无线Mesh网络中端到端立体视频质量保障的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线Mesh网络可以支持泛在的宽带通信业务,具有覆盖范围大、组网灵活、部署成本低等特点,已成为下一代无线通信系统的重要的组网方式。但其无线信道带宽时变、路径多跳以及节点可移动等特征,都可能使得传输链路不稳定,从而影响对上层业务服务的质量。立体视频蕴含了景物的深度信息,能够与三维的自然场景描述形式一致,因此,能够为人们提供更加逼真的视觉体验,但其在网络(如Mesh网)传输中需克服数据量大、实时性要求强等不利因素,才能获得理想的观看质量。因此,如何保证网络传输中端到端的立体视频流观赏质量成为一项亟待解决的问题,其研究具有重要的理论意义和实际应用价值。
     本文以无线Mesh网络为背景,结合立体视频的特点,从传输网络和终端系统两个角度出发,在系统的不同层对端到端的视频质量保障的若干关键技术进行研究。在传输网络中,利用信道丢包模型、Markov模型和M/M/1/K排队模型等数学工具,建立视频失真模型,在媒体接入控制(MAC,MediumAccess Control)层合理选择传输速率,在路由层合理确定传输路径;在终端系统中,解码端利用立体视频的视差相关性,对丢失的数据在应用层进行差错掩盖。
     本文的主要工作和创新之处如下:
     (1)针对共享单信道网络中存在的“坏鱼问题”(Bad Fish Problem),提出了一种适合视频业务的MAC层速率选择机制。在发送端,首先MAC层利用跨层技术获取应用层的视频帧频要求和容忍丢包率;然后,根据帧频要求,确定每个视频数据包的最大允许时延,并根据这个最大允许时延确定视频MAC帧的最大重传次数;最后,结合接收机当前的信噪比和最大重传次数,在满足应用层丢包率的基础上,为每个视频数据包选择尽可能高的传输速率。在解码端,对于丢失块,则采用误码掩盖的方法来处理。实验结果表明,相比于改变竞争窗口的算法,此方法在视频节点信噪比(SNR,Signal to Noise Ratio)下降需要改变传输速率时,能够减少视频节点的时延和抖动,保证重建视频播放的平滑性,并较少地降低传输节点的吞吐量,从而有效地缓解网络性能异常。
     (2)针对源节点和目的节点之间由于多跳传输存在多条路径的问题,提出了一种以视频传输失真最小为判据的路由选择算法。该算法根据失真与网络丢包、延迟之间的函数关系,预测路径的传输失真,并选择失真最小的作为传输路由。该算法较好地考虑了多跳网络的信道误码、路径干扰、网络拥塞等因素对视频传输的影响。首先利用随机均匀模型和Gilbert-Elliott(GE)模型分别模拟信道的随机和突发丢包,然后利用Markov模型计算MAC层的数据包碰撞概率和处理时间,并将每个无线节点建模为M/M/1/K排队系统来预测网络拥塞导致的延迟和丢包,最后得出整条路径的失真并选出网络中的最小失真路由作为传输路径。实验结果表明,与动态源路由(DSR,Dynamic Source Routing)算法相比,该方法能够获得较好的重建视频的主观和客观质量。
     (3)在终端的视频应用层,针对随机丢包差错,以立体图像为实验对象,利用像素点之间的视差相关性,提出了一种基于局部可信视差的误码掩盖算法。该算法选择丢失块周围一圈像素作为处理对象,对它们进行视差估计。首先,为了得到较准确的视差,设计了基准点偏置的匹配窗口,并根据需估计的像素点位于丢失块四周的不同方位,而采用不同的偏置中心窗口进行自适应权重的视差估计。然后根据视差左右一致性约束规则剔除不可信点,接着又采用“胜者为王”(WTA,Winner-Takes-All)准则进一步消除误估计视差,这种双消除策略使得估计出的丢失块视差具有较高的精度。最后根据估计的视差进行误码掩盖。实验结果表明,与其他算法相比,该算法能够在计算复杂度相当的情况下,能够显著地提高峰值信噪比(PSNR,Peak Signal to Noise Ratio),并取得较为优质的画面质量。
     (4)在终端的视频应用层,利用块的视差相关性,提出了一种随机和连续丢包都适用的基于边界平滑性的立体图像误码掩盖算法。该算法选择丢失块四周相邻的上、下、左、右的区域作为处理区域,为这些区域采用块匹配策略估计视差。然后根据块间视差具有较高的相关性,利用上述得到的四个视差分别来掩盖丢失块,并计算掩盖后的边界平滑性,选择边界平滑性最好的结果作为初步掩盖结果。如果平滑性最好的结果仍大于阈值,则需要对丢失块进行内容自适应判断以得出其属于纹理块、方向块还是遮挡块,并根据判断的类型采用不同的算法修正初步掩盖结果。实验结果表明,相比于其他算法,该算法能够取得较高的PSNR和较好的主观效果,同时其复杂度又相对较小。
Wireless mesh networks (WMNs) are suitable for ubiquitous wide-band communicationservices because of the wide-area coverage, flexibility and low cost. It has become an importantnetworking mode of the next generation wireless communication system. However, itscharacteristics such as time-varying channel, multi-hop and node mobility will make the linksunstable, and consequently degrade the quality of service (QoS) for upper layers. Stereoscopicvideo which contains the depth information of the objects is suitable for3D natural scenes.Therefore it can provide more vivid visual experience for people. Nonetheless, we are facing thechallenges of dealing with large amounts of data and real-time transmission requirements inorder to preserve the stereoscopic video quality over mesh networks. This leads to the problem ofhow to guarantee the end-to-end video quality, and the research of this topic has importanttheoretical significance and practical application value.
     This dissertation mainly focuses on key technologies of end-to-end QoS for stereoscopicvideo delivery over WMNs. Taking the characteristics of stereoscopic video into consideration,several methods are proposed at different layers from the perspective of transmission networkand terminal system. We set up the model of video distortion using the channel packet lossmodel, Markov model and M/M/1/K queue model in transmission network. We select thereasonable transmission rate at Medium Access Control (MAC) layer and select the proper routeat routing layer. At the application layer of the terminal system, the decoder implements the errorconcealment for corrosion images, making use of the correlation of disparity.
     The contributions of the dissertation are summarized as following:
     (1) In order to solve the bad fish problem in a shared single channel network, we propose arate selection mechanism at MAC layer which is suitable for video transmission. First, using thecross-layer technology, MAC layer gets the requirement of frame rate and the tolerance of packetloss rate for video from application layer. Second, the maximum allowed delay of each videopacket is estimated based on the frame rate requirement, which will be used to compute themaximum number of retransmissions for a video MAC frame. Finally, within the margin of thetolerant packet loss rate of application layer, we can adaptively select the highest possibletransmission rate for video MAC frames in terms of current channel quality and the maximumnumber of retransmissions. The lost packet will be dealt with using the algorithm of errorconcealment in the decoder. Experimental results show that, compared with the algorithm ofchanging contention window, the proposed method can reduce the delay and jitter of video service when the transmission rate should change during the Signal to Noise Ratio (SNR) ofvideo node declines, and make the throughputs of the transmission hosts degrade gracefully.Therefore, it increases the quality of reconstructed video to a certain extent and eliminates theperformance anomaly of network effectively.
     (2) Aiming at the problem of several routes between the source node and the destinationnode, we use video distortion as the metric to predict the transmission distortion of a route, andselect the route with minimal distortion as the transmission route in terms of the functionalrelationship between the distortion and the network packet loss and delay. The proposedalgorithm considers the factors of channel error, route interference and network congestion. First,random uniform model and Gilbert-Elliott (GE) model are used to simulate the random and burstpacket loss of the channel. Second, Markov model is used to calculate the packet collisionprobability of MAC layer and the processing time, and M/M/1/K queue system is used to predictthe delay and the probability of packet loss. Finally, we calculate the distortion of the total routeand select the route with minimum distortion of the network. Experimental results show thatcompared with the Dynamic Source Routing (DSR) protocol, our algorithm can provide betterobjective and subjective quality of video.
     (3) In order to eliminate the random errors for stereoscopic images in video applicationlayer of terminal system, we use the disparity correlation between pixels to propose an errorconcealment algorithm based on local reliable disparities. This algorithm uses the pixelssurrounding the lost block. First, in order to get accurate disparities, we design abase-point-biased window, and use different windows in terms of the position of estimated pixelto perform the adaptive-weight disparity matching. Second, reliable disparities of local area arefigured out according to the principles of disparity constancy of left-right consistency. And thenthe winner-takes-all strategy is adopted to remove the error disparities. These two strategiesmake the estimated disparity of the lost block better. Finally we use the estimated disparity torecover the lost block. Experimental results show that compared with other algorithms, theproposed method can significantly improve the Peak Signal to Noise Ratio (PSNR) value as wellas subjective quality with almost the same computational complexity.
     (4) In order to solve the random and consecutive errors for stereoscopic images, we use thedisparity correlation of blocks to propose an error concealment algorithm based on thesmoothness of boundary. First, we select the up, down, left and right blocks around the lost block,and conduct the disparity matching for them. Second, we use these four disparities to conceal thelost block, and calculate the smoothness of the boundary respectively. Then we select the bestsmoothness as the probable concealment result. If the best smoothness is still beyond the threshold, we carry out the content adaptive judgment for the lost block. The lost block will beclassified into one of the three types which are the texture block, directional block, and occlusionblock. We use different algorithms to conceal the lost block according to its type. Experimentalresults show that the proposed method substantially outperforms other algorithms both visuallyand in terms of PSNR, and at the same time, it has a lower computational complexity.
引文
[1]方旭明.下一代无线因特网技术:无线Mesh网络[M].北京:人民邮电出版社,2006.
    [2] Akyildiz, I. F.,Wang, X.,Wang, W. Wireless mesh networks: a survey[J]. Computer networks,2005, Vol.47(4):445-487.
    [3] Zhang, Y.,Luo, J.,Hu, H.无线网状网:架构,协议与标准[M].郭达,张勇,彭晓川(译).北京:电子工业出版社,2008.
    [4] Dagiuklas, T.3D media over future Internet: current status and future research directions [J].International Journal of Computer Science Issues,2012, Vol.9(1):30-38.
    [5] Liu, Y.,Ci, S.,Tang, H., etc. Application-adapted mobile3D video coding and streaming—Asurvey[J].3D Research,2012, Vol.3(1):1-6.
    [6] Schreer, O.,Kauff, P.,Sikora, T.3D视频通信[M].戴琼海,曹汛,尔桂花(译).北京:清华大学出版社,2011.
    [7]郑少仁. Ad Hoc网络技术[M].北京:人民邮电出版社,2005.
    [8]严军荣,张顺颐,李君, etc.基于链路干扰模型的802.11s信道分配策略[J].南京邮电大学学报(自然科学版),2009, Vol.29(1):1-5.
    [9] Sethuraman, S. stereoscopic image sequence compression using multiresolution and quadtreedecomposition based disparity-and motion-adaptive segmentation[D]. Pittsburgh: CarnegieMellon University,1996.
    [10] Fusiello, A.,Irsara, L. Quasi-Euclidean epipolar rectification of uncalibrated images[J].Machine Vision and Applications,2011, Vol.22(4):663-670.
    [11] Beardsley, P. A.,Zisserman, A.,Murray, D. Sequential updating of projective and affinestructure from motion[J]. International Journal of Computer Vision,1997, Vol.23(3):235-259.
    [12] Scharstein, D.,Szeliski, R. A taxonomy and evaluation of dense two-frame stereocorrespondence algorithms[J]. International Journal of Computer Vision,2002, Vol.47(1):7-42.
    [13] Brown, M. Z.,Burschka, D.,Hager, G. D. Advances in computational stereo[J]. PatternAnalysis and Machine Intelligence, IEEE Transactions on,2003, Vol.25(8):993-1008.
    [14] Kim, W. S.,Ansar, A. I.,Steele, R. D., etc. Performance analysis and validation of a stereovision system[C]. Systems, Man and Cybernetics,2005IEEE International Conference on,2005:1409-1416.
    [15]马颂德,张正友.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1998.
    [16]贾云得.机器视觉[M].北京:科学出版社,2000.
    [17]刘天亮.双目立体视觉的若干理论问题研究及应用[D].南京:东南大学,2009.
    [18]王翀.立体视频压缩编码关键技术的研究[D].南京:东南大学,2010.
    [19]夏永泉.计算机视觉中双目匹配相关技术研究[D].南京:南京理工大学,2007.
    [20] Aguayo, D.,Bicket, J.,Biswas, S., etc. Link-level measurements from an802.11b meshnetwork[J]. ACM SIGCOMM Computer Communication Review,2004, Vol.34(4):121-132.
    [21] Bicket, J.,Aguayo, D.,Biswas, S., etc. Architecture and evaluation of an unplanned802.11bmesh network[C]. Proceedings of the11th annual international conference on Mobilecomputing and networking,2005:31-42.
    [22] Raniwala, A.,Gopalan, K.,Chiueh, T. Centralized channel assignment and routing algorithmsfor multi-channel wireless mesh networks[J]. ACM SIGMOBILE Mobile Computing andCommunications Review,2004, Vol.8(2):50-65.
    [23] BWN lab wireless mesh networks research project. http://www.ece.gatech.edu/research/labs/bwn/mesh/
    [24] Purdue University Wireless Mesh Network Testbed. https://engineering.purdue.edu/MESH
    [25] Microsoft Mesh Networks. http://research.microsoft.com/mesh/
    [26] Zhang, Q.,Zhu, W.,Zhang, Y. Q. End-to-end QoS for video delivery over wireless Internet[J].Proceedings of the IEEE,2005, Vol.93(1):123-134.
    [27] Wu, D.,Hou, Y. T.,Zhang, Y. Q. Transporting real-time video over the Internet: Challengesand approaches[J]. Proceedings of the IEEE,2000, Vol.88(12):1855-1877.
    [28]田立勤,林闯.报文分类技术的研究及其应用[J].计算机研究与发展,2003, Vol.40(6):765-775.
    [29]林闯.计算机网络的服务质量(QoS)[M].北京:清华大学出版社,2004.
    [30]王重钢,隆克平,龚向阳, etc.分组交换网络中队列调度算法的研究及其展望[J].电子学报,2001, Vol.29(4):553-559.
    [31] Hossain, E.,K.Leung, K.无线Mesh网络架构与协议[M].易燕,李强,刘波, etc.(译).北京:机械工业出版社,2009.
    [32] Li, X.,Jiang, X.,Han, Z., etc. A new OFDM symbol synchronization for WMN used inrailway[C]. Service Operations, Logistics, and Informatics (SOLI),2011IEEEInternational Conference on,2011:419-422.
    [33] Fan, Z. Multi-hop mesh networking for UWB-based802.15.3coverage extension[C].Advanced Information Networking and Applications,2006. AINA2006.20th InternationalConference on,2006:920-925.
    [34] Foschini, G. J.,Gans, M. J. On limits of wireless communications in a fading environmentwhen using multiple antennas[J]. Wireless personal communications,1998, Vol.6(3):311-335.
    [35] Tang, T.,Heath, R. W. A space-time receiver for MIMO-OFDM ad hoc networks[C].Military Communications Conference,2005. MILCOM2005. IEEE,2005:1409-1413.
    [36] Jaafar, W.,Ajib, W.,Tabbane, S. The capacity of MIMO-based wireless mesh networks[C].Networks,2007. ICON2007.15th IEEE International Conference on,2007:259-264.
    [37] Baek, S. J.,Kim, G.,Nettles, S. M. A max-min strategy for QoS improvement in MIMOad-hoc networks[C]. Vehicular Technology Conference,2005. VTC2005-Spring.2005IEEE61st,2005:2473-2477.
    [38] Winters, J. H. Smart antenna techniques and their application to wireless ad hoc networks[J].Wireless Communications, IEEE,2006, Vol.13(4):77-83.
    [39] Fujii, T.,Suzuki, Y. Ad-hoc cognitive radio-development to frequency sharing system byusing multi-hop network[C]. New Frontiers in Dynamic Spectrum Access Networks,2005.DySPAN2005.2005First IEEE International Symposium on,2005:589-592.
    [40] Uchiyama, H.,Umebayashi, K.,Kamiya, Y., etc. Study on cooperative sensing in cognitiveradio based ad-hoc network[C]. Personal, Indoor and Mobile Radio Communications,2007.PIMRC2007. IEEE18th International Symposium on,2007:1-5.
    [41] Bouabdallah, N.,Ishibashi, B.,Boutaba, R. Performance of cognitive radio-based wirelessmesh networks[J]. Mobile Computing, IEEE Transactions on,2011, Vol.10(1):122-135.
    [42] Yu, W.,Cao, J.,Zhou, X., etc. A high-throughput MAC protocol for wireless ad hocnetworks[J]. Wireless Communications, IEEE Transactions on,2008, Vol.7(1):135-145.
    [43] You, T.,Yeh, C. H.,Hassanein, H. DRCE: a high throughput QoS MAC protocol for wirelessad hoc networks[C]. Computers and Communications,2005. ISCC2005. Proceedings.10thIEEE Symposium on,2005:671-676.
    [44] Zhang, J.,Chen, Y. P.,Marsic, I. MAC scheduling using channel state diversity forhigh-throughput IEEE802.11mesh networks[J]. Communications Magazine, IEEE,2007,Vol.45(11):94-99.
    [45] Lee, M. G.,Lee, S. Delay analysis for statistical real-time channels in mobile ad hocnetworks[C]. Object-Oriented Real-Time Dependable Systems,2005. WORDS2005.10thIEEE International Workshop on,2005:363-370.
    [46] Jigang, Q.,Huijie, L.,Xiaokang, L. The MAC Mechanism with QoS Provision Based onStream-Maintenance in Ad Hoc Networks[C]. ITS Telecommunications Proceedings,20066th International Conference on,2006:798-801.
    [47] Wu, H.,Liu, Y.,Zhang, Q., etc. SoftMAC: layer2.5collaborative MAC for multimediasupport in multihop wireless networks[J]. Mobile Computing, IEEE Transactions on,2007,Vol.6(1):12-25.
    [48] Aguayo, D.,Bicket, J.,Morris, R. SrcRR: A high throughput routing protocol for802.11mesh networks (DRAFT). In2005.
    [49] Gerharz, M.,De Waal, C.,Frank, M., etc. Link stability in mobile wireless ad hocnetworks[C]. Local Computer Networks,2002. Proceedings. LCN2002.27th Annual IEEEConference on,2002:30-39.
    [50] De Rango, F.,Guerriero, F.,Marano, S., etc. A multiobjective approach for energyconsumption and link stability issues in ad hoc networks[J]. Communications Letters, IEEE,2006, Vol.10(1):28-30.
    [51]夏卓群,李庆华.流媒体无线Mesh网中基于机会路由的网络编码[J].中南大学学报(自然科学版),2012, Vol.43(1):202-207.
    [52]曹啸,王汝传,黄海平, etc.无线多媒体传感器网络视频流多路径路由算法[J].软件学报,2012, Vol.23(1):108-121.
    [53] Lee, S. J.,Gerla, M. Split multipath routing with maximally disjoint paths in ad hocnetworks[C]. Communications,2001. ICC2001. IEEE International Conference on,2001:3201-3205.
    [54] Apostolopoulos, J.,Tan, W.,Wee, S., etc. Modeling path diversity for multiple descriptionvideo communication[C]. Acoustics, Speech, and Signal Processing (ICASSP),2002IEEEInternational Conference on,2002: III-2161-III-2164.
    [55] Begen, A. C.,Altunbasak, Y.,Ergun, O. Multi-path selection for multiple description encodedvideo streaming[C]. Communications,2003. ICC'03. IEEE International Conference on,2003:1583-1589.
    [56] Mao, S.,Hou, Y. T.,Cheng, X., etc. On routing for multiple description video over wirelessad hoc networks[J]. Multimedia, IEEE Transactions on,2006, Vol.8(5):1063-1074.
    [57]崔华力,钱德沛,刘轶, etc.无线Mesh网QoS研究[J].微电子学与计算机,2010, Vol.(4):173-178.
    [58] Mbarushimana, C.,Shahrabi, A. Resource efficient TCP: reducing contention-inducedspurious timeouts in QoS-aware MANETs[C]. Advanced Information Networking andApplications,2008. AINA2008.22nd International Conference on,2008:1070-1077.
    [59] Tan;, K.,Zhang;, Q.,Jiang;, F., etc. Congestion control in multi-hop wireless networks[C].IEEE SECON2005., Santa Clara, California, USA,26-29September2005,2005:96-106.
    [60] Rangwala, S.,Jindal, A.,Jang, K. Y., etc. Neighborhood-centric congestion control formultihop wireless mesh networks[J]. IEEE/ACM Transactions on Networking (TON),2011,Vol.19(6):1797-1810.
    [61]廖勇,杨士中.无线Mesh网络下的网络编码机制[J].北京邮电大学学报,2010, Vol.33(1):27-32.
    [62] Sullivan, G. J.,Wiegand, T. Rate-distortion optimization for video compression[J]. SignalProcessing Magazine, IEEE,1998, Vol.15(6):74-90.
    [63] Ortega, A.,Ramchandran, K. Rate-distortion methods for image and video compression[J].Signal Processing Magazine, IEEE,1998, Vol.15(6):23-50.
    [64] Richardson, I. E. G. Video Codec Design: chapter10. Rate, Distortion and Complexity[M].John Wiley&Sons, Ltd,2002.
    [65] Talluri, R. K.,Wen, J.,Villasenor, J. Error resilient video coding using reversible variablelength codes (RVLCS). In Google Patents:2001.
    [66] ITU-T. Recommendation H.263: video coding for low bit rate communication[J].International Telecommunication Union, Version1: Nov.1995, Version2: Jan.1998,Version3: Nov.2000, Vol.
    [67] Li, W. Overview of fine granularity scalability in MPEG-4video standard[J]. Circuits andSystems for Video Technology, IEEE Transactions on,2001, Vol.11(3):301-317.
    [68] Radha, H.,Chen, Y.,Parthasarathy, K., etc. Scalable internet video using MPEG-4[J]. SignalProcessing: Image Communication,1999, Vol.15(1):95-126.
    [69] Schwarz, H.,Marpe, D.,Wiegand, T. Overview of the scalable video coding extension of theH.264/AVC standard[J]. Circuits and Systems for Video Technology, IEEE Transactions on,2007, Vol.17(9):1103-1120.
    [70] Schwarz, H.,Marpe, D.,Wiegand, T. Overview of the scalable H.264/MPEG4-AVCextension[C]. Image Processing,2006IEEE International Conference on,2006:161-164.
    [71] Wien, M.,Schwarz, H.,Oelbaum, T. Performance analysis of SVC[J]. Circuits and Systemsfor Video Technology, IEEE Transactions on,2007, Vol.17(9):1194-1203.
    [72]张海霞,袁东风,马艳波.无线通信跨层设计-从原理到应用[M].北京:人民邮电出版社,2010.
    [73] Shah, G.,Liang, W.,Akan, O. Cross-layer framework for QoS support in wireless multimediasensor networks[J]. IEEE Transactions on Multimedia,2012, Vol.14(5):1442-1455.
    [74] Zhu, H. Cross-layer Resource allocation in multi-access wireless network: the problems andone solution[R]. USA: University of Maryland,7Oct.,2003.
    [75] Srivastava, V.,Motani, M. Cross-layer design: a survey and the road ahead[J].Communications Magazine, IEEE,2005, Vol.43(12):112-119.
    [76]季薇,郑宝玉.无线传感器网络中基于NDMA的跨层协作多包接收[J].电子学报,2007, Vol.35(5):1001-1004.
    [77] M.Heusse, F. R., G..Berger-Sabbatel and A.Duda. Performance anomaly of802.1lb[C].Proceedings of22th Annual Joint Conference of the IEEE Computer and CommunicationSocieties, San Francisco, USA,2003:836-843.
    [78] Abu-Sharkh, O.,Twefik, A. Throughput evaluation and enhancement in802.11WLANs withaccess point[C]. Vehicular Technology Conference,2005. VTC2005-Spring.2005IEEE61st,2005:1338-1341.
    [79] Guo, F. Implementation techniques for scalable, secure and QoS-guaranteedenterprise-grade wireless LANs[D]. Stony Brook University,2006.
    [80] Zhang, Y.,Luo, J.,Hu, H. Wireless mesh networking: architectures, protocols andstandards[M]. Auerbach Publications,2006.
    [81] Sung, J. T.,Ke, C. H.,Chilamkurti, N., etc. Collision avoidance multi-rate MAC protocol:solving performance anomaly in multi-rate network[C]. Wireless Pervasive Computing,2009. ISWPC2009.4th International Symposium on,2009:1-5.
    [82] Kim, H.,Yun, S.,Kang, I., etc. Resolving802.11performance anomalies through QoSdifferentiation[J]. Communications Letters, IEEE,2005, Vol.9(7):655-657.
    [83] Dongho Lee, S. L., Kwangsue Chung, Byunghun Song, and Sang Hong Lee. A newtime-based fairness scheme to resolve the performance anomaly in WLANs[C].International Conference on Information Networking,2009:1-3.
    [84] Kashibuchi, K.,Nemoto, Y.,Kato, N. Mitigating performance anomaly of TFRC in multi-rateIEEE802.11wireless LANs[C]. Global Telecommunications Conference,2009.GLOBECOM2009. IEEE,2009:1-6.
    [85] Pavon, J. P.,Choi, S. Link adaptation strategy for IEEE802.11WLAN via received signalstrength measurement[C]. Communications,2003. ICC'03. IEEE International Conferenceon,2003:1108-1113.
    [86] Xiuchao, W. Simulate802.11b channel within ns2. http://www.comp.nus.edu.sg/~wuxiucha/research/reactive/publication/Simulate80211ChannelWithNS2.pdf
    [87] Gast, M.802.11wireless networks: the definitive guide[M]. O'Reilly Media, Incorporated,2005.
    [88] Wu, G.,Bai, Y.,Lai, J., etc. Interactions between TCP and RLP in Wireless Internet[C].Global Telecommunications Conference,1999. GLOBECOM'99,1999:661-666.
    [89] Wang, Q.,Abu-Rgheff, M. A. Cross-layer signalling for next-generation wireless systems[C].Wireless Communications and Networking,2003. WCNC2003.2003IEEE,2003:1084-1089.
    [90] ffmpeg.exe. http://www.ffmpeg.org/
    [91] Johnson, D. B.,Maltz, D. A. Dynamic source routing in ad hoc wireless networks[J]. Mobilecomputing,1996, Vol.353153-181.
    [92] Perkins, C. E.,Bhagwat, P. Highly dynamic destination-sequenced distance-vector routing(DSDV) for mobile computers[J]. ACM SIGCOMM Computer Communication Review,1994, Vol.24(4):234-244.
    [93] Perkins, C. E.,Royer, E. M. Ad-hoc on-demand distance vector routing[C]. MobileComputing Systems and Applications,1999. Proceedings. WMCSA'99. Second IEEEWorkshop on,1999:90-100.
    [94] Couto, D. S. J. D.,Aguayo, D.,Bicket, J., etc. A high-throughput path metric for multi-hopwireless routing[J]. Wireless Networks,2005, Vol.11(4):419-434.
    [95] Nasipuri, A.,Das, S. R. On-demand multipath routing for mobile ad hoc networks[C].Computer Communications and Networks,1999. Proceedings. Eight InternationalConference on,1999:64-70.
    [96] Yang, Y.,Wang, J.,Kravets, R. Designing routing metrics for mesh networks[C]. IEEEWorkshop on Wireless Mesh Networks (WiMesh),2005.
    [97] Sadka, A. H.压缩视频通信[M].卢燕飞,尉明明,蒋笑冰(译).北京:科学出版社,2004.
    [98] Hanzo, L.,Cherriman, P.,Streit, J.视频压缩与通信(第二版)[M].北京:人民邮电出版社,2011.
    [99] Stuhlmuller, K.,Farber, N.,Link, M., etc. Analysis of video transmission over lossychannels[J]. Selected Areas in Communications, IEEE Journal on,2000, Vol.18(6):1012-1032.
    [100] Zhu, X.,Singh, J. P.,Girod, B. Joint routing and rate allocation for multiple video streams inad-hoc wireless networks[J]. Journal of Zhejiang University-Science A,2006, Vol.7(5):727-736.
    [101]周亮.无线多跳网络中多媒体通信关键技术研究[D].上海:上海交通大学,2009.
    [102] Setton, E. Congestion-aware video streaming over peer-to-peer networks[D]. StanfordUniversity,2006.
    [103] Ergen, M.,Varaiya, P. Throughput analysis and admission control for IEEE802.11a[J].Mobile networks and Applications,2005, Vol.10(5):705-716.
    [104] Szczypiorski, K.,Lubacz, J. Performance evaluation of IEEE802.11DCF networks[J].Managing Traffic Performance in Converged Networks,2007, Vol.1084-1095.
    [105]张行功,郭宗明.率失真优化的无线多跳网络多路径选择算法[J].软件学报,2011,Vol.22(10):2412-2424.
    [106]曾勇.排队现象的建模、解析与模拟[M].西安:西安电子科技大学出版社,2011.
    [107]董泽清.排队论及其应用[M].西安:西安系统工程学会出版社,1983.
    [108]盛友招.排队论及其在现代通信中的应用[M].人民邮电出版社,2007.
    [109]李建东,盛敏,李红艳.通信网络基础(第二版)[M].高等教育出版社,2011.
    [110] Jiang, Y.,Tham, C. K.,Ko, C. C. An approximation for waiting time tail probabilities inmulticlass systems[J]. Communications Letters, IEEE,2001, Vol.5(4):175-177.
    [111] Abate, J.,Choudhury, G. L.,Whitt, W. Exponential approximations for tail probabilities inqueues, I: waiting times[J]. Operations Research,1995, Vol.43(5):885-901.
    [112]马宇峰,魏维,杨科利.视频通信中的错误隐藏技术[M].国防工业出版社,2007.
    [113] Pitrey, Y.,Pépion, R.,Le Callet, P., etc. Using overlapping subjective datasets to assess theperformance of objective quality metrics on Scalable Video Coding and errorconcealment[C]. Quality of Multimedia Experience (QoMEX),2012Fourth InternationalWorkshop on,2012:103-108.
    [114] Zhao, B. Interleaving-based error concealment for scalable video coding system[C]. VisualCommunications and Image Processing (VCIP),2011IEEE,2011:1-4.
    [115] Guo, Y.,Chen, Y.,Wang, Y. K., etc. Error resilient coding and error concealment in scalablevideo coding[J]. Circuits and Systems for Video Technology, IEEE Transactions on,2009,Vol.19(6):781-795.
    [116] Parthavi, M. U.,De, S. Mesh routing for error resilient delivery of multiple-descriptioncoded image/video content[C]. Computer Communications and Networks (ICCCN),201221st International Conference on,2012:1-7.
    [117] Cui, Z.,Gan, Z.,Zhan, X., etc. Error concealment techniques for video transmission overerror-prone channels: a survey[J]. Journal of Computational Information Systems,2012,Vol.8(21):8807-8818.
    [118] Yang, S.,Zhao, Y.,Wang, S., etc. Error concealment for stereoscopic video usingillumination compensation[J]. Consumer Electronics, IEEE Transactions on,2011, Vol.57(4):1907-1914.
    [119] Clemens, C.,Kunter, M.,Knorr, S., etc. A hybrid approach for error concealment instereoscopic images[C].5th International Workshop on Image Analysis for MultimediaInteractive Services,2004.
    [120] Song, K.,Chung, T.,Oh, Y., etc. Error concealment of multi-view video sequences usinginter-view and intra-view correlations[J]. Journal of Visual Communication and ImageRepresentation,2009, Vol.20(4):281-292.
    [121] Chung, T. Y.,Sull, S.,Kim, C. S. Frame loss concealment for stereoscopic video based oninter-view similarity of motion and intensity difference[C]. Image Processing (ICIP),201017th IEEE International Conference on,2010:441-444.
    [122]宋丽娟,朱秀昌.基于双模式的立体图像误码掩盖[J].应用科学学报,2010, Vol.28(1):19-23.
    [123] Li, F.,Jiang, G.,Yu, M., etc. New bilateral error concealment method of entire depth frameloss for3DTV and virtual3D video conferencing systems[J]. Computer Science and itsApplications,2012, Vol.353-360.
    [124]朱晓瑞,卓力.立体视频误码恢复技术综述[J].测控技术,2012, Vol.31(5):1-7.
    [125] Middlebury Stereo Datasets. http://vision.middlebury.edu/stereo/data/
    [126]颜轲,万国伟,李思昆.基于图像分割的立体匹配算法[J].计算机应用,2011, Vol.31(1):175-178.
    [127]王翀.立体视频压缩编码关键技术的研究[D].南京:东南大学,2010.
    [128] Veksler, O. Fast variable window for stereo correspondence using integral images[C].Computer Vision and Pattern Recognition,2003. Proceedings.2003IEEE ComputerSociety Conference on,2003: I-556-I-561vol.1.
    [129] Kang, S. B.,Szeliski, R.,Chai, J. Handling occlusions in dense multi-view stereo[C].Computer Vision and Pattern Recognition,2001. CVPR2001. Proceedings of the2001IEEE Computer Society Conference on,2001: I-103-I-110vol.1.
    [130] Gu, Z.,Su, X.,Liu, Y., etc. Local stereo matching with adaptive support-weight, ranktransform and disparity calibration[J]. Pattern Recognition Letters,2008, Vol.29(9):1230-1235.
    [131] Yoon, K. J.,Kweon, I. S. Adaptive support-weight approach for correspondence search[J].Pattern Analysis and Machine Intelligence, IEEE Transactions on,2006, Vol.28(4):650-656.
    [132] Mattoccia,S. Stereovision:algorithms and applications,2011. http://www.vision.deis.unibo.it/smatt/Seminars/StereoVision.pdf
    [133]伍春洪,付国亮.一种基于图像分割及邻域限制与放松的立体匹配方法[J].计算机学报,2011, Vol.34(4):755-760.
    [134] Oh, J. D.,Ma, S.,Kuo, C. C. J. Stereo matching via disparity estimation and surfacemodeling[C]. Computer Vision and Pattern Recognition,2007. CVPR'07. IEEEConference on,2007:1-8.
    [135]刘天亮,罗立民.一种基于分割的可变权值和视差估计的立体匹配算法[J].光学学报,2009, Vol.29(4):1002-1009.
    [136] Rongfu, Z.,Yuanhua, Z.,Xiaodong, H. Content-adaptive spatial error concealment for videocommunication[J]. Consumer Electronics, IEEE Transactions on,2004, Vol.50(1):335-341.
    [137] Li, X.,Orchard, M. T. Novel sequential error-concealment techniques using orientationadaptive interpolation[J]. Circuits and Systems for Video Technology, IEEE Transactionson,2002, Vol.12(10):857-864.
    [138] Xiang, X.,Zhao, D.,Ma, S., etc. Auto-regressive model based error concealment scheme forstereoscopic video coding[C]. Acoustics, Speech and Signal Processing (ICASSP),2011IEEE International Conference on,2011:849-852.
    [139] Bilen, C.,Aksay, A.,Akar, G. B. Two novel methods for full frame loss concealment instereo video[C]. Proceedings of26th Picture coding Symposium (PCS’07),2007.
    [140] Xiang, X.,Zhao, D.,Wang, Q., etc. A novel error concealment method for stereoscopicvideo coding[C]. Image Processing,2007. ICIP2007. IEEE International Conference on,2007: V-101-V-104.
    [141] Choi, M.,Kim, J.,Cho, W. K., etc. Low complexity image rectification for multi-view videocoding[C]. Circuits and Systems (ISCAS),2012IEEE International Symposium on,2012:381-384.
    [142] Wang, Y.,Zhu, Q. F.,Shaw, L. Maximally smooth image recovery in transform coding[J].Communications, IEEE Transactions on,1993, Vol.41(10):1544-1551.
    [143] Zhu, W.,Wang, Y.,Zhu, Q. F. Second-order derivative-based smoothness measure for errorconcealment in DCT-based codecs[J]. Circuits and Systems for Video Technology, IEEETransactions on,1998, Vol.8(6):713-718.
    [144] Araghi, A.,Panahi, M. A.,Kasaei, S. Error concealment using wide motion vector space forH.264/AVC[C]. Electrical Engineering (ICEE),201119th Iranian Conference on,2011:1-6.
    [145] Hui, H. Spatial-Temporal Error concealment scheme for intra-coded frames[C].Multimedia and Signal Processing (CMSP),2011International Conference on,2011:68-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700