Markov链描述了输入和输出通道的丢包情况。基于基于扩维技术,通过构造均方意义下等价的扩维Markov辅助系统,分别给出了两种不同调度情况下系统满足指数均方稳定的充要条件。
     4.针对多输出网络化不确定系统,考虑了传感器随机非线性和网络随机丢包现象。采用三维部分转移概率未知的Markov链描述滤波器收到的测量值情况。通过构造一一映射把多个独立的Markov链转换成一个高维的Markov链。给出了滤波误差系统满足指数均方稳定和H∞性能的充分条件,并给出了相应全阶滤波器的参数。
     5.针对传感器存在故障的网络化模糊系统,建立了多模态故障模型。并用Markov链描述不同故障之间的切换关系。由于故障模态不可直接获得,设计了概率依赖的异构耗散滤波器。通过构建模糊集依赖的Lyapunov函数,给出了滤波误差系统满足指数均方稳定和耗散性的低保守性充分条件,并给出了相应全阶滤波器的参数。
Networked control systems (NCSs) possess the advantages of reducing cost, facilitating sys-tem maintenance and increasing system agility, which not only attract a number of scholars to its theoretical research, but also gain widespread applications in the industry, unmanned aerial ve-hicles, vehicular networks, traffic control and so on. Due to the fact that the shared network is employed to transmit the information, new challenges would appear in studying the stability and the performance of the closed-loop systems, such as quantization error analysis, packet dropout and transmission delay compensating and sampler design and so on.
     This thesis considers the problems of sampling, packet dropout, communication constraints, sensor failure and sensor nonlinearity in the NCSs. Based on the discrete-time Markov jump system analysis method and the robust control method, the main results are obtained as follows.
     1. For the networked output feedback control systems, in the output channel (sensor-to-controller channel) the randomly sampled measurement is modeled as a Markov chain. An event driv-en transmitter, which depends on measurement sampling period, is introduced to transmit the control signal in the input channel (controller-to-actuator channel). In order to achieve a less conservative result, a novel output feedback controller, including both sampling and event-driven transmitter induced delay indexes, is proposed. The sufficient and necessary condition of the mean-square stability, the stochastic stability and the exponentially mean-square stability for the closed-loop system is established. Then the observer and controller gains are obtained respectively. Finally, based on the Zigbee real communication channel, a numerical example is shown to demonstrate the effectiveness of the proposed method.
     2. For the multiple-input and multiple-output networked feedback control systems with stochas-tic parameters, the packet dropout of each output channel is modeled as an independent Markov chain. Based on the packet dropout in the output channel, the multiple-density quantizer is designed in the input channel. The conservatism of the closed-loop system is re- duced by designing the packet dropout-dependent observer gains, and the quantizer density-dependent controller gains. A sufficient condition of the exponential mean-square stability for the closed-loop system is established and the controller gains as well as the observer gains are designed.
     3. For the multiple-input and multiple-output networked feedback control systems with com-munication constraints, the Conventional Round-Robin Scheduling (CRRS) with simple structure, and the Dynamic Round-Robin Scheduling (DRRS), which guarantees the con-trollability and the detectability of the resultant systems are applied. For the unreliable com-munication channels, two independent homogeneous Markov chains are selected to model the packet dropouts phenomenon in the output channels and the input channels, respectively. An auxiliary system with augmented Markov chain is established by the lifting technique. The necessary and sufficient conditions of the exponentially mean-square stability for the closed-loop system with two different scheduling methods are obtained.
     4. For the multiple output networked uncertain systems, the phenomena of randomly occurring sensor nonlinearities and packet dropouts are considered, which are represented by multiple independent three states Markov chains with partially unknown transition probabilities. A one to one mapping is constructed to map the multiple independent Markov chains to an augmented one for facilitating the resultant system analysis. A sufficient condition of the exponentially mean-square stability with H∞performance is obtained for the filtering error systems, and the parameters of the full-order filter is obtained.
     5. For the networked fuzzy systems with sensor failure, multiple-failure models are established. The Markov chain is applied to describe the switching conditions among the failure models, since the sensor failure model cannot be directly obtained, the transition probability depen-dent asynchronous filters are designed. By constructing the fuzzy set dependent Lyapunov function, a less conservative sufficient condition, which guarantees the filtering error systems to be exponentially mean-square stable and dissipative, is derived, and the parameters of the full-order filter is obtained.
引文
[1]R. Murray, K. Astrom, S. Boyd, R. Brockett, G. Stein. Future directions in control in an information-rich world[J]. IEEE Control Systems,2003,23(2):20-33.
    [2]P. Antsaklis, J. Baillieul. Special issue on networked control systems[J]. IEEE Transactions on Automatic Control,2004,49(9):1421-1423.
    [3]P. Antsaklis, J. Baillieul. Special issue on technology of networked control systems[J]. IEEE proceedings, 2007,95(1):5-8.
    [4]J. Hespanaha, P. Naghshtabrizi, Y. Xu. A survey of recent results in networked control systems[J]. IEEE proceedings,2007,95(1):138-162.
    [5]M. Chow, T. Tipsuwan. Network-based control systems:A tutorial[C]. Annual Conference of the IEEE Industrial Electronics Society,2001,1593-1602.
    [6]W. Zhang, M. Branicky, S. Phillips. Stability of networked control systems[J]. IEEE Control System Magzine,2001,21(1):84-99.
    [7]Y. Tipsuwan, M. Chow. Control methodologies in networked control systems[J]. Control Engineering Practice,2003,11(10):1099-1111.
    [8]T. Yang. Networked control systems:A brief survey[J]. IET Control Theory and Applications,2006, 153(4):403-412.
    [9]T. Samad, J. Bay, D. Godbole. Networked-centric systems for military operation in urban terrain:the role of UAVs[J]. IEEE proceedings,2007,95(1):92-107.
    [10]Y. Pan, C. Canudas-de-Wit, O. Sename. A new predictive approach for bilateral teleoperation with appli-cations to drive-by-wire systems[J]. IEEE Transactions on Robotics,2006,22(6):1145-1162.
    [11]L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, S. Sastry. Foundations of control and estimation over lossy networks[J]. IEEE Proceedings,2007,95(1):163-187.
    [12]P. Rajasekaran, N. Satyanarayana, M. Srinath. Optimum linear estimation of stochastic signals in the pres-ence of multiplicative noise[J]. IEEE Transactions on Aerospace and Electronic Systems,1971,7(3):462-468.
    [13]W. Chen, J. Zheng, L. Qiu. LQG control of LTI systems with random input and output gains[C]. IEEE Conference on Decision and Control,2012,3298-3304.
    [14]T. Chen, B. Francis. Optimal sampled-data control systems[M]. Tokyo:Springer-Verlag,1995.
    [15]Z. Sun, S. Ge. Switched linear systems control and design[M]. London:Springer-Verlag,2005.
    [16]G. Nair, F. Fagnani, S. Zampieri, R. Evans. Feedback control under data rate constraints:An overview[J]. IEEE Proceedings,2007,95(1):108-137.
    [17]M. Fu. Lack of separation principle for quantized linear quadratic Gaussian control[J]. IEEE Transactions on Automatic Control,2012,57(9):2385-2390.
    [18]L. Chai, M. Fu. Infinite horizon LQG control with fixed-rate quantization for scalar systcms[C]. Intelligent Control and Automation (WCICA),2010,894-899.
    [19]Y. Xu, J. Hespanha. Optimal communication logics in networked control systems[C]. IEEE Conference on Decision and Control,2004,3527-3532.
    [20]Y. Xu, J. Hespanha. Communication logics for networked control systems[C]. American Control Confer-ence,2004,572-577.
    [21]Y. Xu, J. Hespanha. Estimation under uncontrolled and controlled communications in networked control systems[J]. IEEE Conference on Decision and Control and European Control,2005,842-847.
    [22]G. Walsh, H. Ye, L. Bushnell. Stability analysis of networked control systems[J]. IEEE Transactions on Control Systems Technology,2002,10(3):438-446.
    [23]D. Nesic, A. Teel. Input-output stability properties of networked control systems[J]. IEEE Transactions on Automatic Control,2004,49 (10):1650-1667.
    [24]M. Donkers, W. Heemels, N. Wouw, L. Hetel. Stability analysis of networked control systems using a switched linear systems approach[J]. IEEE Transactions on Automatic Control,2011,56(9):2101-2115.
    [25]K. Liu, E. Fridman, L. Hetel, J. Richard. Sampled-data stabilization via round-robin scheduling:A direct lyapunov-krasovskii approach[C]. The 18th IFAC World Congress,2004,1459-1464.
    [26]F. Xia, Z. Wang, Y. Sun. Design and evaluation of event-driven networked real-time control systems with IEC function blocks[C]. IEEE International Conference on Systems, Man and Cybernetics,2004,5148-5153.
    [27]J. Yepez, M. Velasco, P. Marti, E. Martin, J.Fuertes. One-step finite horizon boundary with varying control gain for event-driven networked control systems[C]. Annual Conference on IEEE Industrial Electronics Society,2011,2606-2611.
    [28]R. Pearson. Gray-box modeling of nonideal sensors[C]. America Control Conference,2001,4404-4409.
    [29]G. Mustafa, T. Chen. H∞ filtering for nonuniformly sampled systems:A Markovian jump systems ap-proach[J]. Systems & Control Letters,2011,60(10):871-876.
    [30]H. Zhang, Y. Shi, J. Wang. On energy-to-peak filtering for nonuniformly sampled nonlinear systems:A Markovian jump system approach[J]. IEEE Transactions on Fuzzy Systems,2014,22(1):212-222.
    [31]E. Fridman, A. Seuret, J. Richard. Robust sampled-data stabilization of linear systems:An input delay approach[J]. Automatica,2004,40(8):1441-1446.
    [32]E. Fridman, U. Shaked, V. Suplin. Input/output delay approach to robust sampled-data H∞ control[J]. Systems & Control Letters,2005,54(3):271-282.
    [33]E. Fridman. A refined input delay approach to sampled-data control[J]. Automatica,2010,46(2):421-427.
    [34]K. Liu, E. Fridman. Wirtinger's inequality and Lyapunov-based sampled-data stabilization[J]. Automati-ca,2012,48(1):102-108.
    [35]Z. Wu, P. Shi, H. Su, J. Chu. Sampled-data synchronization of chaotic Lur'e systems with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2013,24(3):410-421.
    [36]Z. Wu, P. Shi, H. Su, J. Chu. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data[J]. IEEE Transactions on Cybernetics,2013,43(6):1796-1806.
    [37]L. Mirkin. Some remarks on the use of time-varying delay to model sample-and-hold circuits[J]. IEEE Transactions on Automatic Control,2007,52(6):1109-1112.
    [38]H. Fujioka. Stability analysis of systems with aperiodic sample-and-hold devices[J]. Automatica,2009, 54(3):771-775.
    [39]N. Elia, S. Mitter. Quantization of linear systems[C]. IEEE Conference on Decision and Control,1999, 3428-3433.
    [40]N. Elia, S. Mitter. Stabilization of linear systems with limited information[J]. IEEE Transactions on Automatic Control,2001,46(9):1384-1400.
    [41]M. Fu, L. Xie. The sector bound approach to quantized feedback control[J]. IEEE Transactions on Auto-matic Control,2005,50(11):1698-1711.
    [42]H. Gao, T. Chen. A new approach to quantized feedback control systems[J]. Automatica,2008,44(1):534-542.
    [43]G. Gu, L. Qiu. Stabilization of networked multi-input systems with channel resource allocation[C]. Inter-national Conference on Control, Automation, Robotics and Vision,2008,59-63.
    [44]L. Qiu, G. Gu, W. Chen. Stabilization of networked multi-input systems with channel resource alloca-tion[J]. IEEE Transactions on Automatic Control,2013,58(3):554-568.
    [45]W. Chen, L. Qiu. Stabilization of networked control systems with multirate sampling[J]. Automatica, 2013,49(6):1528-1537.
    [46]Y. Feng, X. Chen, G. Gu. Output feedback stabilization for networked control systems with quantized fading actuating channels[C]. American Control Conference,2013,777-782.
    [47]F. Rasool, D. Huang, S. Nguang. Robust Hoc output feedback control of discrete-time networked systems with limited information[J]. Systems & Control Letters,2011,60(10):845-853.
    [48]B. Shen, Z. Wang, H. Shu, G. Wei. Robust H∞ finite-horizon filtering with randomly occurred nonlinear-ities and quantization effects[J]. Automatica,2010,46(11):1743-1751.
    [49]Z. Wang, B. Shen, H. Shu, G. Wei. Quantized H∞ control for nonlinear stochastic time-delay systems with missing measurements[J]. IEEE Transactions on Automatic Control,2012,57(6):1431-1444.
    [50]R. Brockett, D. Liberzon. Quantized feedback stabilization of linear systems[J]. IEEE Transactions on Automatic Control,2000,45(7):1279-1289.
    [51]D. Liberzon. Hybrid feedback stabilization of systems with quantized signals[J]. Automatica,2003, 39(9):1543-1554.
    [52]D. Liberzon, D. Nesic. Input-to-state stabilization of linear systems with quantized state measurements[J]. IEEE Transactions on Automatic Control,2007,52(5):767-781.
    [53]K. You, L. Xie. Minimum data rate for mean square stabilization of discrete LTI systems over lossy channels[J]. IEEE Transactions on Automatic Control,2010,55(10):2373-2378.
    [54]G. Nair, R. Evans. Stabilizability of stochastic linear systems with finite feedback data rates[J]. SIAM Journal on Control and Optimization,2004,43(2):413-436.
    [55]K. You, L. Xie. Minimum data rate for mean square stabilizability of linear systems with Markovian packet losses[J]. IEEE Transactions on Automatic Control,2011,56(4):772-785.
    [56]M. Fu, L. Xie. Finite-level quantized feedback control for linear systems[J]. IEEE Transactions on Auto-matic Control,2009,54(5):1165-1170.
    [57]K. You, W. Su, M. Fu, L. Xie. Attainability of the minimum data rate for stabilization of linear systems via logarithmic quantization[J]. Automatica,2011,47(1):170-176.
    [58]B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, S. Sastry. Kalman filtering with inter-mittent observations[J]. IEEE Transactions on Automatic Control,2004,49(9):1453-1464.
    [59]K. Plarre, F. Bullo. On Kalman filtering for detectable systems with intermittent observations[J]. IEEE Transactions on Automatic Control,2009,54(2):386-390.
    [60]Y. Mo, B. Sinopoli. Kalman filtering with intermittent observations:Tail distribution and critical value[J]. IEEE Transactions on Automatic Control,2012,57(3):677-689.
    [61]Z. Wang, B. Shen, X. Liu. H∞ Filtering with randomly occurring sensor saturations and missing mea-surements[J]. Automatica,2012,48(3):556-562.
    [62]H. Dong, Z. Wang, D. Ho, H. Gao. Variance-constrained H∞ filtering for a class of nonlinear time-varying systems with multiple missing measurements:The finite-horizon case[J]. IEEE Transactions on Signal Processing,2010,58(5):2534-2543.
    [63]H. Gao, Y. Zhao, J. Lam, K. Chen. H∞ Fuzzy filtering of nonlinear systems with intermittent measure-ments[J]. IEEE Transactions on fuzzy systems,2009,17(2):291-300.
    [64]S. Sun, L. Xie, W. Xiao. Optimal full-order and reduced-order estimators for discrete-time systems with multiple packet dropouts. IEEE Transactions on Signal Processing[J],2008,56(8):4031-4038.
    [65]S. Sun. Optimal estimators for systems with finite consecutive packet dropouts[J]. IEEE Transactions on Signal Processing Letters,2009,16(7):557-560.
    [66]O. Imera, S. Yukselb, T. Basar. Optimal control of LTI systems over unreliable communication links[J]. Automatica,2006,42(9):1429-1439.
    [67]Z. Wang, D. Ho, X. Liu. Variance-constrained control for uncertain stochastic systems with missing mea-surements[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2005, 35(5):746-753.
    [68]Z. Wang, F. Yang, D. Ho, X. Liu. Robust H∞ control for networked systems with random packet losses systems[J]. IEEE Transactions on Man, and Cybernetics, Part B:Cybernetics,2007,37(4):916-924.
    [69]Z. Wang, D. Ho, Y. Liu, X. Liu. Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements[[J]. Automatica,2009,45(3):684-691.
    [70]S. Kluge, K. Reif, M. Brokate. Stochastic stability of the extended Kalman filter with intermittent obser-vations[J]. IEEE Transactions on Automatic Control,2010,55(2):514-518.
    [71]J. Hu, Z. Wang, H. Gao, L. Stergioulas. Extended Kalman filtering with stochastic nonlincarities and multiple missing measurements [J]. Automatica,2012,48(9):2007-2015.
    [72]M. Huang, S. Dey. Stability of Kalman filtering with Markovian packet losses[J]. Automatica,2006, 43(4):598-607.
    [73]K. You, M. Fu, L. Xie. Mean square stability for Kalman filtering with Markovian packet Iosses[J]. Auto-matica,2011,47(12):2647-2657.
    [74]S. Smith, P. Seiler. Estimation with lossy measurements:Jump estimators for jump systems[J]. IEEE Transactions on Automatic Control,2003,48(12):2163-2171.
    [75]W. Zhang, L. Yu, H. Song. H∞ filtering of networked discrete-time systems with random packet losses[J]. Information Sciences,2009,179(22):3944-3955.
    [76]L. Li, Y. Xia. Unscented Kalman filter over unreliable communication networks with Markovian packet dropouts[J]. IEEE Transactions on Automatic Control,2013,58(12):3224-3230.
    [77]P. Seiler, R. Sengupta. An H∞ approach to networked control[J]. IEEE Transactions on Automatic Control,2005,50(3):356-364.
    [78]D. Wu, J. Wu, S. Chen. Separation principle for networked control systems with multiple-packet trans-mission[J]. IET Control Theory and Applications,2011,5(3):507-513.
    [79]D. Wu, J. Wu, S. Chen. Robust H∞ control for networked control systems with uncertainties and multiple-packet transmission[J]. IET Control Theory and Applications,2010,4(5):701-709.
    [80]D. Wu, J. Wu, S. Chen, J. Chu. Stability of networked control systems with polytopic uncertainty and buffer constraint[J]. IEEE Transactions on Automatic Control,2010,55(5):1202-1208.
    [81]J. Wu, T. Chen. Design of networked control systems with packet dropouts[J]. IEEE Transactions on Automatic Control,2007,52(7):1314-1319.
    [82]D. Wang, J. Wang, W. Wang. H∞ controller design of networked control systems with Markov packet dropouts[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2013,43(3):689-697.
    [83]H. Gao, T. Chen. H∞ estimation for uncertain systems with limited communication capacity[J]. IEEE Transactions on Automatic Control,2007,52(11):2070-2084.
    [84]R. Lu, Y. Xu, A. Xue. H∞ filtering for singular systems with communication delays[J]. Signal Processing, 2010,90(4):1240-1248.
    [85]H. Gao, T. Chen, J. Lam. A new delay system approach to network-based control[J]. Automatica,2008, 44(1):39-52.
    [86]A. Hassibi, S. Boyd, J. How. Control of asynchronous dynamical systems with rate constraints on events[C]. IEEE Conference on Decision and Control,1999,1345-1351.
    [87]W. Zhang, L. Yu. Output feedback stabilization of networked control systems with packet dropouts[J]. IEEE Transactions on Automatic Control,2007,52(9):1705-1710.
    [88]J. Nilsson. Real-time control systems with delays[D]. [博士学位论文],Sweden, Lund Institute of Tech-nology,1998.
    [89]J. Nilsson, B. Bernhardsson, B. Wittenmark. Stochastic analysis and control of real-time systems with random time delays[J]. Automatica,1998,31(1):57-64.
    [90]L. Xiao, A. Hassibi, J. How. Control with random communication delays via a discrete-time jump system approach[C]. American Control Conference,2000,2199-2204.
    [91]L. Zhang, Y. Shi, T. Chen, B. Huang. A new method for stabilization of networked control systems with random delays[J]. IEEE Transactions on Automatic Control,2005,50(8):1177-1181.
    [92]Y. Shi, B. Yu. Output feedback stabilization of networked control systems with random delays modeled by Markov chains[J]. IEEE Transactions on Automatic Control,2009,54(7):1668-1674.
    [93]Y. Shi, B. Yu. Robust mixed H2/H∞ control of networked control systems with random time delays in both forward and backward communication links[J]. Automatica,2011,47(4):754-760.
    [94]L. Qiu, B. Xu, S. Li. Guaranteed cost control for discrete-time networked control systems with random Markov delays[J]. Journal of Systems Engineering and Electronics,2011,22(4):661-671.
    [95]H. Li, Y. Shi. Robust H∞ filtering for nonlinear stochastic systems with uncertainties and Markov de-lays[J]. Automatica,2012,48(1):159-166.
    [96]Y. Zheng, H. Fang, H. Wang. Takagi-sugeno fuzzy-model-based fault detection for networked control sys- tems with Markov delays[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2006,36(4):924-929.
    [97]J. Wu, Y. Shi. Consensus in multi-agent systems with random delays governed by a Markov chain[J]. Systems & Control Letters,2011,60(10):863-870.
    [98]X. Yin, D. Yue. Event-triggered tracking control for heterogeneous multi-agent systems with Markov communication delays[J]. Journal of the Franklin Institute,2013,350(5):1312-1334.
    [99]D. Kim, Y. Lee, W. Kwon, H. Park. Maximum allowable delay bounds of networked control systems [J]. Control Engineering Practice,2003,11(11):1301-1313.
    [100]J. Xiong, J. Lam. Stabilizationn of networked control systems with a logic ZOH[J]. IEEE Transactions on Automatic Control,2009,54(2):358-363.
    [101]X. Jiang, Q. Han. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay[J]. Automatica,2006,42(6):1059-1065.
    [102]Y. Pan, H. Marquez, T. Chen. Remote stabilization of networked control systems with unknown time varying delays by LMI techniques[C]. IEEE Conference on Decision and Control,2005,1589-1594.
    [103]H. Gao, X. Meng, T. Chen. Stabilization of networked control systems with a new delay characteriza-tion[J]. IEEE Transactions Automatic Control,2008,53(9):2142-2148.
    [104]J. Wu. Event-based state estimation:Theory and applications[博士学位论文],Hong Kong, Department of Department of Electronic and Computer Engineering, Hong Kong University of Science and Technol-ogy.
    [105]J. Wu, Q. Jia, K. Johansson, L. Shi. Event-based sensor data scheduling:Trade-off between communica-tion rate and estimation quality [J]. IEEE Transactions on Automatic Control,2013,58(4):1041-1046.
    [106]J. Wu, Y. Yuan, H. Zhang, L. Shi. How can online schedules improve communication and estimation tradeoff[J]. IEEE transactions on Signal Processing,2013,61(7):1625-1631.
    [107]K. You, L. Xie. Kalman filtering with scheduled measurements[J]. IEEE Transactions on Signal Process-ing,2013,61(6):1520-1530.
    [108]D. Shi, T. Chen, L. Shi. Event-triggered maximum likelihood state estimation[J]. Automatica,2014, 51(1):247-254.
    [109]X. Meng, T. Chen. Event triggered robust filter design for discrete-time systems[J]. IET Control Theory & Applications,2014,8(2):104-113.
    [110]X. Wang, M. Lemmon. On event design in event-triggered feedback systems[J]. Automatica,2011, 47(10):2319-2322.
    [111]W. Heemels, M. Donkers. Model-based periodic event-triggered control for linear systems[J]. Automatica, 2013,49(3):698-711.
    [112]H. Yu, P. Antsaklis. Event-triggered output feedback control for networked control systems using passivi-ty:Achieving H∞ stability in the presence of communication delays and signal quantization[J]. Automat-ica,2013,49(1):30-38.
    [113]Y. Fan, G. Feng, Y. Wang, C. Song. Distributed event-triggered control of multi-agent systems with com-binational measurements[J]. Automatica,2013,49(2):671-675.
    [114]Y. Cao, Z. Lin, B. Chen. An output feedback controller design for linear systems subject to sensor non-linearities[J]. IEEE Transactions on Circuits ans Systems-I:Foudamental Theory and Appications,2003, 50(7):914-921.
    [115]Z. Zuo, J. Wang, L. Huang. Output feedback H∞ controller design for linear discrete-time systems with sensor nonlinearities[J]. IEE Procedings-Control Theory Applications,2005,152(1):19-26.
    [116]Y. Niu, D. Ho, C. Li. H∞ filtering for uncertain stochastic systems subject to sensor nonlinearities[J]. International Journal of Systems Science,2011,42(5):737-749.
    [117]Y. Niu, D. Ho, C. Li. Filtering for discrete fuzzy stochastic systems with sensor nonlinearities[J]. IEEE Transactions Fuzzy Systems,2010,18(5):971-978.
    [118]G. Yang, D. Ye. Adaptive fault-tolerant H∞ control against sensor failures[J]. IET Control Theory & Applications,2008,2(2):95-107.
    [119]G. Yang, J. Wang, Y. Soh. Reliable LQG control with sensor failures[J]. IEE Proceedings Control Theory and Applications,2000,147(4):433-439.
    [120]Z. Wu, J. Park, H. Su, B. Song, J. Chu. Reliable H∞ filtering for discrete-time singular systems with randomly occurring delays and sensor failures[J]. IET Control Theory & Applications,2012,6(14):2308-2317.
    [121]Z. Gao, T. Breikin, H.Wang. Reliable observer-based control against sensor failures for systems with time delays in both state and input systems[J]. IEEE Transactions on Man and Cybernetics, Part A:Systems and Humans,2008,38(5):1018-1029.
    [122]瞿雷,刘盛德,胡咸斌,ZigBee技术及应用[M].北京航空航天大学出版社,2007.
    [123]Y. Ji, C. Feng, K. Loparo. Stability and control of discrete-time jump linear systems[J]. Control Theory and Advanced Technology,1991,7(2):247-270.
    [124]O. Costa, M. Fragoso, R. Marques. Discrete-time Markovian jump linear systems[M]. London:Springer-Verlag,2005.
    [125]Z. Wu, P. Shi, H. Su, J. Chu. Dissipativity analysis for discrete-time stochastic neural networks with time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2013,24(3):345-355.
    [126]S. Boyd, L. Ghaoui, E. Feron, V. Balakrishnan. Linear matrix inequalities in system and control theory[M]. United States of America:Philadelphia,1994.
    [127]I. Petersen. A stabilization algorithm for a class of uncertain linear systems[J]. System & Control Letters, 1987,8(4):351-357.
    [128]R. Horn, C. Johnson. Matrix analysis[M]. Cambridge University Press,1985.
    [129]L. Ghaoui, F. Oustry, M. Aitrami. A cone complementarity linearization algorithm for static output feed-back and related problems[J]. IEEE Transactions on Automatic Control,1997,42 (8):1171-1176.
    [130]P. Gahinet, A. Nemirovski, A. Laub, M. Chilali. LMI control toolbox[M]. The Math-Works, Natick, MA, 1995.
    [131]L. Zhang, D. Hristu-Varsakelis. Communication and control co-design for networked control systems[J]. Automatica,2006,42(6):953-958.
    [132]D. Hristu-Varsakelis, L. Zhang. LQG control of networked control systems with access constraints and delays[J]. International Journal of Control,2008,81(8):1266-1280.
    [133]H. Khalil. Nonlinear systems[M]. Upper Saddle River, NJ:Prentice-Hall,1996.
    [134]L. Zhang. H∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems[J]. Automatica,2009,45 (11):2570-2576.
    [135]Z. Wang, G. Wei, G. Feng. Reliable H∞ control for discrete-time piecewise linear systems with infinite distributed delays[J]. Automatica,2009,45(12):2991-2994.
    [136]G. Wei, G. Feng, Z. Wang. Robust H∞ control for discrete-time fuzzy systems with infinite-distributed delays[J]. IEEE Transactions Fuzzy Systems,2009,17(l):224-232.
    [137]H. Wu, H. Zhang. Reliable H∞ fuzzy control for continuous-time nonlinear systemswith actuator fail-ures[J]. IEEE Transactions Fuzzy Systems,2006,14(5):609-618.
    [138]Z. Wu, P. Shi, H. Su, J. Chu. Reliable H∞ control for discrete-time fuzzy systems with infinite-distributed delay[J]. IEEE Transactions Fuzzy Systems,2012,20(1):22-31.
    [139]Z. Wu, P. Shi, H. Su, J. Chu. Asynchronous l2-l∞ filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities[J]. Automatica,2014,51(1):180-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700