牛蛙(Rana catesbeiana)皮肤活性肽的分子克隆及其生物学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以牛蛙(Rana catesbeiana)皮肤中提取的mRNA为材料,构建牛蛙皮肤cDNA文库。根据GenBank已报道蛙属抗菌肽基因信号肽保守区域设计简并引物,利用PCR方法对文库进行筛选。结果得到48个完整的cDNA序列,分别编码24种抗菌肽前体,属于9个不同的抗菌肽家族。其中18个分别属于已知的Ranatuerin-1(6个)、Ranatuerin-2(3个)、Temporin(3个)、Palustrin(1个)、Ranatuerin-5(3个)、Ranatuerin-7(1个)、Ranatuerin-8(1个)家族,6个与已发现的抗菌肽同源性较低,为新发现的抗菌肽序列,根据序列特征分析结果将其归为以下3个家族: Catesbeianin-1 ( Catesbeianin-1 ); Ranacyclin(Ranacyclin-Ca、Ranacyclin-Cb与Ranacyclin-Cc);Temporin(Temporin-La、Temporin-Lb)。
     对新发现的抗菌肽进行化学合成,通过生物学活性比较研究,得到了抗菌肽、胰蛋白酶抑制剂和凝集素三种生物活性肽。其中包括两个同时具有抗菌活性与胰蛋白酶抑制剂活性的多肽Ranacyclin-Ca与Ranacyclin-Cb,测定其对胰蛋白酶的抑制常数分别为7.02×10~7M与5.6×10~7M,为不可逆抑制并具有热稳定性。凝集素活性测定筛选到分子量为1471.8Da的牛蛙凝集素Temporin-1Ca,并利用激光共聚焦显微镜观察了凝集素Temporin-1Ca对金黄色葡萄球菌、猪链球菌2型、胸膜肺炎放线杆菌、仔猪副伤寒沙门菌的凝集活性。Temporin-Lb与Catesbeianin-1具有很强的DPPH自由基清除能力;Palustrin-Ca能够促进NO释放,当浓度为10μg/mL时,可以促进57.45%的NO释放。抗肿瘤细胞活性测定结果,Temporin-La对胃癌细胞株SMMC7721的IC_(50)为1.384μg/mL,而Palustrin-Ca对肝癌细胞株SGC7901的IC_(50)仅为0.951μg/ mL。抗SIV测定结果表明,在CEMX174细胞最大安全浓度下,Palustrin-Ca和Catesbeianin-1对SIV的抑制率较高,可达88.79%与84.30%。
     通过随机筛选牛蛙皮肤cDNA文库,从牛蛙皮肤中得到牛蛙缓激肽Kininogen-1Ca的前体及cDNA序列,编码RR9(RPPGCNPFR)和RL16(RPPGCNPFRIAPASYL)的牛蛙缓激肽。结果显示具有明显的促进大鼠回肠肌收缩的作用。这是首次从牛蛙中得到的缓激肽类分子及其cDNA序列。
     应用透射电镜对筛选到的4种牛蛙抗菌肽的抗菌机制进行了初步研究,并观察了牛蛙抗菌肽对金葡菌感染小鼠创面的治疗效果,结果表明合成的牛蛙抗菌肽Palustrin-Ca和Temporin-La对小鼠金葡萄感染创面有明显的抗感染作用并能促进创面的愈合。本研究为牛蛙皮肤抗菌活性肽的多样性提供了依据,同时也为研究多样性的两栖动物皮肤活性肽,发现新型抗菌、抗癌药物前体物质,设计新型活性肽建立了研究方法和参考。
A variety of bio-active substances from amphibian skin that play an important role in defense against invading factors have attracted significant attention of the researchers all over the world. So far, many kinds of proteins and polypeptides have been isolated and characterized from amphibian. Rana catesbeiana originally lived in Rocky Mountain north America, which were introduced into China in 1959, and have raised at a large amount in middle and south of China now. The antibacterial peptides from the skin of Rana catesbeiana play an essential role in amphibian innate immune system and reportedly have stronger killing effect than any other common drugs on, pseudomonas aeruginosa that could cause blind on man, but without problems of drug resistance.
     To analyze the diversity and structures of the skin antibacterial peptides of Rana catesbeiana, Rana catesbeiana skin cDNA library was constructed with about 1×106 independent clones. According to GenBank, degenerate primers were designed for antibacterial peptides sequence of Rana catesbeiana based on the conservative region of signal peptide of Rana antibacterial peptides. Genes of antibacterial peptide were amplified from the library by PCR methods. One hundred of cDNA clones were sequenced, and 48 full-length cDNA sequences encoding 24 kinds of antimicrobial peptides precursor were obtained, among which 18 antimicrobial peptides precursor were subordinated by nine known antimicrobial families previously identified in the skins of Ranid frog s:Ranatuerin-1(6),Ranatuerin-2(3), temporin(3),Palustrin(1),Ranatuerin-5 (3),Ranatuerin-7(1),Ranatuerin-8(1)and other six anti-microbial peptides precursor had been newly found antimicrobial peptides which had much lower homology than others known,and were named and divided into three families: Catesbeianin-1(Catesbeianin-1), Ranacyclin(Ranacyclin-Ca,Cb and Cc),temporin (Temporin-La and Lb).The signal and propiece domain(SPD)of the peptides were extremely conserve while mature peptide domain had much more variation, that they were perhaps originated from a common ancestor. It was also supposed that formation of diversity of antimicrobial peptides have relationship with construction of microorganism in bullfrog’s living environment. Transition and transversion between every another nucleotide sequence of nine antimicrobial peptide families were conducted, the results suggested that there were difference substitution patterns in the two domains, perhaps because they suffered from different selective pressure in the evolution.
     Seven newly found polypeptides named Temporin-La,Temporin-Lb,Catesbeian in-1,Ranacyclin-Ca, Ranacyclin-Cb,Palustrin-Ca,Temporin-1Ca were synthesized by chemosynthesis methods, Biological activities including antibacterial, hemolytic, hemagglutination, trypsin activity/trypsin-inhabiting,antioxidation, NO release, antitumor, antivirus were assayed and the results were as follows:
     (1) For studying the antibacterial activities, Minimum Inhibitory Concentration (MIC) methods were determined, and the results showed that antimicrobial peptides of Temporin family had stronger inhibition activities on staphylococcus aureus and streptococcus suis. The MIC of staphylococcus aureus by Temporin-La was 2.5μg /mL and streptococcus suis by Temporin-Lb was 7.8μg/mL, Palustrin-Ca was 7.8μg/mL.
     (2) Detection of hemolytic indicated that hemolytic rates of Catesbeianin-1, Temporin-1Ca, Palustrin-Ca for rabbit red blood cells were 0.8%, 0.30%, 0.25% respectively. Temporin-Lb have strong hemolytic activity with a hemolytic rate amounted to 31.56%, while that of Temporin-La was 1.75%. The C-end of the two peptides were both animated, variation of only two amino acids, Leu at 2, 9 site in Temporin-Lb was substituted with Phe at 2, 9 site. Although both of them were hydrophobic amino acids, their vicariousness may cause different hemolytic activity between the two peptides. Perhaps the differences of amino acids lead to differences of hemolytic activity, which would provide reference for molecular designing of antibacterial peptide.
     (3)Detection of activities of trypsin and trypsin inhabitation showed that both Ranacyclin-Ca and Ranacyclin-Cb polypeptides had activities of s trypsin inhabitation. Compared to known trypsin inhibitor, there were two amino acids difference in the motifs of active region. Both of the Ranacyclin-Ca and Ranacyclin-Cb were thermal stability and effective irreversible trypsin inhabitation activity with a Ki value of 7.02×10~(-7)M and 5.6×10~(-7)M respectively.
     (4) Erythrocyte agglutination activity detection showed that a lectin of Rana catesbeiana (Temporin-1Ca) with the molecular weight of 1471.8Da, which is smaller than any other known lectin from amphibian, has very low homology with the other lectin. Temporin-1Ca had very high rabbit erythrocyte agglutination activity with the minimum concentration 12.5μg/mL. It was also indicated that Temporin-1Ca had significant bacterial agglutination activity by laser scanning confocal microscope for Staphyloccocus aureus, streptococcus suis, Salmonella, Actinobacillus pleuropneu moniae.
     (5) Temporin-Lb and Catesbeianin-1 had stronger elimination ability of DPPH with the rate of 76.50% and 69.47% respectively. Moreover, Palustrin-Ca was able to promote NO releasing. With a concentration of 10μg/mL, Palustrin-Ca can promote 57.45% of the NO release.
     (6) Temporin-Lb and Palustrin-Ca had stronger anticancer activities, the IC_(50) of Temporin-Lb to gastric tumor cell SMMC7721 strain was 1.384μg/ mL, as well as the IC_(50) of Palustrin-Ca to the liver tumor cell SGC 7901 strain was 0.95μg/ mL.
     (7)Antiviral activity detection showed that At its safe concentration,The inhibition rates of Palustrin-Ca, Catesbeianin-1 and Temporin-La to the SIV were 88.79%, 84.30% and 80.76%,respectively.
     By random screening of cDNA library of bullfrog skin, a cDNA sequence of a kind of bradykinin-precurosor of Kininogen-1Ca from Rana catesbeiana were obtained, which had 77% identity with kininogen-1 precursor from Rana pipiens. The bradykinin which encoding RL16 ( RPPGCNPFRIAPASYL ) and RR9(RPPGCNPFR)was detected using biologic function radiomete on the influence of contraction ability of rat ileum muscle, bradykinin could contraction rat ileum muscle significantly. This is the first report of bradykinin in Rana catesbeiana and its cDNA sequence.
     Summarizing above results, antimicrobial peptides, trypsin inhibitor, lectin and bradykinin were obtained from the skin of bull frog by random screening of cDNA library of bullfrog skin.
     The effects of antibacterial peptide Temporin-La, Temporin-Lb, Palustrin-Ca, Catesbeianin-1 were observed that the antibacterial peptides had effect on microstructure of Staphylococcus aureus and streptococcus suis serotype 2 using transmission electron microscope.Temporin-La and Palustrin-Ca could caused the plasmolysis of Staphylococcus aureus ,while Temporin-Lb and Catesbeianin-1 could cause the bacteria formed a blurring fibrosis of bacterial cell wall between cell wall and cytomembrane. All the four peptides could cause cell wall clearage of streptococcus suis. There were various kinds of different mechanism of antibacterial peptide should be researched.
     Temporin-La and Palustrin-Ca with high bacteriostasis activity were studied in treating infected wound in mice skin with Staphylococcus aureus, the number of bacteria in wound, the number of leucocytes, tissue slice, as well as the expression level of vascular endothelial growth factor (VEGF) were determined. Consequently, the results showed that the synthetical antibacterial peptide had significant effects of anti-inflammatory and the healing effect of Palustrin-Ca was better than that of Temporin-La as well as antibiotics treatment group.
     The screened peptides studied in this study might become precursors for new drugs developing and provide potential new templates to further explore. In addition, this study provided a reference for the studying of the diversity of bioactive peptides of amphibians, new antibiotic or anticancer drugs developing and new type bioactive peptide designing.
引文
[1] Gomes A, Giri B, Saha A, et al. Bioactive molecules from amphibian skin: their biological activities with reference to therapeutic potentials for possible drug development [J]. Indian J Exp Biol 2007, 45(7):579-593.
    [2] Samgina TY, Artemenko KA, Gorshkov VA, et al. De novo sequencing of peptides secreted by the skin glands of the Caucasian Green Frog Rana ridibunda [J]. Rapid Commun Mass Spectrom 2008, 22(22):3517-3525.
    [3] Yang H, Wang X, Liu X, et al. Antioxidant peptidomics reveals novel skin antioxidant system [J]. Mol Cell Proteomics 2009, 8(3):571-583.
    [4] Pukala TL, Bowie JH, Maselli VM, et al. Host-defence peptides from the glandular secretions of amphibians: structure and activity [J]. Nat Prod Rep 2006, 23(3):368-393.
    [5]刘炯宇,江建平,谢锋.两栖动物皮肤结构及皮肤抗菌肽[J].动物学杂志,2004,39(1):112-116.
    [6] Wabnitz PA, Bowie JH, Tyler MJ, et al. Differences in the skin peptides of the male and female Australian tree frog Litoria splendida. The discovery of the aquatic male sex pheromone splendipherin, together with phe8 caerulein and a new antibiotic peptide caerin 1.10 [J]. Eur J Biochem 2000, 267(1):269-275.
    [7] Baroni A, Perfetto B, Canozo N, et al. Bombesin: a possible role in wound repair. Peptides 2008, 29(7):1157-1166.
    [8] Higuchi K, Kimura O, Furukawa T, Kinoshita H, et al. Bombesin can minimize impairments of interstitial cells of Cajal induced by FK506 in small bowel transplantation [J]. J Pediatr Surg 2009, 44(3):541-545.
    [9] Baranowska B. Bombesin modulates the control of energy homeostasis and pituitary hormone release [J]. Neuro Endocrinol Lett 2009, 30(1).
    [10] Lai R, Liu H, Lee WH, et al. A novel proline rich bombesin-related peptide (PR-bombesin) from toad Bombina maxima [J]. Peptides 2002, 23(3):437-442.
    [11] Li J, Yu H, Xu X, et al. Multiple bombesin-like peptides with opposite functions from skin of Odorrana grahami [J]. Genomics 2007, 89(3):413-418.
    [12] Wang L, Zhou M, Lynch L, et al.Kassina senegalensis skin tachykinins: Molecular cloning of kassinin and (Thr(2), Ile(9))-kassinin biosynthetic precursor cDNAs and comparativebioactivity of mature tachykinins on the smooth muscle of rat urinary bladder [J]. Biochimie 2009.
    [13] Li J, Liu T, Xu X, Wang X, et al. Amphibian tachykinin precursor [J]. Biochem Biophys Res Commun 2006, 350(4):983-986.
    [14] Conlon JM, Jouenne T, Cosette P, et al. Bradykinin-related peptides and tryptophyllins in the skin secretions of the most primitive extant frog, Ascaphus truei [J]. Gen Comp Endocrinol 2005, 143(2):193-199.
    [15] Chen T, Orr DF, O'Rourke M, et al.Pachymedusa dacnicolor tryptophyllin-1: structural characterization, pharmacological activity and cloning of precursor cDNA [J]. Regul Pept 2004, 117(1):25-32.
    [16] Negri L, Melchiorri P, Lattanzi R. Pharmacology of amphibian opiate peptides [J]. Peptides 2000, 21(11):1639-1647.
    [17] Doyle J, Llewellyn LE, Brinkworth CS, et al. Amphibian peptides that inhibit neuronal nitric oxide synthase. Isolation of lesuerin from the skin secretion of the Australian Stony Creek frog Litoria lesueuri [J]. Eur J Biochem 2002, 269(1):100-109.
    [18] Brinkworth CS, Carver JA, Wegener KL, et al. The solution structure of frenatin 3, a neuronal nitric oxide synthase inhibitor from the giant tree frog, Litoria infrafrenata [J]. Biopolymers 2003, 70(3):424-434.
    [19] Maselli VM, Bilusich D, Bowie JH, et al. Host-defence skin peptides of the Australian Streambank Froglet Crinia riparia: isolation and sequence determination by positive and negative ion electrospray mass spectrometry [J]. Rapid Commun Mass Spectrom 2006, 20(5):797-803.
    [20] Jackway RJ, Pukala TL, Maselli VM, et al. Disulfide-containing peptides from the glandular skin secretions of froglets of the genus Crinia: structure, activity and evolutionary trends [J]. Regul Pept 2008, 151(1-3):80-87.
    [21] Uchiyama M, Konno N. Hormonal regulation of ion and water transport in anuran amphibians [J]. Gen Comp Endocrinol 2006, 147(1):54-61.
    [22] Quassinti L, Maccari E, Murri O, Bramucci M. Comparison of ACE activity in amphibian tissues: Rana esculenta and Xenopus laevis [J]. Comp Biochem Physiol A Mol Integr Physiol 2007, 146(1):119-123.
    [23] Marenah L, Flatt PR, Orr DF, McClean S, et al. Skin secretion of the toad Bombina variegatacontains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures [J]. Biol Chem 2004, 385(3-4):315-321.
    [24] Marenah L, Flatt PR, Orr DF, et al. Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris [J]. J Endocrinol 2004, 181(2):347-354.
    [25] Marenah L, Flatt PR, Orr DF, et al. Characterization of naturally occurring peptides in the skin secretion of Rana pipiens frog reveal pipinin-1 as the novel insulin-releasing agent [J]. J Pept Res 2005, 66(4):204-210.
    [26] Marenah L, Flatt PR, Orr DF, et al. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity [J]. J Endocrinol 2006, 188(1):1-9.
    [27] Abdel-Wahab YH, Marenah L, Flatt PR, et al.Insulin releasing properties of the temporin family of antimicrobial peptides [J]. Protein Pept Lett 2007, 14(7):702-707.
    [28] Abdel-Wahab YH, Power GJ, Flatt PR, et al. A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity [J]. Peptides 2008, 29(12):2136-2143.
    [29] Conlon JM, Power GJ, Abdel-Wahab YH, et al. A potent, non-toxic insulin- releasing peptide isolated from an extract of the skin of the Asian frog, Hylarana guntheri (Anura:Ranidae) [J]. Regul Pept 2008, 151(1-3):153-159.
    [30] Abdel-Wahab YH, Power GJ, Ng MT, et al. Insulin-releasing properties of the frog skin peptide pseudin-2 and its [Lys18]-substituted analogue [J]. Biol Chem 2008, 389(2):143-148.
    [31] Yamamoto K, Kawai Y, Hayashi T, et al. Silefrin, a sodefrin-like pheromone in the abdominal gland of the sword-tailed newt, Cynops ensicauda [J]. FEBS Lett 2000, 472(2-3):267-270.
    [32] Kikuyama S, Yamamoto K, Iwata T, Toyoda F. Peptide and protein pheromones in amphibians [J]. Comp Biochem Physiol B Biochem Mol Biol 2002, 132(1):69-74.
    [33] Falfushinska HI, Romanchuk LD, Stolyar OB. Different responses of biochemical markers in frogs (Rana ridibunda) from urban and rural wetlands to the effect of carbamate fungicide [J]. Comp Biochem Physiol C Toxicol Pharmacol 2008, 148(3):223-229.
    [34] Wang L, Zhou M, McClelland A, et al. Novel dermaseptin, adenoregulin and caerin homologs from the Central American red-eyed leaf frog, Agalychnis callidryas, revealed byfunctional peptidomics of defensive skin secretion [J]. Biochimie 2008, 90(10):1435-1441.
    [35] Conlon JM, Woodhams DC, Raza H, et al. Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae) [J]. Toxicon 2007, 50(4):498-506.
    [36] Shen JH, Liu SB, Zhang YX,et al. Cloning of novel bombesin precursor cDNAs from skin of Bombina maxima [J]. Regul Pept 2005, 132(1-3):102-106.
    [37] Mehrnejad F, Naderi-Manesh H, Ranjbar B, et al. PCR-based gene synthesis, molecular cloning, high level expression, purification, and characterization of novel antimicrobial peptide, brevinin-2R, in Escherichia coli [J]. Appl Biochem Biotechnol 2008, 149(2):109-118.
    [38] Zhou J, Bjourson AJ, Coulter DJ, et al. Bradykinin-related peptides, including a novel structural variant, (Val1)-bradykinin, from the skin secretion of Guenther's frog, Hylarana guentheri and their molecular precursors [J]. Peptides 2007, 28(4):781-789.
    [39] Kawasaki H, Iwamuro S, Goto Y, et al. Characterization of a hemolytic protein, identified as histone H4, from the skin of the Japanese tree frog Hyla japonica (Hylidae) [J]. Comp Biochem Physiol B Biochem Mol Biol 2008, 149(1):120-125.
    [40] Sergio HMarshall. Antimicrobial pep tides: A natural alternative to chemical antibiotics and a potential for app lied biotechnology. Electronic Journal of Biotechnology, 2003, 6(3) : 262~275
    [41]邹黎黎,罗永煌,谢明权.两栖类动物皮肤抗菌肽研究进展[J].广东农业科学2007,12:84-87.
    [42]赖仞,赵宇,刘衡.两栖类动物皮肤活性物质的利用兼论中国两栖类资源开发的策略[J],动物学研究,2002, Feb. 23 ( 1) : 65~70.
    [43] Hancock R E. Cationic peptides: effectors in innate immunity and novel antimicrobials [J]. Lancet Infect Dis, 2001, 1:156-164.
    [44] Zasloff M. Antimicrobial peptides of multicellular organisms [J]. Nature, 2002, 415:389-395.
    [45] Csordas A, Michl H. Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species [J]. Monatsh Chem. 1970, 101: 182-189.
    [46] Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor [J]. ProcNatl Acad Sci USA. 1987, 84(15): 5449-5453.
    [47] Simmaco M, Barra D, Chiarini F, et al. A family of bombinin-related peptides from the skin of Bombina variegata [J]. Eur J Biochem. 1991, 199:217-222.
    [48] Mohamed F A, Soto A, Knoop F C. Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae ) Biochimica et biophysica Acta ,2001, 1550(1):81-89.
    [49] Brand GD, Leite JR, Silva LP, et al. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells [J]. J Biol Chem. 2002, 277(51): 49332-49340.
    [50] Lai R, Zheng YT, Shen JH, et al. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima [J]. Peptides. 2002, 23(3): 427-435.
    [51] Li J, Xu X, Xu C, Zhou W. Anti-infection peptidomics of amphibian skin [J]. Mol Cell Proteomics. 2007, 6(5):882-894.
    [52] Batista CVF, Scalonib A, Rigdene DJ. A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta [J]. FEBS Letters, 2001, 494(1-2): 85-89.
    [53] Sitaram N, Sai KP, Singh S, et al. Structure-function relationship studies on the frog skin antimicrobial peptide tigerinin 1: design of analogs with improved activity and their action on clinical bacterial Isolates [J]. Antimicrob Agents Chemother. 2002, 46(7): 2279– 2283.
    [54] Xu X, Li J, Han Y, et al. Two antimicrobial peptides from skin secretions of Rana grahami [J].Toxicon, 2006, 47(4):459-464
    [55] Chen L, Li Y, Li J, et al. An antimicrobial peptide with antimicrobial activity against Helicobacter pylori [J]. Peptides, 2007, 28( 8) : 1527-1531.
    [56]胡志帅,陈书明,,晋大鹏.抗菌肽的结构特征、生物活性及应用[J].生物学杂志,2008.25(4):58-60.
    [57] Belaid A, Aouni M, Khelifa R, et al. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1 [J]. J Med Virol. 2002, 66(2): 229-234.
    [58] Lorin C, Saidi H, Belaid A, et al. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro [J]. Virology. 2005, 334(2): 264-275.
    [59]徐强,华跃进,徐步进等.蛙类皮肤分泌物中的抗菌肽和抗癌肽[J].动物学杂志, 2002,37(2): 73-76.
    [60] Roaek T, Wegener K L, Bowie J. The antibiotic and anti -cancer active aurein peptides fromthe Australian bell frogsLitoria aurea and Litoria raniformis [J]. European Journal ofBio- chemistry, 2000, 267: 5330-5341.
    [61] Conlon J M, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and pgylogenetic markers and a potential source of new therapeutic agents [J]. Biochim Biophys Acta, 2004, 1696: 1-14.
    [62]赖仞,粱建国,张云.两栖类动物皮肤抗菌多肽及其应用[J],动物学研究,2004,25: 465-468.
    [63] Clarke B T. The natural history of amphibian skin secretions, their normal function and ,potential medical applications [J]. Biol Rev, 1997, 72(3):365-379.
    [64]张云.两栖类动物皮肤分泌物及其生物学适应意义—大蹼铃蟾皮肤分泌物蛋白质多肽组的启示[J].动物学研究,2006,27(1):101?112.
    [65] Dathe M. Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells [J]. Biochim Biophys Acta. 1999, 1462: 71-87.
    [66] Lai R, Liu H, Lee WH, Zhang Y. An anionic antimicrobial peptide from toad Bombina maxima [J]. Biochem Biophys Res Commun. 2002, 295(4):796-799.
    [67] Powersand JP, Hancock RE. The relationship between peptide structure and antibacterial activity [J]. Peptides, 2003, 24(11): 1681?1691.
    [68] Rinaldi AC.Antimicrobial peptides from amphibian skin:an expandingscenar [J].Current Opinion in Chemical Biology, 2002, 6(6): 799-804
    [69]马宝林,李夏兰,宋宝珍.抗菌肽数据库简介[J].生物学通报,2007,42(5):4-5.
    [70]史春林,王云峰,石星明等.抗菌肽在宿主防御中的作用[J].中国生物工程杂志,2008,28 (4):82-86.
    [71] Matutte B, Storey K B, Knoop F C, et al. Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli [J]. FEBS Letters, 2000, 483:135-138.
    [72] Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet InfectDis, 2001, 1 (3) : 156~164.
    [73] Feder R, Nehushtai R, Mor A. Affinity driven molecular transfer from erythrocyte membrane to target cells [J]. Peptides, 2001, 22: 1683-1690.
    [74] McManus MC. Mechanisms of bacterial resistance to antimicrobial agents [J]. Am J HealthSyst Pharm. 1997, 54(12): 1420-1433.
    [75] Neu HC. Emergence and mechanisms of bacterial resistance in surgical infections [J]. Am J Surg. 1995, 169(5A Suppl):13-20.
    [76] Bhoola K D, Figueroa C D, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases [J]. Pharmacol. Rev., 1992, 44: 1-80.
    [77] Nakanishi, S. Substance P precursor and kininogen: their structures, gene organizations, and regulation [J]. Physiol. Rev., 1987, 67: 1117-1142.
    [78] Takano M, Kondo J, Yayama K, Otani M, Sano K, Okamoto H. Molecular cloning of cDNAs for mouse low-molecular-weight and high-molecular-weight prekininogens [J]. Biochim. Biophysi Acta, 1997, 1352: 222-230.
    [79] Conlon J M, Yano K. Kallikrein generates angiotensin II but not bradykinin in the plasma of the urodele, Amphiuma tridactylum [J]. Comp Biochem Physiol, 1995, 110: 305-311.
    [80] Yasuhara T, Hira M, Nakajima T, et al. Active peptides on smooth muscle in the skin of Bombina orientalis Boulenger and characterization of a new bradykinin analogue [J]. Chem Pharm Bull (Tokyo) 1973, 21: 1388-1391.
    [81] Boulenger and characterization of a new bradykinin analogue [J]. Chem. Pharm. Bull. (Tokyo), 1973, 21: 1388-1391.
    [82] Yasuhara T, Ishikawa O, Nakajima T, et al. The studies on the active peptide on smooth muscle in the skin of Rana rugosa, Thr6-Bradykinin and its analogous peptide, ranakinin-R [J]. Chem Pharm Bull Tokyo, 1979, 27: 486-491.
    [83] Simmaco M, De Biase D, Severini C, et al. Purification and characterization of bioactive peptides from skin extracts of Rana esculenta [J]. Biochim Biophys Acta, 1990, 1033: 318-323.
    [84] Conlon J M, Aronsson U. Multiple bradykinin-related peptides from the skin of the frog, Rana temporaria [J]. Peptides, 1997, 18: 361-365.
    [85] Mignogna G, Severini C, Erspamer GF, et al. Tachykinins and other biologically active peptides from the skin of the Costa Rican phyllomedusid frog Agalychnis callidryas [J]. Peptides, 1997, 18: 367-372.
    [86] Basir YJ, Knoop FC, Dulka J, et al. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris [J]. Biochim Biophys Acta, 2000, 1543: 95-105.
    [87] Lai R , Liu H , Lee WH, et al. A novel bradykinin2related peptide from skin secretions of toad Bombina maxima and its precursor containing six identical copies of the final product [J] . Biochem Biophys Res Commun, 2001, 286: 259-263.
    [88] Lee WH , Liu SB , Shen JH, et al. Cloning of bradykinin precursor cDNAs from skin of Bombina maxima reveals novel bombinakinin M antagonists and a bradykinin potential peptide [J]. Regulatory Pept, 2005, 127: 207-215.
    [89] Chen T, O’Rourke M, Orr DF, et al. Kinestatin: A novel bradykinin B2 receptor antagonist peptide from the skin secretion of the Chinese toad Bombina maxima [J]. Regulatory Pept, 2003, 116: 147–154.
    [90] Sharma J N, Al-Dhalmawi G S. Role of bradykinin B1 receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice [J]. Eur J Pharmacol, 2002, 57(2-3): 115-124.
    [91] Park Y,Lee D G, Jang S H, et al. A Leu Lys rich antimicrobial peptide: activity and mechanism. Biochim BiophysActa, 2003,1645 (2) : 172~182.
    [92] Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook.Current Opinion in Pharmacolog, 2006, 6(5):468?472.
    [93] Schr?der JM, Harder J. Antimicrobial peptides in skin disease.Drug Discov Today Ther Strateg, 2006, 1: 93?100.
    [94] Zhang L, Falla TJ. Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother, 2006, 7(6):653?663.
    [95] Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides:an overview of a promising class of therapeutics. Central European Journal of Biology, 2007, 2: 1?33.
    [96] Michael R. Mechanisms of antimicrobial pep tide action and resistance. Pharmacological Reviews, 2003, 55 (1) : 27~55.
    [97] Qu JM, Chen P J ,Qu X C,et al1Purification and Biological Activities of Novel Antibacterial Peptides fromMusca domestica[J] 1Electronic Journal of Biology, 2005, 1 ( 4 ) : 49~551.
    [98] Peschel A, Otto M, Jack RW, et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity todefensins, protegrins, and other antimicrobial peptides.J Biol Chem, 1999, 274(13): 8405?8410.
    [99] Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003, 55(1):27?55.
    [100]陈福,罗玉萍,龚熹.抗菌肽耐药性研究进展[J].微生物学通报,2008,35(11):1786~1790.
    [101] BARRA D,SIMMACO M.Amphibian skin:a promising resource for Antimicrobial peptides[J].TIBTEC H,1995,13:205—209
    [102] Duellman WE ,Trueb L.Biology of amphibians[M].London:John Hopkins University Press.1994
    [103]苟小军,邬晓勇,杨灿宇等.蛙皮多肽抗生素的研究进展[J].成都大学学报(自然科学版) 2006,25(1):25-30
    [104] Xie Feng, Fei Liang, Ye Chang-yuan.Taxonomical studieson brown flogs(Rana)from northeastern China [J].Acta Zootaxo nomica Sinica, 1999, 24:224~23l
    [105] Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang Y. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides. 2002, 23(3): 427-35.
    [106] Park S, Park SH, Ahn HC, et al. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata [J]. FEBS Lett. 2001, 507(1): 95-100.
    [107] Isaacson T, Soto A, Iwamuro S, et al. Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica [J]. Peptides, 2002, 23:419-425.
    [108] Sai PS, Jagannadham VJ, Vairamani M, et al. Tigerinins: novel antimicrobial peptides from the Indian frog Rana tigerina [J]. J Biol Chem. 2001,276: 2701-2707.
    [109] Simmaco M, MIgnogna G, Barra D. Antimicrobial peptides from amphibian skin : what do they tell us ? Biopolymers , 1998 ,47(6):435-450.
    [110] Chen T, Zhou M, Rao P, Walker B, Shaw C. The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and North American Rana frogs share the same families of skin antimicrobial peptides. Peptides, 2006, 27 (7): 1738?1744.
    [111] Feng Xingjun, Wang Jianhua, Shan Anshan.Review on gene engineering and transgenic expression strategy of antimicrobial peptides [J].China Biotechnology, 2006, 26(3):63-67.
    [112] Zhoum,L1uy,Chentb,et a1.Components of the peptidomeand transcriptome persist in lin wa pi:The dried skin of the Heilongfiang brownfrog(Ranaamurensis)as used in traditional Chinese medicine [J].Peptides,2006,27(1 1):2688—2694
    [113] Ohnuma A,Conlon J,Yamaguchi k et a1.An timicrobial peptides from the skin of theJapan ese mountain brown frog Rana omativentris:Evidence for polymorphism among preprotemporin mRNAs [J].Peptides,2007,28(3):524-532
    [114] Weng HB, Niu BL, Meng ZQ, et a1.Cloning and expression of the cecropinB—than atinhybrid antimicrobial peptide in Escherichia coli [J] . Chinese Journal of Biotechnology,2002,18:352-355
    [115] Wang Yun, Liu Zhongyuan, Lu Guodong, e ta1.Expression of cecropinⅪgene from silkworm in Pichia pastoris [J].Biotechnology, 2004, 14:16-18(in Chinese).
    [116]赵瑞利,韩文瑜,韩俊友等.牛蛙皮肤抗菌肽的分离纯化与活性测定[J].中国生物制品学杂志,2008,21(8):694-697.
    [117] Simmaco M, Mignogna G, Barra D, Bossa F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides [J]. J Biol Chem, 1994, 269(16): 11956-11961.
    [118] Ganz T. Biosynthesis of defensins and other antimicrobial peptides. In: Marsh J, Goode J, editors.Antimicrobial peptides. Ciba Foundation Symposium 186. London: John Wiley and Sons; 1994.
    [119] Resnick N M, Maloy W L, Guy H R, Zasloff M. A novel endopeptidase from Xenopus that recognizes a-helical secondary structure. Cell, 1991, 66:541–54.
    [120] Damien V, Bruston F, Nicolas P, et al. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain [J]. Eur J Biochem 2003:2068–2081.
    [121] Jadvinder Goraya, Floyd C. Knoop, et al. Ranatuerins: Antimicrobial Peptides Isolated from theSkin of the American Bullfrog, Rana catesbeiana [J]. Biochemical and Biophysical Research Communications, 1998, 250, 589–592.
    [122]金莉莉,王秋雨.蛙科两栖动物皮肤抗菌肽的分子多样性及功能[J].Hereditas.2008,30(10):1241-1248.
    [123] Matsuzaki K.Why and how are peptide lipid interactions utilizedfor self-defense? Magainins and tachyplesins as archetypes [J].Biochim Biophys Acta, 1999, 1462:l-l0.
    [124] Slmmaco M, Mignogna G, Canofeniz S, Temporins, antimicrobial peptides from the European red frog Rana temporaria [J]. Eur J Biochem, 1996, 242: 788-792.
    [125] Bulet P, Stochklin R,Menin L. Antimicrobial pep tides: from invertebrates to vertebrates. Immunol Rev, 2004, 198 ( 1) : 169~184.
    [126] Ohnumaaconlon J,Kawasaki H, et al. Developmental and triiodothyronine- -induced expression of genes encoding preprotempotins in the skin of Tago’s brown frog Rana tagoi [J].Gen CompEndocrinol, 2006, 146:242-250.
    [127] Lai R, Zhao Y, Yang DM, et al. Comparative study of the biological activities of the skin secretions from six common Chinese amphibians [J]. Zool Res 2002, 23:113-119.
    [128]朱倩,徐向红,肖向红.东北林蛙皮肤中一类新抗菌肽cDNA的克隆及成熟肽的预测[J].现代动物医学进展, 2007, 7:1016-1019.
    [129]金莉莉,宋树森,李强等.东北林蛙皮肤cDNA克隆及序列分析:蛙类新的抗菌肽家族的发现,http://www.paper.edu.cn.
    [130] Ali MF, Lips KR, Knoop FC, Fritzsch B, Miller C, Conlon JM. Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, Rana areolata. Biochim Biophys Acta, 2002, 1601(1): 55?63
    [131]张云.两栖类动物皮肤分泌物及其生物学适应意义—大蹼铃蟾皮肤分泌物蛋白质多肽组的启示[J].动物学研究, 2006, 27(1):101?112.
    [132] Matsuzaki K, Harada M, Funakoshi S, Fuji N, Miyajima K. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochem. Biophys. Acta. 1991, 1063: 162-170.
    [133] Kim JB, Halverson T, Basir YJ, Dulka J, Knoop FC, Abel PW, Conlon JM. Purification and characterization of antimicrobial peptides from skin extracts and skin secretions of the North American pig frog Rana grylio. Regul Pept,2000, 90(1-3): 53?60.
    [134] Conlona JM, Kolodziejekb J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents [J]. Biochim Biophys Acta, 2004, 1696(1): 1?14.
    [135] GOU XiaoJun, WU XiaoYong, YANG Can-Yu. The research progress in the peptide antibiotics from amphibian skin [J].Journal of Chengdu University (Natural Science), 2006, 25(1): 25?30.
    [136] Goraya J, Knoop FC, Conlon JM. Ranatuerins: antimicrobial peptides isolated from the skin of the America n bullfrog, Rana catesbeiana. Biochem Biophys Res Commun,1998, 250(3): 589?592
    [137] Bignami G S. A rapid and sensitive hemolysis neutralization assay for palytoxin [J]. Toxicon, 1993, 31: 817-20.
    [138] Li J, Zhang C, Xu X, et al. Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides [J].FASEB J. 2007, 21(10): 2466-2473.
    [139] Jianxu Li, Hongbing Wu, Jing Hong Odorranalectin Is a Small Peptide Lectin with Potential for Drug Delivery and Targeting [J].PLoS ONE 3(6).
    [140]赖仞,赵宇,刘衡.两栖类动物皮肤活性物质的利用兼论中国两栖类资源开发的策略[J].动物学研究2002,23 (1):65~70.
    [141]韩俊友,赵瑞利,韩文瑜.等.4种蛙皮肤活性肽的提取及生物活性的比较[J],中国兽医学报,第5期.
    [142] Michael Z. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterzation of two active forms, and partial cDNA sequence of a precursor [J]. Proc Natl Acad Sci USA, 1987, 84(15): 5449?5453.
    [143] Rozek T, Wegener KL, Bowie JH, et al. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. Eur J Biochem,2000, 267: 5330?5331.
    [144] Vanhoye D, Bruston F, Nicolas P, et al. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem, 2003, 270: 2068?2081.
    [145] Daher KA, Selsted ME, Lehrer RI. Direct inactivation of virus by human granulocyte defensins [J]. J Virol, 1986, 12: 1068?1074.
    [146] Lehrer RI, Daher K, Ganz T, et al. Direct inactivation of viruses by mcp-1 and mcp-2, natural peptide antibioticsfrom rabbit leukocytes [J]. J Virol, 1985, 54: 467?472.
    [147] Matanic VC, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus [J]. Int J Antimicro Ag, 2004, 23: 382?389.
    [148] Xu ND, Zhong L, Zhang W, et al. The relationship between structure and antibacterial activity of cationic antimicrobial peptides [J]. Chin J Public Health, 2005, 21(9): 1143.
    [149]许若丹,钟理,张伟,等.阳离子抗菌肽结构与抗菌活性的关系[J].中国公共卫生,2005,21(9):1143.
    [150] Raj PA, Antonyraj KJ, Karunakaran T. Large-scale synthesis and functional elements for the antimicrobial activity of defensins [J]. Biochem J, 2000, 347(3): 633.
    [151] Wen JC, Qin YZ, Song AG. Research advances in cationic antimicrobial peptides [J].World Notes Antibiot, 2002, 23(6):267?269.
    [152] Lai R, Zheng YT, Sun JH, et al. Antimicrobial peptides from the skin secretion of Chinese red belly toad Bombina maxima [J]. Peptides, 2002, 23: 427-435.
    [153] Mignogna G, Pascarella S, Wechselberger C, et al. a trypsin inhibitor from skin secretions of Bombina bombina related to protease inhibitors of nematodes [J]. Protein Sci , 1996, 5: 357-62.
    [154] Lai R, Liu H, Lee W H, Zhang Y. Identification and cloning of a trypsin inhibitor from skin secretions of Chinese red belly toad Bombina maxima [J]. Comp Biochem Physiol B, 2001, 131: 47-53.
    [155] Swindle EJ, Metcalfe DD, Coleman JW. Rodent and human mast cells produce functionally significant intracellular reactive oxygen species but not nitric oxide [J]. J Biol Chem. 2004, 279: 48751-48759
    [156] Fang FC. Mechanisms of nitric oxide-related antimicrobial activity [J]. J Clin Invest. 1997, 99: 2818-2825.
    [157] Mannick JB. Immunoregulatory and antimicrobial effects of nitrogen oxides [J]. Proc Am Thorac Soc. 2005, 3: 161-165
    [158] Foley E, O’Farrell PH. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila [J]. Genes Dev, 2003, 17 (1): 115-125
    [159] Wade D, Silberring J, Soliymani R, Heikkinen S, Kilpel?inenI, Lankinen H, Kuusela P. Antibacterial activities of temporin A analogs. FEBS Lett, 2000, 479(1-2):6?9.
    [160] Mangoni ML, Rinaldi AC, Di Giulio A, Mignogna G, Bozzi A, Barra D, Simmaco M. Structure–function relationships of temporins, small antimicrobial peptides from amphibian skin.Eur J Biochem, 2000, 267(5): 1447?1454.
    [161] Goraya J, Knoop FC, Conlon JM. Ranatuerin 1T: an antimicrobial peptide isolated from the skin of the frog Rana temporaria. Peptides, 1999, 20(2): 159?163.
    [162] Friedrich CL, Moyles D, Beveridge TJ, et al. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria [J]. Antimicrob Agents Chemother. 2000, 44(8): 2086-2092.
    [163] Ahn H S ,Cho WM,Kang S K,et al . Design and synthesis of novel antimicrobial peptides on the basis ofα- helical domain of Tenecin 1 ,an insect defensin protein , and structure - activity relationship study[J ] . Peptides , 2006 ,27 :640 - 648.
    [164]许晓玲,王敏奇.抗菌肽生物活性的影响因素、作用机制及其基因表达调控[J].中国饲料,2008(7):14-17.
    [165] Gazit E , Lee WJ , Brey p T, et al . Mode of action of t he antibacterial cecropin B2: A spect rofluorometric study [J] . Biochemistry ,1994, 33 (35) : 10681-10692
    [166] Michelle P ,Jack B. Methods for Assessing the Structure and Function of Cationic Antimicrobial Peptides [J ] . Methods in Molecular Medicine ,2008 ,142 :155 - 173.
    [167] Patrzykat A, Friedrich CL, Zhang L, Mendoza V, et al. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli [J]. Antimicrob Agents Chemother. 2002, 46:605-614.
    [168] Friedrich CL, Moyles D, Beveridge TJ, et al. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria [J]. Antimicrob Agents Chemother. 2000, 44(8): 2086-2092.
    [169] Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? [J] Nat Rev Microbiol. 2005, 3(3): 238-250.
    [170] Christoph G, Thomas J, Jerg A ,et al .The Antimicrobial Peptide NK-2, the Core Region of Mammalian NK-Lysin, Kills Intraerythrocytic Plasmodium falciparum [J] .Anti-microbial Agents and Chemotherapy, 2008, 52(5): 1713-1720.
    [171]郭向华,安云庆.抗菌肽及其转基因动物的研究进展[J].临床和实验医学杂志,2004,3 (1):48-49.
    [172] Zhang L, Rozek A, Hancock R E1 Interaction of cationic antimicrobial Pep tides with model membrames [J]. Biol Chem, 2001, 276 (38): 35714-357221
    [173] Hancock R E, Rozek A1 Role of membranes in the activities of antimicrobial cationic pep tides [J]. FEMS Microbiology Letters, 2002, 206(2): 143-149.
    [174]张兰廷,刘忠渊,张富春.抗菌肽结构与功能关系及分子改造研究进展[J].2008,18(5):89-92.
    [175]丁娟.开放性骨折伤口感染常见病原菌及耐药性分析[J].中医正骨,2004.16 (1) :43-44.
    [176] Friedrich CL, Moyles D, Beveridge TJ, et al. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria [J]. Antimicrob Agents Chemother. 2000, 44(8): 2086-2092.
    [177] Oriana Simonetti ,Oscar Cirioni, Gaia Goteri.Temporin A is effective in MRSA-infectedwounds through bactericidal activity and acceleration of wound repair in a murine model [J].peptides, 2008, (29):520-528.
    [178]任海涛,韩春茂,张嵘.抗菌肽天蚕素B对铜绿假单胞菌感染小鼠创面的抗菌作用[J].中华烧伤杂志,2006,(22):445-447.
    [179]祝乾清,罗龙星,史文浩.金灵汤对感染小鼠的治疗作用[J].华西药学杂志2007, 22(6): 715-716.
    [180]侯晓姝,胡宗利,陈国平.抗菌肽的抗菌机制及其临床应用[J].微生物学通报,2009, 36(1): 97-105.
    [181] Mygind PH, Fischer RL, Schnorr KM, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus [J]. Nature, 2005, 437(7061): 97
    [182] Murayama N, Hayashi M A, Ohi H,, et al. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide [J]. Proc Natl Acad Sci USA. 1997, 94: 1189-1193.
    [183] Li L, Bjourson A J, He J, et al. Bradykinins and their cDNA from piebald odorous frog, Odorrana schmackeri, skin [J]. Peptides 2003, 24:863-872.
    [184] Lai R, Liu H, Hui Lee W, et al. A novel bradykinin-related peptide from skin secretions of toad Bombina maxima and its precursor containing six identical copies of the final product [J]. Biochem Biophys Res Commun 2001, 286:259-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700