减毒鼠伤寒沙门氏菌介导的斯氏艾美耳球虫DNA疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兔球虫病是由艾美耳科的球虫引起的一种寄生性原虫病,随着规模养兔的迅速发展,该病对我国养兔业的危害日益严重。目前,报道的感染家兔的艾美耳属球虫有15个种,其中斯氏艾美耳球虫(Eimeria stiedai,Es)的致病力最强、危害最大,它寄生于兔的肝胆管上皮细胞,能引起严重的肝球虫病。尽管化学药物是目前控制兔球虫病的常用手段,但随着耐药虫株的不断出现和化学药物残留问题的日益凸现,越来越多的学者寻求用免疫学方法来防控该病。本研究应用无球虫兔和单卵囊分离技术进行了Es LZ株的分离,运用RT-PCR技术成功扩增出Es LZ株微线蛋白5(MIC-5)基因,并进行了原核表达和纯化;克隆了兔IL-15基因;以含有双启动子的pBudCE4.1为载体,构建了真核表达质粒pBMIC-5-IL-15,通过脂质体转染BHK-21细胞,证实该真核表达质粒能正确表达重组蛋白Es MIC-5和IL-15。在上述研究的基础上,根据载体-宿主平衡致死系统的原理,将asd基因引入真核表达质粒pBMIC-5-IL-15中,相继电转化asd基因缺陷型减毒鼠伤寒沙门氏菌X3730和X4550,从而构建了pBMIC-5-IL-15-asd载体-沙门氏菌平衡致死系统。遗传稳定性试验表明,该载体能稳定存在于减毒鼠伤寒沙门氏菌X4550中。用携带重组质粒pBMIC-5-IL-15-asd的减毒鼠伤寒沙门氏菌X4550在无球虫兔上进行了免疫试验。结果表明,重组菌X4550/pBMIC-5-IL-15-asd能诱导机体产生较高水平的抗球虫细胞免疫应答和体液免疫应答,有较好的免疫保护作用。以上试验为兔肝球虫病口服疫苗的研制奠定了基础。
Rabbit coccidiosis is a kind of sporozoan disease caused by Eimeriidae species, which jeopardizes rabbit breeding industry in our country. Among rabbit coccidian, Eimeria stiedai is the most virulent and hazardous coccidian, which parasitizes in the bile duct epithelial cells of rabbit, causing serious liver coccidiosis. Although chemotherapy is the conventional method to control rabbit coccidiosis, more and more scholars have sought immunological means to control the disease due to the increasing problems such as resistant strains and drug residue. In the study, E. stiedai LZ strain was isolated with coccidia-free rabbits by a single oocyst technique, then microneme protein 5 (Es MIC-5) gene was cloned from sporozoites of the E. stiedai LZ strain. Es MIC-5 was successfully expressed in E. coli by use of prokaryotic expression vector pETMIC-5. The expressed recombinant protein MIC-5 was purified for detection of specific antibody against E. stiedai. Rabbit IL-15 gene was amplified by RT-PCR, and MIC-5 and IL-15 were cloned into two multiple cloning sites (MCS) of eukaryotic expression vector pBudCE4.1 (the positive named as pBMIC-5-IL-15), respectively. The expression of MIC-5 and IL-15 in BHK-21 transfected by the recombinant plasmid pBMIC-5-IL-15 was confirmed by indirect immunofluorescent test. Moreover, asd gene from S. typhimtwium was introduced into DNA vaccine vector pBMIC-5-IL-15 and the Zeocin resistance gene was then fragmented and a new DNA vaccine vector pBMIC-5-IL-15-asd without an antibiotic resistance gene was constructed according to the principle of the balance-lethal system. Then pBMIC-5-IL-15-asd was transformed into ?asd S. typhimtmium X3730 and X4550 strains one after another. The results of genetic stability test showed DNA vaccine vector pBMIC-5-IL-15-asd stablely existed in the ?asd S. typhimtwium X4550 strain, which puts light on antibiotic resistance and instability of DNA vaccines in hosts. Based on the immunization of 45 coccidia-free rabbits, the results showed that the recombinant S. typhimtwium X4550 strain carrying DNA vaccine vector pBMIC-5-IL-15-asd could efficiently induce specific humoral and cellular immune responses to E. stiedai, supplying immune protection to some extent, which lays a solid foundation for further studies on oral vaccines to prevent liver coccidiosis in rabbits.
引文
[1]蒋金书.动物原虫病学[M].北京:中国农业大学出版社,2000.
    [2] Twigg LE, Lowe TJ, Martin GR, et al. The ecology of the European rabbit (Oryctolagus cuniculus)in coastal southern Western Australia[J]. Wild Res, 1998, 12: 212-225.
    [3] Peeters J, Geeroms R, Halen P. Evolution of coccidial infection in commercial and domestic rabbits between 1982 and 1986 [J]. Veterinary Parasitology, 1988, 29(4): 327-331.
    [4] Mykytowycz R. Epidemiology of coccidiosis ( Eimeriaspp) in an experimental population of the Australian wild rabbit, Oryctolagus cuniculus [J]. Parasitology, 1962, 52: 375-395.
    [5] Gres V, Voza T, Chabaud A, et al. Coccidiosis of the wild rabbit (Oryctolagus cuniculus) in France[J]. Parasite, 2003, 10(1): 51-57.
    [6]蒋金书.兔病学[M].北京:北京农业大学出版社,1991.
    [7]米同国,孟志敏,黄占欣,等.邯郸地区家兔球虫种类调查[J].中国兽医寄生虫病, 1999, 7(4): 29-30.
    [8] Wang JS, Tsai SF. Prevalence and pathological study on rabbit hepatic coccidiosis in Taiwan[J]. Proc Natl Sci Counc Repub China B, 1991, 15(4): 240-243.
    [9] Vitovec J, Pakandl M. The pathogenicity of rabbit coccidium Eimeria coecicola Cheissin, 1947[J]. Folia Parasitol (Praha), 1989, 36(4): 289-293.
    [10]孟庆玲,田广孚,严鸿斌,等.新疆兔球虫种类调查研究[J].动物医学进展, 2007, 28(8): 44-47.
    [11] Percy D, Barthold S. Pathology of laboratory rodents and rabbits[M]. Iowa State University Press,Ames, Iowa, 1993.
    [12] Gomez-Bautista M, Rojo-Vazquez FA, Alunda JM. The effect of the host's age on the pathology of Eimeria stiedai infection in rabbits[J]. Vet Parasitol, 1987, 24(1-2): 47-57.
    [13] Haberkorn A. Susceptibility of non-specific hosts to schizogonic stages of different Eimeria species [J]. Z Parasitenkd, 1970, 35(2): 156-161.
    [14] Vetterling JM. Eimeria tenella: host specificity in gallinaceous birds[J]. J Protozool, 1976, 23(1): 155-158.
    [15]孔繁瑶.家畜寄生虫学[M].北京:中国农业出版社,1997.
    [16]索勋,孔繁瑶.斯氏艾美耳球虫子孢子的移行途径[J].畜牧兽医学报, 1994, 25(3): 252-255.
    [17]孟庆玲,才学鹏,田广孚,等.斯氏艾美耳球虫孢子化发育进程及其致病性研究[J].中国病原生物学杂志, 2007, 2(3): 183-185.
    [18]左仰贤.球虫学—畜禽和人体的球虫与球虫病[M].天津:天津科学技术出版社, 1992.
    [19]索勋,孔繁瑶,李安兴,等.斯氏艾美耳球虫子孢子的超微结构[J].畜牧兽医学报, 1998, 29(5): 474-478.
    [20]索勋,孔繁瑶,李安兴,等.斯氏艾美耳球虫裂殖生殖的多态现象[J].畜牧兽医学报, 1997, 28(6): 547-554.
    [21]索勋,孔繁瑶,李安兴,等.斯氏艾美耳球虫小配子的发育及其超微结构[J].中国农业大学学报, 2003, 8(3): 107-112.
    [22] Pellerdy, L. Coccidia and coccidiosis( 2nd)[M]. Berlin:Verlag Paul Parey,1974.
    [23] Peter L著,蒋金书译.球虫生物学[M].南昌:广西科学技术出版社,1990.
    [24] Joyner LP, Catchpole J, Berrett S. Eimeria stiedai in rabbits: the demonstration of responses to chemotherapy[J]. Res Vet Sci, 1983, 34(1): 64-67.
    [25] Barriga O, Arnoni J. Pathophysiology of hepatic coccidiosis in rabbits[J]. Vet Parasitol, 1981, 8: 201-221.
    [26] Fernandez E, Roman ID, Cava F, et al. Acid-base disturbances in the rabbit during experimental hepatic parasitosis[J]. Parasitol Res, 1996, 82(6): 524-528.
    [27] Abdel-Ghaffar F, Marzouk M, Ashour M B, et al. Effects of Eimeria labbeana and E. stiedai infection on the activity of some enzymes in the serum and liver of their hosts[J]. Parasitol Res, 1990, 76(5): 440-443.
    [28] Joachim A, Ali S F, Daugschies A. Fasciola hepatica alters coagulation parameters in sheep plasma in vivo and in vitro[J]. Parasitol Res, 2003, 89(1): 53-58.
    [29] Leveille-Webster CR, Rogers J, Arias IM. Use of an asialoglycoprotein receptor-targeted magnetic resonance contrast agent to study changes in receptor biology during liver regeneration and endotoxemia in rats[J]. Hepatology, 1996, 23(6): 1631-1641.
    [30] Cam Y, Cetin E, Ica A, et al. Evaluation of some coagulation parameters in hepatic coccidiosis experimentally induced with Eimeria stiedai in rabbits[J]. Journal of Veterinary Medicine, 2006, 53(4): 201-202.
    [31] Chen CM, Tsai LC, Chung CF, et al. Basement membrane in hepatic coccidiosis of the rabbit[J]. J Comp Pathol, 1972, 82(1): 59-63.
    [32] Darzi MM, Mir M, Kamil S, et al. Pathological changes and local defense reaction occurring in spontaneous hepatic coccidiosis in rabbits[J]. World Rabbit Science, 2007, 15(1): 23-28.
    [33] Roberts W, Speer C, Hammond D. Penetration of Eimeria larimerensis sporozoties into cultured cells as observed with the light and electron microscopes [J]. J Parasitol, 1971, 56: 615-625.
    [34] Jensen J, edgar S. Effects of antiphagocytic agents on pentration of Eimeria magna sporozoties into cultured cells [J]. J Parasitol, 1976, 62: 203-206.
    [35] Watanabe H, Koyama T, Omata Y, et al. Trail antigen in Eimeria stiedai sporozoites associated with a thrombospondin-related motif and the entry of cultured cells[J]. Vet Parasitol, 2001, 99(4): 287-295.
    [36] Niilo L. Acquired resistance to reinfection of rabbits with Eimeria magna[J]. Can Vet J, 1967, 8: 201-208.
    [37] James S, Nacy C. Effector functions of activated macrophages against parasites [J]. Curr Opin Immunol, 1993, 5(4): 518-523.
    [38]蒋次鹏.寄生虫感染与细胞因子[J].中国寄生虫病防治杂志, 2001, 14(2): 150-153.
    [39] Long P. The problem of coccidiosis: General considerations [C]. LLong,KNBoorman and BMFreeman(eds) Arian coccidiosis British Poultry Scienci Ltd, Edinburgh 1978: 3-28.
    [40] Long P. Coccidia and coccidiosis (2nd) [M]. Verlag Paul Parey, Berlin, 1974.
    [41]王世若,王兴龙,韩文瑜.现代动物免疫学[M].长春:吉林科学技术出版社,2001.
    [42] Tomley FM, Clarke LE, Kawazoe U, et al. Sequence of the gene encoding an immunodominant microneme protein of Eimeria tenella[J]. Mol Biochem Parasitol, 1991, 49(2): 277-288.
    [43] Robson KJ, Hall JR, Jennings MW, et al. A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite[J]. Nature, 1988, 335(6185): 79-82.
    [44] Wan KL, Carruthers VB, Sibley LD, et al. Molecular characterisation of an expressed sequence tag locus of Toxoplasma gondii encoding the micronemal protein MIC2[J]. Mol Biochem Parasitol, 1997, 84(2): 203-214.
    [45] Spano F, Putignani L, Naitza S, et al. Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family[J]. Mol Biochem Parasitol, 1998, 92(1): 147-162.
    [46] Omata Y, Sueda M, Koyama T, et al. Identification and the role of soluble antigens detected in bile from Eimeria stiedai-infected rabbits[J]. J Parasitol, 2001, 87(2): 287-291.
    [47] Hanada S, Umemoto Y, Omata Y, et al. Eimeria stiedai merozoite 49-kDa soluble antigen induces protection against infection[J]. J Parasitol, 2003, 89(3): 613-617.
    [48] Hanada S, Omata Y, Umemoto Y, et al. Relationship between liver disorders and protection against Eimeria stiedai infection in rabbits immunized with soluble antigens from the bile of infected rabbits[J]. Vet Parasitol, 2003, 111(2-3): 261-266.
    [49] Yun C, Lillehoj H, Lillehoj E. Intestinal immune response to coccidiosis [J]. Dve Comp Immunol, 2000, 24(2-3): 303-324.
    [50]保罗.WE.基础免疫学[M].北京:科学出版社,2003.
    [51] Cacho E, Lopez-Bemad F. Local immune responses to Eimeria tenella infections [J]. Immunity to Parasite, 1997, 25: 431-432.
    [52] McDonal V. Gut intraepithelia lymphocytes and immunity to coccidia [J]. Parasitology today, 1999, 15(2): 483-487.
    [53] Martin A, Lillehoj H. Characterization of cell-mediated responses to Eimeria acervulina antigens [J]. Avain Disease, 1995, 39: 538-547.
    [54] Lillehoj HS. Effects of immunosuppression on avian coccidiosis: cyclosporin A but not hormonal bursectomy abrogates host protective immunity[J]. Infect Immun, 1987, 55(7): 1616-1621.
    [55] Rose M, Hesketh P. Immunity to coccidia in chickens: adoptive transfer with peripheral blood lymphocytes and spleen cells[J]. Parasite Immunol, 1982, 4: 171-185.
    [56] Renaux S, Quere P, Buzoni-Gatel D, et al. Dynamics and responsiveness of T-lymphocytes in secondary lymphoid organs of rabbits developing immunity to Eimeria intestinalis[J]. Vet Parasitol, 2003, 110(3-4): 181-195.
    [57] Smith NC, Wallach M, Petracca M, et al. Maternal transfer of antibodies induced by infection with Eimeria maxima partially protects chickens against challenge with Eimeria tenella[J]. Parasitology, 1994, 109 ( Pt 5): 551-557.
    [58] Rose M, Hesketh P. Eimeria tenella: effects of immunity on spotozoites within the lumen of the small intestine[J]. Exp Parasitol, 1987, 63(3): 337-344.
    [59] Tajima O, Onaga H, Nakamura T. An enzyme-linked immunosorbent assay with the recombinant merozoite protein as antigen for detection of antibodies to Eimeria nectarix [J]. Avian Dis, 2003, 47(2): 309-318.
    [60] Rose M, Mocckett P. Antibodies to coccidia: detection by Enzyme-linked immunosorbent assay(ELISA) [J]. Parasite Immunology, 1983, 5: 479-489.
    [61] Gitard F, Fort G, Yvore P, et al. Kinetics of specific immunoglobulin A and G production in theduodenal and caecal mucosa of chickens infected with Eimeria acervulina or Eimeria tenalla [J]. Int J Parasitol, 1997, 27(7): 803-809.
    [62] Grabstein K, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor[J]. Science, 1994, 264: 965-968.
    [63] Tagaya Y, Bamford RN, DeFilippis AP, et al. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels[J]. Immunity, 1996, 4(4): 329-336.
    [64] Anderson DM, Johnson L, Glaccum MB, et al. Chromosomal assignment and genomic structure of Il15[J]. Genomics, 1995, 25(3): 701-706.
    [65] Krause H, Jandrig B, Wernicke C, et al. Genomic structure and chromosomal localization of the human interleukin 15 gene (IL-15)[J]. Cytokine, 1996, 8(9): 667-674.
    [66] Pettit DK, Bonnert TP, Eisenman J, et al. Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling[J]. J Biol Chem, 1997, 272: 2312-2318.
    [67] Kurys G, Tagaya Y, Bamford R, et al. The long signal peptide isoform and its alternative processing direct the intracellular trafficking of interleukin-15[J]. J Biol Chem, 2000, 275(39): 30653-30659.
    [68] Tagaya Y, Kurys G, Thies TA, et al. Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides[J]. Proc Natl Acad Sci USA, 1997, 94: 14444-14449.
    [69] Prinz M, Hanisch UK, Kettenmann H, et al. Alternative splicing of mouse IL-15 is due to the use of internal splice site in exon 5[J]. Brain Res Mol Brain Res, 1998, 63: 155-162.
    [70] Onu A, Pohl T, Krause H, et al. Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms[J]. J Immunol, 1997, 158(1): 255-262.
    [71] Meazza R, Verdiani S, Biassoni R, et al. Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines[J]. Oncogene, 1996, 12(10): 2187-2192.
    [72] Pereno R, Giron-Michel J, Gaggero A, et al. IL-15/IL-15Ra intracellular trafficking in human melanoma cells and signal transduction through the IL-15Ra[J].Oncogene,2000,19: 5153-5162.
    [73] Lehours P, Raher S, Dubois S, et al. Subunit structure of the high and low affinity human interleukin-15 receptors[J]. Eur Cytokine Netw, 2000, 11(2): 207-215.
    [74] Giri JG, Anderson, DM, Kumaki S, et al. IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2[J]. J Leukoc Biol, 1995, 57(5): 763-766.
    [75] Leonard WJ, Noguchi M, Russell SM, et al. The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor gamma chain as a common gamma chain, gamma [J]. Immunol Rev, 1994, 138: 61-86.
    [76] Satoh J, Kurohara K, Yukitake M, et al. Interleukin-15, a T-cell growth factor, is expressed in human neural cell lines and tissues[J]. J Neurol Sci, 1998, 155(2): 170-177.
    [77] Grabstein K, Dower S, Gillis S, et al. Expression of interleukin 2, interferon-gamma, and the IL-2 receptor by human peripheral blood lymphocytes[J]. J Immunol, 1986, 136(12): 4503-4508.
    [78] Ma A, Boone D, Lodolce J. The pleiotropic functions of interleukin 15: not so interleukin 2-like after all [J]. The Journal of experimental medicine, 2000, 191: 753-756.
    [79] Mattei F, Schiavoni G, Belardelli F, et al. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation[J]. J Immunol, 2001, 167(3): 1179-1187.
    [80] Oppenheimer-Marks N, Brezinschek RI, Mohamadzadeh M, et al. Interleukin 15 is produced by endothelial cells and increases the transendothelial migration of T cells In vitro and in the SCID mouse-human rheumatoid arthritis model In vivo[J]. J Clin Invest, 1998, 101(6): 1261-1272.
    [81] Reinecker H, MacDermott R, Mirau S, et al. Intestinal epithelial cells both express and respond to interleukin 15[J]. Gastroenterology, 1996, 111: 1706-1713.
    [82] Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors[J]. Cell, 1994, 76(2): 263-274.
    [83] Blauvelt A, Asada H, Klaus-Kovtun V, et al. Interleukin-15 mRNA is expressed by human keratinocytes Langerhans cells, and blood-derived dendritic cells and is downregulated by ultraviolet B radiation[J]. J Invest Dermatol, 1996, 106(5): 1047-1052.
    [84] Bamford R, Grant A, Burton J. The interleukin(lL)-2 receptor beta is shared by IL-2 and a cytokine, Provisionally designated IL-T,that stimulates T-cell Proliferation and the induetion of lymPhokine-activated killer cells [J]. Proc Natl Aead Sci USA, 1994, 91: 4940-4944.
    [85] Rutella S, Pierelli L, Bonanno G, et al. Immune reconstitution after autologous peripheral blood progenitor cell transplantation: effect of interleukin-15 on T-cell survival and effector functions[J]. Exp Hematol, 2001, 29(12): 1503-1516.
    [86] Rappl G, Abken H, Hasselmann DO, et al. The CD7(-) subset of CD4(+) memory T cells is prone to accelerated apoptosis that is prevented by interleukin-15 (IL-15)[J]. Cell Death Differ, 2001, 8(4): 395-402.
    [87] Liu C, Perussia B, Young J. The emerging role of IL-15 in NK-cell development 15 in NK-cell developmen[J]. Immunology Today, 2000, 21: 113-116.
    [88] Mrozek E, Anderson P, Caligiuri M. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells[J]. Blood, 1996, 87: 2632-2640.
    [89] Dann SM, Wang HC, Gambarin KJ, et al. Interleukin-15 activates human natural killer cells to clear the intestinal protozoan cryptosporidium[J]. J Infect Dis, 2005, 192(7): 1294-1302.
    [90] Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice[J]. Proc Natl Acad Sci U S A, 2000, 97(21): 11445-11450.
    [91] Carbo N, Lopez-Soriano J, Costelli P, et al. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control[J]. Biochim Biophys Acta, 2001, 1526(1): 17-24.
    [92] Lin SJ, Roberts RL, Ank BJ, et al. Effect of interleukin (IL)-12 and IL-15 on activated natural killer (ANK) and antibody-dependent cellular cytotoxicity (ADCC) in HIV infection[J]. J Clin Immunol, 1998, 18(5): 335-345.
    [93] Fehniger TA, Shah MH, Turner MJ, et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response[J]. J Immunol, 1999, 162(8): 4511-4520.
    [94] Waldmann T, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens[J]. Annual review of immunology, 1999, 17: 19-49.
    [95] Armitage R, Macduff B, Eisenman JPR, et al. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation[J].Journal of immunology, 1995,154: 483-490.
    [96] Alleva D, Kaser S, Monroy M, et al. IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production: evidence for differential receptor subunit utilization associated with stimulation or inhibition[J]. J Immunol, 1997, 159(6): 2941-2951.
    [97] Avice M, Demeure C, Delespesse G, et al. IL-15 promotes IL-12 production by human monocytes via T cell-dependent contact and may contribute to IL-12-mediated IFN-gamma secretion by CD4+ T cells in the absence of TCR ligation[J]. Journal of immunology, 1998, 161: 3408-3415.
    [98] Mohamadzadeh M, Berard F, Essert G, et al. Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells[J]. J Exp Med, 2001, 194(7): 1013-1020.
    [99] Bulfone-Paus S, Ungureanu D, Pohl T, et al. Interleukin-15 protects from lethal apoptosis in vivo[J]. Nat Med, 1997, 3(10): 1124-1128.
    [100] Ranson T, Vosshenrich C, Corcuff E, et al. IL-15 is an essential mediator of peripheral NKcell homeostasis[J]. Blood, 2003, 101: 4887-4893.
    [101] Allavena P, Giardina G, Bianchi G, et al. IL-15 is chemotactic for natural killer cells and stimulates their adhesion to vascular endothelium[J]. J Leukoc Biol, 1997, 61(6): 729-735.
    [102] Sun R, Fan J, Wei H, et al. Use of interleukin-15 for preparation of adherent NK cells from human peripheral blood: comparison with interleukin-2[J]. J Immunol Methods, 2003, 279(1-2): 79-90.
    [103] Miranda-Carus ME, Balsa A, Benito-Miguel M, et al. IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate[J]. J Immunol, 2004, 173(2): 1463-1476.
    [104] McInnes IB, Leung BP, Sturrock RD, et al. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis[J]. Nat Med, 1997, 3(2): 189-195.
    [105] Nieto M, del Pozo MA, Sanchez-Madrid F. Interleukin-15 induces adhesion receptor redistribution in T lymphocytes[J]. Eur J Immunol, 1996, 26(6): 1302-1307.
    [106] Kim J, Simbiri K, Sin J, et al. Cytokine molecular adjuvants modulate immune responses induced by DNA vaccine constructs for HIV-1 and SIV[J]. J Interferon Cytokine Res 1999: 77-84.
    [107] Wongi M, Hyun S, Lillehoj. Adjuvant effects of IL-1β, IL-2, IL-8, IL-15, IFN-α, IFN-γTGF-β4 and lymphotactin on DNA vaccination against Eimeria acervulina[J]. Vaccine 2002, 20: 267-274.
    [108] Schluns K, Williams KM, et al. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells[J]. Journal of immunology, 2002, 168: 4827-4831.
    [109] Sereti I, Herpin B, Metcalf JA, et al. CD4 T cell expansions are associated with increased apoptosis rates of T lymphocytes during IL-2 cycles in HIV infected patients[J]. Aids, 2001, 15(14): 1765-1775.
    [110] Xin K, Hamajima K, Sasaki S, et al. IL-15 expression plasmid enhances cellmediated immunity induced by an HIV-1 DNA vaccine[J]. Vaccine, 1999, 17: 858-866.
    [111] Gursel M, Gregoriadis G. Interleukin-15 acts as an immunological co-adjuvant for liposomal antigen in vivo[J]. Immunol Lett, 1997, 55(3): 161-165.
    [112] Cui F, Asada H, Jin M, et al. Cytokine genetic adjuvant facilitates prophylactic intravascular DNA vaccine against acute and latent herpes simplex virus infection in mice[J]. Gene Ther, 2005, 12: 160-168.
    [113] Kwissa M, Kroger A, Hauser H, et al. Cytokine-facilitated priming of CD8+ T cell responses by DNA vaccination[J]. J Mol Med, 2003, 81(2): 91-101.
    [114] Ferrone CR, Perales MA, Goldberg SM, et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains[J].Clin Cancer Res, 2006, 12(18): 5511-5519.
    [115] Yang Z, Wang L, Wang H, et al. A novel mimovirus vaccine containing survivin epitope with adjuvant IL-15 induces long-lasting cellular immunity and high antitumor efficiency[J]. Mol Immunol, 2007, 45(6):1674-1681.
    [116] Yajima T, Nishimura H, Sad S, et al. A novel role of IL-15 in early activation of memory CD8+ CTL after reinfection[J]. J Immunol, 2005, 174(6): 3590-3597.
    [117] Ruckert R, Brandt K, Bulanova E, et al. Dendritic cell-derived IL-15 controls the induction of CD8+ T cell immune responses[J]. Eur J Immunol, 2003, 33(12): 3493-3503.
    [118] Dubois SP, Waldmann TA, Muller JR. Survival adjustment of mature dendritic cells by IL-15[J]. Proc Natl Acad Sci U S A, 2005, 102(24): 8662-8667.
    [119] Diab A,Cohen AD, Alpdogan O, et al. IL-15: targeting CD8+ T cells for immunotherapy[J]. Cytotherapy, 2005, 7(1): 23-35.
    [120] Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells[J]. Adv Immunol, 2005, 86: 209-239.
    [121] Gravisaco MJ, Mongini C, Alvarez E, et al. IL-2, IL-10, IL-15 and TNF are key regulators of murine T-cell lymphoma growth[J]. Int J Mol Med, 2003, 12(4): 627-632.
    [122] Ing R, Gros P, Stevenson MM. Interleukin-15 enhances innate and adaptive immune responses to blood-stage malaria infection in mice[J]. Infect Immun, 2005, 73(5): 3172-3177.
    [123] McInnes I, Gracie J. Interleukin-15: a new cytokine target for the treatment of inflammatory diseases.[J]. Curr Opin Pharmacol, 2004, 4(4): 392-397.
    [124]陆承平.兽医微生物学[M].北京:高等教育出版社,2001.
    [125] Hohmann EL, Oletta CA, Miller SL. Evaluation of a phoP/phoQ-deleted,aroA-deleted live oral Salmonella typhi vaccine strain in human volunteers[J]. Vaccine, 1996, 14(1): 19-24.
    [126] Stocker B. Auxotrophic Salmonella typhi as live vaccine[J]. Vaccine, 1988, 6(2): 141~145.
    [127] McFarland WC, Stocker BA. Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella dublin and of two strains of Salmonella typhimurium[J]. Microb Pathog, 1987, 3(2): 129-141.
    [128] Curtiss 3rd , Kelly SM. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic[J]. Infect Immun, 1987, 55(12): 3035-3043.
    [129] Levine M, Ferreccio C, Abrego P, et al. Duration of efficacy of Ty21a,attenuated Salmonella typhi live oral vaccine[J]. Vaccine, 1999, 12: 22-27.
    [130] Cardenas L, Clements JD. Oral immunization rsing live attenuated Salmonella spp.Carriers of foreign antigens[J]. Clin Microbiol Rev, 1992, 5(3): 328-342.
    [131] Heithoff DM, Sinsheimer RL, Low DA, et al. An essentoal role for DNA adenine methylation in bacterial virulence[J]. Trans R Soc Lond B boil Sci, 2000, 355(1397): 633-642.
    [132] Ahmer BM, Reeuwijk J, Watson P, et al. Salmonella SirAis a global regulator of genes mediating enteroathogenesis[J]. Mol Microbio, 1999, 31(3): 971-982.
    [133] Lowe D, Savidge T, Pickard D, et al. Characterization of candidate live oral Salmonella typhi vaccine strains harboring defined mutations in aroA, aroC and htrA[J]. Infect Immun, 1999, 67(2): 700-707.
    [134] McCormick BA, Miller SI, Carnes D, et al.Transepithelial signaling to neutrophils by Salmonellae:a novel virulence mechanism for gastroenteritis[J]. Infect Immun, 1995, 63: 2302~2309.
    [135] Vescovi EG, Soncini F, Groisman E. The role of the PhoP/PhoQ regulon in Salmonella virulence [J]. Res Microbiol, 1994, 145: 473-480.
    [136] Kumar PD, Krishnaswamy S. Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC[J]. Protein Expression and Purification, 2005, 40(1): 126-133.
    [137] Morton M, Garmory HS, Perkins SD, et al. A Salmonella enterica serovar Typhi vaccine expressing Yersinia pestis F1 antigen on its surface provides protection against plague in mice[J]. Vaccine, 2004, 22(20): 2524-2532.
    [138] Giron JA, Xu JG, Gonzalez CR, et al. Simultaneous expression of CFA/I and CS3 colonization factor antigens of enterotoxigenic Escherichia coli by delta aroC, delta aroD Salmonella typhi vaccine strain CVD 908[J]. Vaccine, 1995, 13(10): 939-946.
    [139] Jorge EG, Koji N, Roy CI. Cloning and characterization of the asd gene of Salmonella typhimurium:use in stable maintenance of recombinant plasmids in Salmonella vaccine strains[J]. gene, 1990, 94: 29-35.
    [140] Nakayama K, Kelly SM. Construction of an asd+ expression-cloning vector: stable maintenance asd hegh level expression of cloned genes in a salmonella vaccine strain[J]. Bio/technology, 1988, 6: 693-697.
    [141] Gebert A. The role of M cells in the protection of mucosal membranes[J]. Histochem Cell Biol, 1997, 108(6): 455-470.
    [142] Fujimura Y, Hosobe M, Kihara T. Ultrastructural study of M cells from colonic lymphoid nodules obtained by colonoscopic biopsy[J]. Digestive Disease and Science, 1992, 37(7): 1089-1098.
    [143] Tsukitu S, Furuse M, Itoh I. Structural and signaling molecules come together at tight junctions[J]. Curr Opin Cell Bio1, 1999, 11(5): 628-633.
    [144] Banchereau J, Steinman RM. Dendritic cells and the control of immunity[J]. Nature, 1998, 392: 245-252.
    [145] Darji A, Guzman CA. Oral somatic transgene vaccination using attenuated S.typhimurium[J]. Cell, 1997, 91: 766-775.
    [146]张晓明,潘志明,焦新安,等.运送DNA疫苗的减毒沙门氏菌载体系统[J].微生物学免疫学进展, 2002, 30(4): 54-59.
    [147]张晓明,焦新安,唐丽华,等.鼠伤寒沙门氏菌SL7207 SifA-突变株的构建与鉴定[J].微生物学报, 2005, 45(3): 349-354.
    [148] Rodriguez A, Regnauct A, Kleijmeer M, et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells[J]. Nat Cell Bio1, 1999, 1(6): 362-368.
    [149] Schafer R, Portnoy DA, Brassell SA, et al. Induction of acellular immune response to a foreign antigen by a recombinant Listertia monocytogenes vaccine[J]. Immuno1, 1992, 149: 53-59.
    [150] Cochlovius B, Stassar M, Schreurs M, et al. Oral DNA vaccination:antigen uptake and presentation by dendritic cells elicits protective immunity[J]. Immunol Lett, 2002, 80: 89-96.
    [151] Galan JE. Molecular genetic bases of Salmonella entry into host cells[J]. Mol Microbio1, 1996, 20: 263-271.
    [152] VanCott JL, Chatfield SN, Roberts M, et al. Regulation of host immune responses by modification of Salmonella virulence genes[J]. Nat Med, 1998, 4(11): 1247-1252.
    [153] Dunstan SJ, Simmons CP, Strugnell RA. Comparison of the abilities of different attenuated Salmonella typhimurium strains to elicit humoral immune responses against a heterologous antigen[J]. Infect Immun, 1998, 66(2): 732-740.
    [154] Medina E, Guzman CA, Staendner LH, et al. Salmonella vaccine carrier strains: effective delivery system to trigger anti-tumor immunity by oral route[J]. Eur J Immunol, 1999, 29(2): 693-699.
    [155] Jones BD, Falkow S. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization [J]. Infect lmmun, 1994, 62: 3745-3752.
    [156] Galan JE, Curtiss 3rd. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling[J]. Infect lmmun, 1990, 58: 1879-1885.
    [157] Lee CA, Falkow S. The ability of Salmonella to enter manunalian cells is affected by bacterial growth state [J]. Proc Natl Acnd Sci USA, 1990, 87: 4304-4308.
    [158] Dunstan SJ, Simmons CP, Strugnell RA. In vitro and in vivo stability of recombinant plasmids in a vaccine strain of Salmonella enterica var. Typhimurium[J]. FEMS Immunol Med Microbiol, 2003, 37(2-3): 111-119.
    [159] Gahan ME, Webster DE, Wesselingh SL, et al. Impact of plasmid stability on oral DNA delivery by Salmonella enterica serovar Typhimurium[J]. Vaccine, 2007, 25(8): 1476-1483.
    [160] Lin-Chao S, Chen WT, Wong TT. High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II[J]. Mol Microbiol, 1992, 6(22): 3385-3393.
    [161] Bauer H, Darji A, Chakraborty T, et al. Salmonella-mediated oral DNA vaccination using stabilized eukaryotic expression plasmids[J]. Gene, 2005, 12(4): 364-372.
    [162] Salas-Vidal E, Plebanski M, Castro S, et al. Synthesis of the surface glycoprotein of rotavirus SA11 in the aroA strain of Salmonella typhimurium SL3261[J]. Res Microbiol, 1990, 141(7-8): 883-886.
    [163]陈雪燕, Dikki.重组质粒在减毒沙门氏菌中的稳定性及其对细菌侵袭力的影响[J].微生物学报, 2005, 45(5): 744-747.
    [164] Gentscher I, Dietrich G, Goebel W. The E.coli alpha-hemolysin secretion system and its use in vaccine development[J]. Trends Microbiol, 2002, 10: 39-45.
    [165]梁雪芽,方维焕,江玲丽.鸡新城疫口服DNA疫苗的安全性、稳定性与免疫效力[J].生物工程学报, 2003, 19(1): 24-29.
    [166] Edwin J, Tijhaor. Construction and evaluation of an expression vector allowing the stable expression of foreign antigens in a salmonella typhimarium vaccine strain [J]. Vaccine, 1994, 12(11): 1001-1012.
    [167] Attridge SR, DaviesR, LaBrooy JT. Oral delivery of foreign antigens by attenuated Salnomella:Consequence of prior exposure to the vector strain [J]. vaccine, 1997, 15(2): 155-162.
    [168]陈东立,马清钧.表达霍乱CT-B和LPS-O抗原的鼠伤寒菌苗株的构建[J].生物工程学报, 1997, 13(1): 47-52.
    [169] Formal SB, Kent TH, May HC, et al. Protection of monkeys against experimental shigellosis with a living attenuated oral polyvalent dysentery vaccine[J]. J Bacteriol, 1966, 92(1): 17-22.
    [170] Woo PC, Wong LP, Zheng BJ, et al. Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium[J]. Vaccine, 2001, 19(20-22): 2945-2954.
    [171] Mueller Y, Petrovas C, Bojczuk P, et al. Interleukin-15 increases effector memory CD8+ T cells and NK cells in simian immunodeficiency virus-infected macaques[J]. J Virol 2005, 79: 4877-4885.
    [172] Pogonka T, Klotz C, Kovas F. A single dose of recombinant Salmonella typhimurium induces specific humoral immune responses against heterologous Eimeria tenella antigens[J]. Int J Parasitol, 2003, 33: 81-88.
    [173] Kantele A, Arvilommi H, Iikkanen K, et al. Unique characteristics of the intestinal immune system as an inductive site after antigen reencounter[J]. J Infect Dis, 2005, 191(2): 312-317.
    [174] Salerno-Goncalves R, Pasetti MF, Sztein MB. Characterization of CD8(+) effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine[J]. J Immunol, 2002, 169(4): 2196-2203.
    [175] Shata MT, Reitz MS, DeVico AL, et al. Mucosal and systemic HIV-1 Env-specific CD8(+) T-cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector[J]. Vaccine, 2001, 20(3-4): 623-629.
    [176]索勋,李国清.鸡球虫病学[M].北京:中国农业大学出版社,1998.
    [177]吴绍强,蒋金书,刘群,等.鸡球虫疫苗研究进展[J].畜牧兽医学报, 2005, 36(1): 1-5.
    [178] Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development[J]. Expert Rev Vaccines, 2006, 5(1): 143-163.
    [179]安健,汪明,王黎霞,等.北京农学院学报[J].鸡柔嫩艾美尔球虫单卵囊分离技术的建立[J], 2004, 19(1): 5-7.
    [180]黄兵,史天卫,吴薛忠,等.巨型艾美尔球虫纯种鉴定和致病性研究[J].中国兽医寄生虫病, 1995, 3(4): 12-14.
    [181]林青,于三科,陈秀荔,等.鸡柔嫩艾美尔球虫单卵囊分离技术的构建及致病性研究[J].西北农林科技大学学报, 2002, 30(3): 35-37.
    [182]龚振兴,刘毅,刘增再,等.鸡球虫单卵囊分离技术与雏鸡感染试验[J].动物医学进展, 2006, 27(3): 72-75.
    [183] Fairbairn D, Wertheim G, Harpur RP, et al. Biochemistry of normal and irradiated strains of Hymenolepis diminuta[J]. Exp Parasitol, 1961, 11: 248-263.
    [184]索勋,李国清.鸡球虫病学[M].北京:中国农业大学出版社,1998.
    [185]蒋建林,蒋金书.鸡球虫基因及基因工程疫苗的研究进展[J].中国兽医科技, 1999, 29(6): 21-26.
    [186] Dubremetz J, Garcia-Rleguet N, Conseil V, et al. Apical organelles and host cell invasion[J]. Int J Parasitol, 1998, 28: 1007-1013.
    [187] Lillehoj HS, Choi KD, Jenkins MC, et al. A recombinant Eimeria protein inducing interferon-gamma production: comparison of different gene expression systems and immunization strategies for vaccination against coccidiosis[J]. Avian Dis, 2000, 44(2): 379-389.
    [188]潘晓亮,丁熙成,蒋金书. TA4和Et-MIC2表达产物免疫后对感染柔嫩艾美耳球虫(Eimeriatenella)鸡增重和盲肠卵囊数的影响[J].黑龙江畜牧兽医, 2002, (8): 6-7.
    [189] Vermeulen AN, Kok JJ, Boogaart P,et a1. Eimeria refractile body proteins contain two po tentially functional characteristics:Transhydrogenase and carbohydrate transport[J]. FEMS Microbiol Letters, 1993, 110: 223-230.
    [190] Brown P, Billington K, Bumstead J, et al. A microneme protein from Eimeria tenella with homology to the Apple domains of coagulation factor XI and plasma pre-kallikrein[J]. Mol Biochem Parasitol, 2000, 107(1): 91-102.
    [191] Labbe M, de Venevelles P, Girard-Misguich F, et al. Eimeria tenella microneme protein EtMIC3: identification, localisation and role in host cell infection[J]. Mol Biochem Parasitol, 2005, 140(1): 43-53.
    [192] Tomley F, Billington K, Bumstead J, et al. EtMIC4: a microneme protein from Eimeria tenella that contains tandem arrays of epidermal growth factor-like repeats and thrombospondin type-I repeats[J]. Int J Parasitol, 2001, 31(12): 1303-1310.
    [193] Massimo Alfano P, Andrea Crotti M, Elisa Vicenzi P, et al. New Players in Cytokine Control of HIV Infection[J]. The Science of HIV Medicine 2008, (5): 27-32.
    [194] Tomley FM, Bumstead JM, Billington KJ. Molecular cloning and characterization of a novel acidic microneme prtein(Etmic-2)from the apicomplexan protozoan parasite , Eimeria tenella[J]. Mol Biochem parasitol, 1996, 79(2): 195-206.
    [195] Giron JA, Xu JG, Gonzalez CR, et al. Simultaneous expression of CFA/I and CS3 colonization factor antigens of enterotoxigenic Escherichia coli by delta aroC, delta aroD Salmonella typhi vaccine strain CVD 908[J]. Vaccine, 1995, 13(10): 939-946.
    [196]万家余.甲、乙型肝炎口服二价DNA疫苗的研究[D]. 2005,吉林大学.
    [197] Curtiss 3rd, Kelly S M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic[J]. Infect Immun, 1987, 55(12): 3035-3043.
    [198] Galan J E, Nakayama K, Curtiss 3rd. Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains[J]. Gene, 1990, 94(1): 29-35.
    [199] Hess J, Schaible U, Raupach B, et al. Explotiting the immune system:toward new vaccines against intracellular bacteria[J]. Adv Immunol, 2000, 75: 1-78.
    [200] Lillehoj HS, Lillehoj EP. Avian coccidiosis.A review of acquired intestinal immunity and vaccination strategies[J]. Avian Dis, 2000, 44: 408-425.
    [201] Jechlinger W. Optimization and delivery of plasmid DNA for vaccination[J]. Expert Rev Vaccines, 2006, 5(6): 803-825.
    [202] Lin CT, Tsai YC, He L, et al. DNA vaccines encoding IL-2 linked to HPV-16 E7 antigen generate enhanced E7-specific CTL responses and antitumor activity[J]. Immunol Lett, 2007, 114(2): 86-93.
    [203] Donnelly J, Ulmer J, Shiver J, et al. DNA vaccines[J]. Annual review of immunology, 1997, 15: 617–648.
    [204] Robinson H, Torres C. DNA vaccines[J]. Semin Immunol, 1997, 9: 271-283.
    [205]董辉,索勋,汪明.毒害艾美耳球虫晚熟系生物学特性研究[J].畜牧兽医学报, 2003, 34(6): 600-604.
    [206] Chatfield SN, Strugnell RA, Dougan G. Live Salmonella as vaccines and carriers of foreignantigenic determinants[J]. Vaccine, 1989, 7(6): 495-498.
    [207] Fried M, Mencher D, Sar-Shalom O, et al. Developmental gene expression of a 230-kilodalton macrogamete-specific protein of the avian coccidial parasite,Eimeria maxima[J]. Mol Biochem Parasitol, 1992, 51: 251-262.
    [208] Lowenthal JW, O'Neil TE. Potential use of cytokine therapy in poultry[J]. Veterinary Immunology and Immunopathology, 1998, 63(1-2): 191-198.
    [209] Williams RB. Fifty years of anticoccidial vaccines for poultry (1952-2002)[J]. Avian Dis, 2002, 46(4): 775-802.
    [210] Shirely MW. Control of coccidiosis with live vaccines[J]. World Poultry, 1993, (8): 24-27.
    [211] Guzman VB, Silva DA, Kawazoe U, et al. A comparison between IgG antibodies against Eimeria acervulina, E. maxima, and E. tenella and oocyst shedding in broiler-breeders vaccinated with live anticoccidial vaccines[J]. Vaccine, 2003, 21(27-30): 4225-4233.
    [212] Lillehoj HS, Bacon LD. Increase of intestinal intraepithelial lymphocytes expressing CD8 antigen following challenge infection with Eimeria acervulina[J]. Avian Dis, 1991, 35(2): 294-301.
    [213] Lillehoj HS, Jenkins MC, Bacon LD. Effects of major histocompatibility genes and antigen delivery on induction of protective mucosal immunity to E. acervulina following immunization with a recombinant merozoite antigen[J]. Immunology, 1990, 71(1): 127-132.
    [214] Lillehoj HS, Jenkins MC, Bacon LD, et al. Eimeria acervulina: evaluation of the cellular and antibody responses to the recombinant coccidial antigens in B-congenic chickens[J]. Exp Parasitol, 1988, 67(2): 148-158.
    [215] Williams RB, Catchpole JA. New protocol for a challenge test to assess the efficacy of live anticoccidial vaccines for chickens[J]. Vaccine, 2000, 18: 1178-1185.
    [216] Smith AL, Hesketh P, Archer A, et al. Antigenic diversity in Eimeria maxima and the influence of host genetics and immunization schedule on cross-protective immunity[J]. Infect Immun, 2002, 70(5): 2472-2479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700