一维脉冲电流注入技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维结构的电子部件,诸如数据传输线、指令控制线、电源线、电缆等,在高空电磁脉冲环境中,会感应出脉冲干扰电流,从而可能对连接的电子设备产生破坏。脉冲电流注入方式是一种简便、可靠的电子设备电磁敏感性测试方法。本文主要从理论和实验两个方面研究了对导线、电子功能部件等进行脉冲电流注入的技术和敏感性测试方法。
     采用传输线计算模型,对导线在核电磁脉冲环境下电流响应进行了理论分析。计算了地面附近铺设的导线在两端短路、两端接高阻、一端接地一端接电阻、两端接不同电阻等四种状态下的电流响应。计算结果为注入装置设计提供了理论依据。
     研制了一套脉冲电流注入装置。装置工作在非接触方式,主要部件包括储能电容、火花放电开关、磁场耦合部件等,可以在4m长导线上注入150A的脉冲电流,输出幅度可以调节。
     建立了导线与功能电路的脉冲电流注入实验方法与电磁敏感性测试方法。搭建了用于监测通信状态的计算机数据线实验平台,利用研制的卡钳式脉冲电流探测器对注入电流进行监测。
     给出了电磁敏感性干扰与损伤阈值定义。选择RS-232、RS-422通信接口电路,进行了电磁脉冲的干扰阈值和损伤阈值测试。并得到了这两种电路的阈值,最后给出了初步的分析。结果表明损伤模式为电流损伤,注入电流过大导致接口电路内部发生烧毁,端口电压的作用在于改变了电路端口的阻抗特性。提出了以能量形式表征干扰阈值和损伤阈值。注入电流在10A以上、注入能量在10-3J量级时,有很大可能对RS-232与RS-422造成损坏。
     从实验和理论分析两方面,分别研究了在导线一端接地一端接电阻、两端接不同电阻状态下,电阻改变时响应电流的变化规律。结果表明,导线电流和电阻上电压降随电阻非线性变化,电阻吸收能量会在一定阻值上出现极大值,而且实验与理论计算得到的规律相一致。
The interference of pulse current will occur on the one dimension structural electronic components such as data transmission line, command control line, power supply line, and cable etc, which exist in the high-altitude nuclear electromagnetic pulse (HEMP) environment, and that could damage the electronic equipment linked with these lines. The pulsed current injection (PCI) is one of simple and reliable method for the electromagnetic susceptivity test of electronic equipment. In this paper, the pulse current injection technology and related electromagnetic susceptivity test method on electronic components were studied by theory analysis and experiments.
     The current responses on line in HEMP environment were analyzed using the transmission line theory. The current responses on lines laying near ground were calculated according to the following different situations: two terminals in short-circuit state, two terminals connected with high resistances, one terminal in short-circuit state and one terminal linked with resistance, two terminals connected with different resistances respectively. The calculated results were taken as the fundaments of pulse current inject equipment design.
     A set of pulse current inject equipment was researched and developed. This equipment works in non-contact mode. The main component parts include capacitance, which was used as energy storage, gas spark discharge switch, magnetic field coupling component etc. 150-A pulse current can be injected into transmission line with the length of 4 meters, and the output current amplitude can be adjusted.
     The experiment method of PCI for line and electronic circuit with certain function and the test method of electromagnetic susceptivity are developed. The experiment system for communication line of computer, which can detect the state of communication, is developed. The inject current is detected by developed caliper-mode pulse current detector.
     The electromagnetic susceptivity upset threshold value and damage threshold value are defined. RS-232 and RS-422 communication interface circuits are selected for EMP upset threshold and damage threshold test. The threshold values of these two kind circuits are obtained, the primary analyses are given at last. The results indicate that the damage mode is current damage, too high inject current makes the interface circuit breakdown inside, whereas the voltage on the port just changes the input resistance characteristic of the port. The upset threshold and damage threshold are described in the form of energy. There is high possibility to make RS-232 and RS-422 breakdown when the inject current is higher than 10 A, inject energy is above 10-3 J.
     The induced current on line is researched theoretically and experimentally according to two situations: one terminal in short-circuit state and one terminal linked with resistance, two terminals connected with different resistances respectively. The results indicate that the induced current on line and the voltage on the end resistance had nonlinear relationships. The dissipative energy by the resistance would reach the maximum value when special resistance values are selected. The experiment results are identical to those one obtained from theory calculation.
引文
[1] VANCE E F. Coupling to shielded cables. Beijing: People’s Posts & Telecom Press, 1998.
    [2] 赖祖武. 强电磁脉冲的破坏效应及防护. 电子科技报道,1997,(11):32~34
    [3] 何金良. 电磁兼容导论. 清华大学讲义,2003
    [4] 乔登江, 等. 电子元器件电磁脉冲效应手册. “电子元器件电磁脉冲效应手册”编辑委员会,2005: 1~34
    [5] 侯民胜, 刘尚合, 王书平. 单片机系统在核电磁脉冲对辐照下的效应研究. 强激光与粒子束,2001,13(5): 623~626
    [6] 郭传福, 张骧, 夏惠诚. 核电磁脉冲对舰载 C3I 系统的威胁. 舰船电子对抗, 2000,(5): 6~10
    [7] 侯民胜, 王书平. 核电磁脉冲模拟装置.高电压技术,2002,(1):35~36
    [8] Trout D H. Investigation of the bulk current injection technique by comparison to induced current from radiated electromagnetic fields. IEEE International Symposium on Electrmagnetic Compatibility,1996: 412 ~ 417
    [9] Carter N J and Stevens E G. Bulk current injection (BCI): its past.present and future (in aerospace). IEEE Colloquium (Digest) 166, 1996. 2/1~2/12
    [10] Hahn E R. Improved radio frequency conducted susceptibility test method development. D6-15092-TN. Boeing Company, USA, 1967
    [11] Radio Technical Commission for Aeronautics:RTCA DO-160. Environmental conditions and test procedures for air borne electronic/electrical equipment and instruments. Washington. USA, 1967
    [12] Ministry of Defence: Defence Standard 59-41 (Parts 1 to 4). electromagnetic compatibility. UK, 1993
    [13] Department of Defense interface Standard. MIL-STD-461D. Requirement for the Control of Electromagnetic Interference Emissions and Susceptibility. USA, January 1993
    [14] Department of Defense interface Standard. MIL–STD–462D. Department Of Defense Test Method Standard For Measurement Of Electromagnetic Interference Characteristics. USA, 11 January 1993
    [15] Department of Defense interface Standard. MIL-STD-461E.Requirements for the control of Electromagnetic Interference Characteristics of Susceptibility and equipment. USA, 20 August 1999
    [16] Javor K. The How and Why of Bulk Current Injection Testing. EMC Test and Design,1992: 35-40
    [17] Department of Defense interface Standard. MIL-STD-188-125. High Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C4I Facilities Performing Critical. Time-Urgent Missions .PART 1:fixed facilities .USA, 17 July 1998
    [18] Department of Defense interface Standard. MIL-STD-188-125 : High Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C4I Facilities Performing Critical. Time-Urgent Missions. PART 2 transportable systems. USA, 3 March 1999
    [19] Wellington A M. Direct current injection as a method of simulating high intensity radiated fields (HIRF) . IEE Colloquium (Digest), 1996, (116): 4/1~4/6
    [20] Carter N J. Aircraft EMC: the past, the present and the future: an overview. IEE Colloquium on EMC (Electromagnetic Compatibility) in Aerospace , 1996:3/1~3/7.
    [21] Barber Gavin D M. The use of Direct current Injection (DCI) techniques for aircraft clearance. IEE Conference Publication no. 445, 1997:199~204
    [22] McQuilton D, Oakley J M and Budd C. A Computational assessment of direct and indirect current injection techniques for missile EMC testing. IEE Conference publication, 1994: 331~337
    [23] Adams J C and Melquist D. Comparison Measurements of Currents Induced by Radiation and Injection. IEEE transaction on Electromagnetic Compatibility, 1992, 34(3): 360-362
    [24] Pignari S and Canavero F G. Theoretical assessment of bulk current injection versus radiation. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(2): 469~477
    [25] McQuilton D, Oakley J M and Budd C. A Computational assessment of direct and indirect current injection techniques for missile EMC testing. IEEE Conference publication, 1994: 331~337
    [26] Hill D A. Current induced on multi-conductor transmission lines by radiation and injection. IEEE Trans on EMC, 1992, 34(4): 445~450
    [27] Spadacini G and Pignari S A. A Bulk Current Injection Test Conforming to Statistical Properties of Radiation-Induced Effects. IEEE Tran on EMC, 2004, 46(3): 446~458
    [28] Pignari S and Canavero F G. On the equivalence between radiation and injection in BCI testing. IEEE International Symposium on Electromagnetic Compatibility, 1997: 179~182.
    [29] Trout D H. Relationship Between Induced Currents from Bulk Current Injection Techniques versus Radiated Electromagnetic Field Illumination: [Ph.D. Thesis]. University of Alabama in Huntsville, 1995
    [30] 中华人民共和国国家技术监督局. GB9023-88. 中华人民共和国国家标准-射频同轴电缆屏蔽效率测试方法. 北京: 中国标准出版社, 1988
    [31] 李宝忠, 等. 一维电磁脉冲模拟器的理论分析和设计. 强激光与粒子束, 2004, 16(2): 215~218
    [32] 李宝忠, 等. 卡钳式脉冲电流探测器. 核电子学与探测技术, 2004, 24(6): 775~778
    [33] 谭伟, 测试中的电流注入技术. 安全与电磁兼容, 2003, (4): 19~22
    [34] 宋文武. 电流探头注入替代辐射场的电磁敏感度自动测试技术. 安全与电磁兼容, 2001, (1): 14~17
    [35] Department of Defense interface Standard. MIL-STD-464: Electromagnetic Environmental Effects Requirements for system. USA, 18 March 1997
    [36] Tesche F M, Lanoz M V, Karlsson T. EMC Analysis Methods Computational Models. New York: Wiley Publishing Co., 1997
    [37] 何金良. 传导电磁暂态分析.清华大学讲义, 2004
    [38] 马良. 地面铺设、埋地和部分埋地缆线的 HEMP 响应研究:[硕士学位论文]. 西安:西北核技术研究所, 2006
    [39] 韩 闵. 脉冲功率技术基础. 北京: 清华大学讲义,2003
    [40] 刘锡三. 高功率脉冲技术. 北京: 国防工业出版社, 2005
    [41] 江缉光. 电路原理. 北京: 清华大学出版社, 1997
    [42] 郑光钦. 全能混合电路仿真. 北京: 中国铁道出版社, 2000
    [43] 张义和. 全能电路图设计 ORCAD Capture. 北京: 中国铁道出版社, 2000
    [44] Gerhard Schaefer. Gas Discharge Closing Switches.USA: Plenum Press New York, 1990
    [45] 曾正中. 实用脉冲功率技术引论. 西安: 陕西科学出版社, 2003
    [46] 王瑞华. 脉冲变压器设计. 北京: 科学出版社, 1996
    [47] 奥汉德利 R C. 现代磁性材料原理和应用.北京: 化学工业出版社, 2004
    [48] 孙凤举. 模块化高功率亚微妙脉冲直线型变压器驱动源:[博士学位论文]. 西安:西安交通大学, 2002
    [49] 程引会. X 光辐照系统综合电磁环境响应研究:[博士学位论文]. 西安:西北核技术研究所, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700