高速电主轴动力学分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速加工能显著地提高生产率、降低生产成本和提高产品加工质量,是制造业发展的重要趋势,也是一项非常有前景的先进制造技术。实现高速加工的首要条件是高质量的高速机床,而高速机床的核心部件是高速电主轴单元,它实现了机床的“零传动”,简化了结构,提高了机床的动态响应速度,是一种新型的机械结构形式,其性能好坏在很大程度上决定了整台机床的加工精度和生产效率。
     本文在国家自然科学基金项目《高速电主轴机电耦合动力学分析及仿真与实验研究》(项目编号50675233)、重庆市重大科技攻关项目《装备制造业典型基础部件关键技术研究及产业化》(项目编号CSTC, 2006AA3010)和重庆市科技攻关项目《高速高性能主轴系统关键技术及典型应用》(项目编号CSTC, 2005AC3029)的资助下,对高速电主轴进行了动力学分析和实验研究,主要做了以下几个方面的工作:
     针对高速电主轴系统具有复杂机电系统的特点,提出对高速电主轴系统进行机电耦合分析的观点;从机电耦合动力学出发,提炼并归纳了高速电主轴系统中存在的多物理过程、多参数耦合现象;讨论了高速电主轴系统中存在的全局机电耦合关系,给出了高速电主轴系统的全局耦合结构;分析并研究了高速电主轴电机—主轴子系统的结构和局部耦合情况,建立其物理模型,采用变分原理法推导其数学模型,建立了该子系统的动力学方程,并进行了实例验证。
     基于传递矩阵法对高速电主轴进行动力学分析,简化其结构并进行分段建模,对轴系中典型单元的状态进行了数学描述;针对电主轴结构的特殊性,修改了简化模型中部分典型单元的状态向量,得到电主轴的传递矩阵方程即轴系的频率方程;以60 000 r/min电主轴为例,描述了用修改后的传递矩阵方程对其进行求解的计算过程,得到了该电主轴的固有频率及振型。
     在应用传递矩阵法对电主轴进行机械动力学分析的基础上,针对电主轴的偏心状态,结合电磁学对电主轴进行的力学分析,建立此时轴系的传递矩阵方程;综合电磁学与机械动力学的分析结果,修改典型单元的状态向量,推出偏心电主轴的传递矩阵方程,将轴系的边界条件代入传递矩阵方程,得到轴系的频率方程;并利用机电动力学的方法分析了电主轴发生偏心时由电磁力激发的振动,应用拉格朗日—麦克斯韦方程,导出电主轴偏心状态下的振动方程和转动方程。
     基于模态分析理论,对同一60 000 r/min高速电主轴进行了自由模态实验,介绍了实验方法和过程,并分析了实验结果,提取了该电主轴的模态参数(固有频率、阻尼和振型);实验结果与传递矩阵法的计算结果基本吻合。
     针对高速电主轴高转速难加载的问题,提出了使用经改造的测功机对电主轴进行加载实验的方案;根据电主轴转速的不同,提出了对拖式和非接触式两种不同的动态加载测试方法;详细描述了对拖式加载方法的系统构成和加载原理,该系统不但可以完成对电主轴的加载,还可以测出加载过程中电主轴的基本参数,并绘制出相应的曲线,使电主轴在不同工作点的状态一目了然;应用该系统对最高转速为15 000 r/min的电主轴进行加载实验,得到其特性曲线,分析并处理实验数据,得出被测电主轴本身所具有的特性及其存在的问题;解决了高速电主轴无法进行准确加载实验的问题。
High speed machining (HSM) has become the mainstream of manufacturing for drastically increasing productivity, reducing production costs and improving the product quality. HSM is also a promising advanced manufacturing technology. In the realization of HSM, machine tool generally plays an all-important role and high speed motorized spindle is the key technology for a machine tool. The machine tool equipped with high speed motorized spindle has characteristic of the zero-transmission and simplified of the machine structure. With use of new mechanical structure, the high speed motorized spindle has much better dynamic performance in response to the high demands in this machine. In general, overall performance of high speed machine in terms of the machining precision and productivity is largely dependent upon the performance of the equipped high speed motorized spindle.
     This thesis is funded by the National Natural Science Foundation, China (No.50675233), Chongqing Municipal Important Science and Technology Key Project, China (CSTC, No.2006AA3010) and Chongqing Municipal Important Science and Technology Key Project, China (CSTC, No.2005AC3029). The dynamic analysis and experiment on high speed motorized spindle are researched. The major contribution of the work is summarized as followings.
     Due to the high speed motorized spindle system has characteristic of the complex electromechanical system, the view of electromechanical coupling analyses on high speed motorized spindle is put forward. Grounded on the electromechanical coupling dynamics, several physical processes and multidimensional coupling parameters that exist in the high speed motorized spindle system are extracted and summed up. The global coupling relation of high speed motorized spindle system has also been discussed and its frame is given. The physical model of the subsystem is set up based upon the analysis of the structure and local coupling of motor-spindle subsystem in high speed motorized spindle. The mathematical model is developed base on variance principle. The dynamical equation of the subsystem is established and the validation of equation is made by experimental data from the examples.
     The dynamic analysis is carried out on the high speed motorized spindle with use of the transfer matrix method, which includes the structure simplification and modeling segmentation. Typical elements’states of the shafting are described by mathematical method. For the special structure of the high speed motorized spindle, some state vectors of typical elements in the simplified model are modified. Then transfer matrix model of the high speed motorized spindle, which is also the frequency model of the shafting, is derived. As a case study, the natural frequency and critical speed of the high speed motorized spindle with 60 000 rpm are calculated by the modified model. Meantime the calculation course is also described.
     On the condition that the transfer matrix method is applied to do the mechanical dynamic analyses of the high speed motorized spindle, mechanical analysis on high speed motorized spindle under the eccentric state is carried out through electromagnetic method. Then the transfer matrix equation for the shafting is set up. Combining the analytic results of electromagnetics and mechanical dynamics, state vectors of typical elements are modified. The transfer matrix equation of the eccentric high speed motorized spindle is obtained. Putting the boundary condition of the entire shafting into the transfer matrix equation, the frequency equation of the shafting is gained. Electromechanical dynamics is used to analyze the eccentric motorized spindle’s vibration which caused by the electromagnetic force. Lagrange-Maxwell equation is made use of educing its vibration equation and rotation equation.
     Based on the theory of mode analysis, a free mode experiment is carried out under the 60 000 rpm high speed motorized spindle in order to acquire the modal parameters, such as natural frequency, damp and mode shape. The experimental results exhibited that modal parameters from the test are matched with the theory calculation. The overall experimental method and procedure are also introduced.
     Loading and measuring the load applied on a high speed motorized spindle in the non-machining state is an important issue in performance evaluation of high speed motorized spindle. A new method is developed through modifying a dynamometer to make the loading possible in the experiment. According to the different rotating speed, two types of dynamic loading test ways which are the inter-drag method and the non-contact method are proposed. The structure and principle of the inter-drag loading method are described in detail. The system can not only load to the high speed motorized spindle, but also measure basic parameters of the high speed motorized spindle and present the corresponding curves which make it visible for states of the high speed motorized spindle at different working points. The inter-drag loading system is applied in experiment on the high speed motorized spindle in which the highest rotating speed is 15 000 rpm. The characteristic curve of this high speed motorized spindle is depicted. Analyzing and dealing with the test data, the inherent characteristic and existent problem of the motorized spindle are gained. Proposed method makes it possible to accurately loading on a high speed motorized spindle.
引文
[1]张伯霖.高速切削技术及应用[M].北京:机械工业出版, 2003.
    [2]田华.数控机床高速电主轴结构设计及性能分析[硕士学位论文].成都:四川大学, 2006.
    [3]钱木.高速机床主轴动态特性分析[硕士学位论文].南京:东南大学, 2005.
    [4]欧益宝,左健民,汪木兰.高速加工技术与电主轴[J].现代制造工程, 2006, 10:104~106.
    [5]储开宇.数控高速电主轴技术及其发展趋势[J].机床与液压, 2006, 10:228~230.
    [6] C.Brecher, G.Spachtholz, F.Paepenmüller. Developments for high performance machine tool spindles[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1):395-399.
    [7] J.J?drzejewski, Z.Kowal, W.Kwa?ny, et al. High-speed precise machine tools spindle units improving[J]. Materials Processing Technology, 2005,162-163:615~621.
    [8] Chi-Wei Lin, Jay F. Tu, Joe Kamman. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation[J]. Machine Tools & Manufacture, 2003, 10(43):1035-1050.
    [9] Bernd Bossmanns, Jay F.Tu. A thermal model for high speed motorized spindles[J]. Machine Tools & Manufacture, 1999, 9(39):1345-1366.
    [10] Jenq-shyong Chen, Wei-yao Hsu. Characterizations and models for the thermal growth of a motorized high speed spindle[J]. Machine Tools & Manufacture, 2003, 43(11): 1163-1170.
    [11] Korolev, E.G. Motor/Spindles for NC Machine Tools[J]. Soviet Engineering Research, 1986, 6(12):60-62.
    [12] Frederickson, Paul, Grimes, David. Optimizing motor technology for spindle applications [J]. Motion System Design, 2004, 46(11):24-32.
    [13] Jorgensen, Bert R. Dynamics of Spindle-bearing system at high speed including cutting load effects[J]. Manufacturing Science and Engineering, Transactions of the AMSE, 1998, 120(2):387-394.
    [14] Tsutusmi, keigo. Development of high-speed spindle for machine tools by means of intermittent oil-mist lubrication[J]. Transactions of the Japan society of mechanical engineers, Part C, 2000, 60(577): 2911-2916.
    [15] Bernd Bossmanns, Jay F.Tu. Power flow model for high speed motorized spindles-heat generation characterization[J], American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, 1998, 64:415-422.
    [16]于兆勤,方富,肖曙红等.高速电主轴热态特性的研究[J].广东工学院学报, 1995, 6(增刊):75-79.
    [17]张伯霖,夏红梅,黄晓明.高速电主轴设计制造中若干问题的探讨[J].制造技术与机床, 2001(7):12-14.
    [18]张珂,吴玉厚,高晓佳等.大功率陶瓷轴承电主轴单元的研制[J].制造技术与机床, 2004(4):17-19.
    [19]李松生,张钢,陈晓阳等.超高速电主轴轴承的润滑条件分析[J].润滑与密封, 2005, 5:162-165.
    [20]张世珍,刘炳业,范晋伟等.电主轴设计的几个关键问题[J].制造技术与机床, 2005, 8:50-53.
    [21]宋德儒,吴玉厚,张坷.高速精密实验磨床电主轴振动特性的实验研究[J].机械工程与自动化, 2005, 4:46-48.
    [22]郭大庆,吴玉厚,张珂等.陶瓷轴承电主轴系统的特性与分析[J].机械与电子, 2005, 7:77-78.
    [23]钱木,蒋书运.高速磨削用电主轴结构动态优选设计[J].中国机械工程, 2005, 16(10):864-868.
    [24]朱金虎,翁世修,蒋书运.高频电主轴临界转速计算及其影响参数分析[J].机械设计与研究, 2005, 21(1):28-30.
    [25]蒋书运.高速电主轴动态设计方法[J].功能部件, 2004, 5:54-57.
    [26]吕浪,熊万里,黄红武,蔡海翔.超高速磨削SPWM电主轴系统机电耦合振动的瞬态特性研究[J].密制造与自动化, 2006, 1:13-16.
    [27]马平,李吉科,李锻能等.角接触球轴承高速电主轴的热源特性及对策.机械工程师, 2004, 4:12-14.
    [28]陈长江,徐同申,郭丽娟.内装式电主轴系统的开发与发展[J].机械传动, 2005, 2-3: 52-54.
    [29] Spur G等.主轴—轴承系统的计算:利用结构修正法确定静态和动态性能[J].国外轴承, 1991, 4:34-36.
    [30] W.R.Wang, C.N.Chang. Dynamic Analysis and Design of a Manchine Tool Spindle-Bearing System[J]. Vibration and Acoustics, 1994, 116:280-285.
    [31] Subhajit Chatterjee. Spindle Deflections in High-Speed Machine Tools-Modeling and Sim- ulation[J]. Manufacture Technology, 1996, 11:232-239.
    [32] E. Yhland. A linear theory of vibrations caused by ball bearings with form enors operating at moderate speed[J]. Trans. of the ASME, J. Tribol, 1992, 114:348-359.
    [33] C.H.Chen, K.W.Wang. An Integrated Approach Toward the Dynamic Analysis of High-Speed Spindles[J]. Vibration and Acoustics, 1994, 116:514-522.
    [34] M.Tsutsumi.i.S. Chung, Y.MurakamL Y. ilo. Dynamic characteristics of spindle-bearing system in machine tools[J]. 2nd Reporu mathematical expression of spindle-hearing system and its application, BulI.JSME, 1985, 28(244):2460-2466.
    [35] Bert R.Jorgensen, Yung C.Shin. Dynamics of Machine Tool Spindle/Bearing Systems under Thermal Growth[J]. Tribology, 1997, 119(10):875-882.
    [36]肖曙红.前支承为三联角接触球轴承的主轴组件的性能分析和简化计算[硕士学位论文].大连:大连理工大学, 1994.
    [37]杨光,王玉丹.传递矩阵法进行电主轴的动力学特性分析[J].机械设计与制造, 2001, 3:50-51.
    [38]李松生,杨柳欣,王兵华.高速电主轴轴系转子动力学特性分析[J].轴承, 2002, 2:15-17.
    [39]郭策,孙庆鸿,蒋书运.高速高精度数控车床主轴双转子系统的动力特性计算[J].精密制造与自动化, 2003(增刊):50-52.
    [40]刘素华,冯利民.电主轴单元的动静态特性分析[J].河南冶金, 2003, 11(4): 25-27.
    [41]白钊,马平,胡爱玲,林庆文.应用有限元方法对高速电主轴的优化设计[J].机床与液压, 2004, 10:126-128.
    [42]徐延忠.高速磨削电主轴关键技术的研究[硕士学位论文].南京:东南大学, 2004.
    [43]王硕桂,严红日.高速电主轴端部跳动对电主轴横向振动的影响[J].机械研究与应用, 2004, 17(5):38-39.
    [44]钱木,蒋书运.高速磨削用电主轴结构动态优选设计[J].中国机械工程, 2005, 16(10):864-868.
    [45]吴玉厚.数控机床电主轴单元技术[M].机械工业出版, 2006.
    [46]徐宝信,张安琪,谭祯.国内外超高速主轴轴承技术发展研究[J].机械设计与制造, 2005, 5:91-93.
    [47]尹欣,张臻.超高速加工中的主轴轴承及润滑方式[J].机械制造, 2003, 41(472):13-15.
    [48]李东伟,杨光,刘秀娟.高速加工机床主轴支承系统的研究[J].机械研究与应用, 2006, 19(6):12-13.
    [49]李劼科,马平.高速主轴的轴承技术[J].机床与液压, 2005(1):24-27.
    [50] G.D. Hagiu, M.D. Gafitanu. Dynamic characteristics of high speed angular contact ball bearings[J]. Wear, 1997, 211:22-29.
    [51] Sun-Min Kim, Kang-Jae Lee, Sun-Kyu Lee. Effect of bearing support structure on the high- speed spindle bearing compliance[J]. Machine Tools & Manufacture, 2002, 42:365-373.
    [52] L. Wang, R.W. Snidle, L. Gu. Rolling contact silicon nitride bearing technology: a reviewof recent research[J]. Wear, 2000, 246:159-173.
    [53] Igor Zverv, Young-Shik Pyoun, Keon-Beom Lee, et al. An elastic deformation model of high speed spindles built into ball bearings[J]. Materials Processing Technology, 2005, 170: 570- 578.
    [54] Cheng-Ying Lo, Cheng-Chi Wang, Yu-Han Lee. Performance analysis of high-speed spindle aerostatic bearings[J]. Tribology International, 2005, 38:5-14.
    [55]肖曙红,张伯霖,陈焰基等.高速电主轴关键技术的研究[J].组合机床与自动化加工技术, 1999, 12:5-10.
    [56] Cheng-Hsien Wu, Yu-Tai Kung. A parametric study on oil/air lubrication of a high-speed spindle[J]. Precision Engineering, 2005, 29:162-167.
    [57] S.H. Yeo, K. Ramesh, Z.W. Zhong. Ultra-high-speed grinding spindle characteristics upon using oil/air mist lubrication[J]. Machine Tools & Manufacture, 2002, 42:815-823.
    [58] K. Ramesh, S.H. Yeo, Z.W. Zhong, et al. Ultra-high-speed thermal behavior of a rolling element upon using oil-air mist lubrication[J]. Processing Technology, 2002, 127:191-198.
    [59]栾景美.超高速加工机床用电主轴及其矢量控制方法研究[硕士学位论文].长沙:湖南大学, 2003.
    [60]温熙森,邱静,陶俊勇.机电系统分析动力学及其应用[M].北京:科学出版社, 2003.
    [61]钟掘,陈先霖.复杂机电系统耦合与解耦设计——现代机电系统设计理论的探讨[J].中国机械工程, 1999, 10(9):1051-1054.
    [62]梁薇. CM04平整机振动测试及其机电耦合分析[硕士学位论文].长沙:中南工业大学, 1999.
    [63]张钢.磁悬浮轴承—转子系统的机电耦合动力学研究[博士学位论文].西安:西安交通大学, 1999.
    [64]郭立炜,赫苏敏,傅占稳.旋转电机的机电耦合电路[J].河北科技大学学报, 2000, 21 (1):77-80.
    [65]熊万里,段志善,闻邦椿.用机电耦合模型研究转子系统的非平稳过程[J].应用力学学报, 2000, 17(4):7-12.
    [66]贺尚红,段吉安,钟掘.机电系统通用建模矩阵法[J].中南工业大学学报, 2002, 33(5): 517-521.
    [67]贺建军.复杂机电系统机电耦合分析与解耦控制技术[博士学位论文].长沙:中南大学, 2004.
    [68]李旭宇.复杂机电耦合系统的并行设计方法研究[博士学位论文].长沙:中南大学, 2004.
    [69]岳东鹏.轻度HEV混合动力系统轴系机电耦合动力学特性的研究[博士学位论文].天津:天津大学, 2005.
    [70]吕浪.超高速磨削电主轴系统机电耦合参数优化及动态特性研究[硕士学位论文].长沙:湖南大学, 2006.
    [71]蔡海翔.基于变频器性能匹配的高速异步型电主轴设计方法研究[硕士学位论文].长沙:湖南大学, 2006.
    [72]汤蕴璆.电机学——机电能量转换[M].北京:机械工业出版社, 1981.
    [73]廖道训,熊有伦,杨叔子.现代机电系统(设备)耦合动力学的研究现状和展望[J].中国机械工程, 1996, 7(2):44-46.
    [74]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报, 2002, 33 (5):522-525.
    [75] Tsuneo Kume, Toshihiro Sawa, Toshitaka Yoshida, et al. High speed vector control without encoder for a high speed spindle motor[J]. Industry Applications Society Annual Meeting, 1990, 1:390-394.
    [76] A.Boglietti, P.Ferraris, M.Lazzari, et al. About the design of very high frequency induction motors for spindle applications[J]. Industry Applications Society Annual Meeting, 1992, 1:25-32.
    [77] Tang H P, Wang D Y, Zhong J. Investigation into the electromechanical coupling unstability of a rolling mill[J]. Journal of Materials Processing Technology, 2002, 129: 294-298.
    [78] János Füzi. Strong coupling in electromechanical computation[J]. Magnetism and Magnetic Materials, 2000, 215-216:746-748.
    [79] PHAM T H, WENDLING P F, SALON S J, et al. Transient finite element analysis of an induction motor with external circuit connections and electromechanical coupling[J]. IEEE Transactions on Energy Conversion, 1999, 14(4):1407-1412.
    [80] H.P.Tang, D.Y.Wang, J.Zhong. Investigation into the electromechanical coupling unstability of a rolling mill[J]. Materials Processing Technology, 2002, 129:294-298.
    [81] A.Boglietti, P.Ferraris, M.Lazzari, et al. Test procedure for very high speed spindle motors[J]. Industry Applications Society Annual Meeting, 1990, 1:102-108.
    [82] Tan H. Pham, Philippe F. Wendling, Sheppard J. Salon, et al. Transient Finite Element Analysis of an Induction Motor with External Circuit Connections and Electromechanical Coupling[J]. IEEE Transactions on Energy Conversion, 1999, 14(4):1407-1412.
    [83] S. Vafaei, H. Rahnejat, R. Aini. Vibration monitoring of high speed spindles using spectral analysis techniques[J]. Machine Tools & Manufacture, 2002, 42:1223–1234.
    [84]张笑华.结构环境振动模态参数识别随机子空间方法与应用[硕士学位论文].福州:福州大学, 2005.
    [85]李芸.传递矩阵建模法在轴横向振动分析中的应用[J].机械研究与应用, 2005, 18(4): 84-85.
    [86]蒋兴奇.主轴轴承热特性及对速度和动力学性能影响的研究[博士学位论文].杭州:浙江大学, 2001.
    [87]钟一谔,何衍宗,王正等.转子动力学[M].北京:清华大学出版社, 1987.
    [88]唐克伦,张湘伟,熊汉伟等.考虑轴承支反力矩的转子系统传递矩阵法[J].机床与液压, 2005, 6: 27-29.
    [89] U.C. Gu, C.C. Cheng. Vibration analysis of a high-speed spindle under the action of a moving mass[J]. Sound and Vibration, 2004, 278:1131-1146.
    [90] C. H. Chen, K. W. Wang, Y. C. Shin. An Integrated Approach toward the Modeling and Dynamic Analysis of High Speed Spindles, Part I: System Model[J]. Vibration and Acoustics, 1994, 116: 506-513.
    [91] C.H. Chen, K.W. Wang. An Integrated Approach toward the Modeling and Dynamic Analysis of High Speed Spindles, Part II: dynamics under moving end load[J]. Vibration and Acoustics, 1994, 116: 514-522.
    [92]邱家俊.机电分析动力学[M].北京:科学出版社, 1992.
    [93]朱金虎,翁世修,蒋书运.高频电主轴临界转速计算及其影响参数分析[J].机械设计与研究, 2005, 21:28-30.
    [94]杨志安,邱家俊,李文兰.发电机转子气隙磁非线性耦合振动分析[J].振动工程学报, 2000, 13(2):170-177.
    [95]邱家俊.电机的机电耦联与磁固耦合非线性振动研究[J].中国电机工程学报, 2002, 22 (5):109-115.
    [96]顾乡.机械搅拌装置振动的模态试验研究和分析[硕士学位论文].北京:北京化工大学, 2006.
    [97]邓昌.基于环境激励大跨结构的模态试验分析[硕士学位论文].南京:东南大学, 2004
    [98]梁君,赵登峰.工作模态分析理论研究现状与发展[J].电子机械工程, 2006, 22(6): 7-8, 32.
    [99]廖庆斌,李舜酩,朱丽娟.基于随机激励的某机匣模态实验与分析[J].航空动力学报, 2005, 20(6):932-936.
    [100]沃德·海伦,斯蒂芬·拉门兹,波尔·萨斯著.白化同,郭继忠译.模态分析理论与试验[M].北京:北京理工大学出版社, 2001.
    [101]孙建刚.基于环境振动的实验模态分析方法研究[硕士学位论文].哈尔滨:哈尔滨工业大学, 2006.
    [102]范文冲.加工中心主轴系统工作模态识别[硕士学位论文].昆明:昆明理工大学, 2005.
    [103]许淳.简支梁的模态试验及斜拉索索力测试[硕士学位论文].长春:吉林大学, 2006.
    [104] M.Abdelghani, M.Verhaegen. Comparison Study of Subspace Identification Methods Applied to Flexible Structures[J]. Mechanical Systems and Signal Processing, 1998, 12(5): 679-692.
    [105] N.B.Moller, Herlufsen, S.Gade. Stochastic Subspace Identification Techniques in Operational Modal Analysis[J]. Proceedings of 1st IOMAC Conference, Copenhagen, Denmark, 2005:26-27.
    [106]李松生,张朝煌,李中行等.轴承套圈内表面磨削用高速电主轴的加载试验[J].轴承, 1996, 4:35-38.
    [107]李茂森.动力试验与测功机技术[J].电机与控制应用, 2006, 9:43-45.
    [108]袁先达.小功率测功机国内外现状及发展趋势[J].电动工具, 1997, 3:9-13.
    [109]关强,杜丹丰.小型发动机测功机现状研究[J].森林工程, 2006, 22(4):24-24,57.
    [110]何湘吉.双气浮轴承高速无刷同步测功机研制[J].电机电器技术,1994, 3:15-17,48.
    [111]林立,黄声华.基于矢量控制的高性能异步电机速度控制器的设计[J].电子技术应用, 2006, 2: 102-105.
    [112]张锦舟.新型异步测功机测试系统[J].电动工具, 2004, 1:21,9.
    [113]何惠平.全数字测功机控制系统[J].电气传动自动化,2001.
    [114] Hongqi Li, Yung C. Shin. Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles, Part 1: Model Development[J]. Manufacturing Science and Engineering, 2004, 126:148-158.
    [115] Hongqi Li, Yung C. Shin. Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles, Part 2: Solution Procedure and Validations [J]. Manufacturing Science and Engineering, 2004, 126:159-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700