超表达OsNHX1、AtDREB1A基因获得抗盐、耐低温黑麦草转基因株系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年生黑麦草是一种重要的冷季型草坪草,近年来全球水分紧缺,土壤盐化、次生盐渍化不断加剧,而种植抗旱、耐盐的草坪草能减少水分蒸发,抑制盐碱地土壤返盐,还可以用含一定盐分的水来灌溉,节省水资源。同时在北方及过渡地带,许多草坪草品种都遭受到不同程度冻害,严重影响草坪景观。本研究的目的是通过基因工程的方法将水稻OsNHX1和拟南芥AtDREB1A基因转入黑麦草,提高其耐盐、耐低温或抗旱能力。
     对多年生黑麦草再生及根癌农杆菌介导的转化体系研究发现,6个品种黑麦草种子都能诱导出愈伤组织,通过胚性愈伤组织分化再生植株。但激素及添加浓度对不同品种愈伤组织诱导率及分化率影响显著。黑麦草种子再生植株的最适激素条件是愈伤组织诱导添加9mg/L2,4-D,胚性愈伤组织的诱导添加3mg/L2,4-D,分化过程添加0.1mg/L 2,4-D和0.1mg/L6-BA。生根培养基不添加任何激素。在最适培养条件下筛选出愈伤诱导率和分化率最高的品种TopGun。后在最适再生条件下,对影响根癌农杆菌介导转化效率的两个因素进行了研究,发现在摇菌和共培养过程添加200μM乙酰丁香酮及转化前将部分胚性愈伤组织于含0.4mol/L甘露醇渗透培养基上预培养12h,能提高转化效率达19.39%。
     利用建立的根癌农杆菌转化体系将水稻OsNHX1基因、拟南芥AtDREB1A基因转入了多年生黑麦草。
     水稻OsNHX1基因转化黑麦草得到4个转基因株系,PCR及Southern blotting鉴定表明,OsNHX1基因成功插入黑麦草基因组中。抗盐性鉴定表明,转基因株系比野生型抗盐能力显著提高,盐胁迫下,转基因株系比野生型积累了较高的Na~+、K~+及Pro含量。
     拟南芥AtDREB1A基因转化黑麦草得到的转基因株系与野生型相比,植株生长矮小,叶绿素含量增加,叶色加深。表型发生明显改变。而且转基因株系耐低温能力提高。丙二醛含量测定表明,转基因株系丙二醛含量比对照低,膜系统受伤害程度较轻。
     本文利用根癌农杆菌介导的方法将OsNHX1和AtDREB1A基因转入多年生黑麦草,获得了抗盐、耐低温能力明显提高的转基因株系。为草坪草的改良奠定基础,必将加快草坪草的育种进程,带来显著的经济效益和社会效益。
Perennial ryegrass {Lolium perenne L.) is one of the most important turfgrass species, Currently, worldwide water supply is waning and the salinity of soil is increasing. To grow on these dry and salty lands, grasses such as turfgrass need to have salt-tolerance. Turfgrass grow in dry area can reduce the vaporization of water and decrease the accumulation of soluble salt on soil surface, thus maintain or even improve the soil condition. Furthermore, salt-tolerant turfgrass can be irrigated with secondly cleansed water containing high salinity. At the same time, each year most of the turfgrass are faced with different kinds of winter injury in transition and northern climate region, which had great effects on turf qulity. The purpose of the paper is to obtain salt-tolerant and freezing- or drought-tolerant perennial ryegrass by over-expression of OsNHX1 and AtDREBlA gene.The protocol of efficient regeneration system of perennial ryegrass was studied at first. Callus formation and regeneration via embryogenic calli were observed in all the six used cultivars seeds. Growth regulators and their concentration supplemented had great effect on callus induction and regeneration of perennial ryegrass. The optimized tissue culture conditions for seeds of perennial ryegrass were supplementation of 9mg/l 2, 4-D in callus induction medium, 3mg/l 2, 4-D in embryogenic calli medium, 0.1mg/l 2, 4-D and 0.1mg/l 6-BA in callus regeneration medium. No growth regulators were used in root induction medium. Under the most optimized conditions, significant difference were found among the cultivars with 'TopGun' having the highest callus induction and regeneration rates which were 92.6% and 48.9%, respectively. Using the optimized regeneration conditions, two factors affecting transformation efficiency, acetosyringone and mannitol, were determined. Addition of 20μM acetosyringone during the incubation of bacteria and the co-cultivation process and osmotic treatment with 0.4mol/l mannitol for 12h before infection increased transformation efficiency to 19.39%.Using the optimized transformation system, the rice vacuolar Na+/H+ antiporter gene, OsNHXl and Arabidopsis AtDREBlA gene were transferred into perennial ryegrass by Agrobacterium-mediated method.Four resistant lines were obtained by Agrobacerium-mediated transformation of a vacuolar Na+/H+ antiporter OsNHXl gene in rice. PCR and hybridization indicated that the OsNHXl cDNA have been inserted into perennial ryegrass genome. The obtained transgenic ryegrass showed better salt-tolerance. The leaves of transgenic plants accumulated higher contents of Na+, K+ and Pro than those of the control plants.Transgenic plants over-expressing AtDREBlA exhibited dwarf phenotype compared with the wild-type plants. The leaf length and width of transgenic plants were considerably shorter than the wild-type plants. The leaves of transgenic plants showed dark-green in conrast to the wild-type plants. Compared with the wild-type plants, the content of chlorophyll of transgenic plants increased. Transgenic plants over-expressing AtDREBlA displayed high level of tolerance to freezing. The content of MDA in transgenic plants was lower than that of wild-type which
    indicated that the damage to the membrane of transgenic plants was lighter than that of wild-type plants.In the paper, OsNHX1and AtDREB1A genes were successfully transferred into perennial ryegrass by Agrobacterium-mediated method, the transgenic plants showed salt- and freezing- tolerance, which can lay good foundations for turfgrass improvement, quicken the breeding process thus provide significant economic and social values.
引文
Ahn B J., Hung F H., King J W. Plant regeneration through somatic embryogenesis in common bermudagrass tissue culture. Crop Sci, 1985. 25:1107-1109
    Altpeter E, Xu J., Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage-and turf-type cultivars. Mol Breed, 2000. 6:519-528
    Apse M P., Aharon G S., Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiporter in Arabidopsis. Sci, 1999. 285:1256-1258
    Arencibia A D., Carmona E R., Tellez P, et al. An efficient protocol for sugarcane (Saccharum spp. L) transformation mediated by Agrobacterium tumefaciens. Transgenic Res, 1998.7:213-222
    Artunduaga I R., Taliaferro C M., Johnson B L. Effects of auxin concentration on induction and growth of embryogenic callus from young in florescence explants of old World bluestem (Bothriochola spp.) and Bermuda (Cynodon spp.) grasses. Plant Cell Tissue Organ Cult, 1988. 12:13-19
    Asano Y., Sugiura K. Plant regeneration from suspension culture-derived protoplasts of Agrostis alba L. (Redop). Plant Sci, 1990. 72:267-272
    Asano Y., Ito Y., Fukami M, et al. Herbicide resistant transgenic creeping plants obtained by electroporation using an altered buffer [J]. Plant Cell Rep, 1998.17 (12): 963-967
    Ballesteros E., Blumwald E., Donaire J P, et al. Na~+/H~+ antiporter activity on tonoplast vesicles isolated from sunflower induced by NaCl stress. Physiol Plant, 1997. 99: 328-334
    Bai Y., Qu R. Genetic transformation of elite turf-type cultivar of tall fescue. Int. Turfgrass. Soc. Res. J, 2001.9: 129-136
    Barker S S., Wilhelm K S and Thomashow M F. The 5-region of Arabidopsis thaliana corl 5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol. Biol, 1994. 24: 701-713
    Barkla B J., Charck J H M., Cragone J E J, et al. Photolabeling of tonoplast from sugar beet cell antiportor. Plant Physiol, 1990. 93: 924-930
    Bates L S., Waldren R P., Teare I D. Rapid determination of proline for water-stress studies. Plant (?) Soil, 1973.39: 205-207
    Belanger F C., Laramore C., Bonos S., Meyer W A., Day P R. Development of improved turfgrass with herbicide resistance and enhanced disease resistance through transformation [A]. In: Clark J M., Kenna M P (eds), Fate and Management of Turf-grass Chemicals[C]. Washington, D C: Oxford University
    Bettany A J E., Dalton S J., Timms E, et al. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Piant Cell Report, 2003. 21:437-444
    Bhalla P L., Swoboda I., Singh M B, et al. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proc. Natl. Acad. Sci, 1999. 96:11676-11680
    Binzel M L., Hess F D., Bressan RA, et al. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol, 1988. 86:607-614
    Blanche E, Krans J V., Coats G E. Improvement in callus growth and plantlet formation in creeping bentgrass. Crop Sci, 1986.26:1245-1248
    Blumwald E., Aharon G S., Apse M E Sodium transport in plant cells. Biochim. Biophys. Acta. 2000. 1465:140-151
    Braun Y., Hassidim M., Lerne H R, et al. Studies on H~+ -translocating ATPase in plants of varying resistance to salinity. Plant Physiol, 1986. 81:1050-1056
    Bray E A. Plant responses to water deficit Trends. Plant Sci, 1997. 2, 48-54
    Catherine P D, Olivier C M., wuytswinkel V, et al. Arabidopsis thaliana and saccharomvces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na~+/H~+ exchangers. Biochem. J, 2000. 351: 241-249
    CHAI Bao-Feng., LIANGAi-Hua., WANG Wei, et al. Agrobacterium-mediated Transformation of Kentucky Bluegrass. Acta Botanica Sinica, 2003. 45(8): 966-973
    Chai M L. and Doo H K. Agrobacterium-mediated Transformation of Korean Lawngrass (Zoysia japonica). J. Kor. Soc. Hort. Sci, 2000. 41(5): 455-458
    Chai M L., Kalaiselvi S., Suk Y M, et al. Embryogenic callus induction and Agrobacterium-mediated transformationin Bentgrass (AgrostisSPP.). J. Kor. Soc. Hort. Sci, 2000. 41 (5): 450-454
    Chen Z,, Silva H., Klessig D F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid [J]. Science, 1993.162:1883~1886
    Cheng M., Fry J E., Pang S, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol, 1997. 115:971-980
    Cho M J., Ha C D. and Lemaux P G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep, 2000. 19: 1084-1089
    Conger B V. and Carabia J V. Callus induction and plantlet regeneration in orchardgrass. Crop Sci, 1978. 18:157-159
    Conger B V., Hanning G E., Gray D J, et al. Direct embryogenesis from mesophyll cells of orchardgrass. Science, 1983. 221: 850-851
    Cramer G R., Lauchli A., Polito V S. Displacement of Ca~(2+) by Na~+ from the plasma of root cells. Plant Physiol, 1985. 79:207-211
    Creemers-Molenaar J., Loeffen J P M. and Vander V P. The effect of 2,4-dichlorophenoxyacetic acid and donor plant environment on plant regeneration from immature inflofescence-derived callus of Loliumperenne L.and Lolium multiflorum L. Plant Sci, 1988. 57:165-172
    Creemers-Molennar J., Van V P., Loeffen J P M., et al. Plant regeneration from suspension cultures and protoplasts of Lolium perenne L. Plant Sci, 1989. 63: 167-176
    Dale P J. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and short cutting [J]. Theor Appl Genet, 1992. 84: 585-591.
    Dale P J. Spread of engineered genes to wild relatives [J]. Plant Physiol, 1992. 100: 13-15.
    Dale P T. Meristem tip culture in Lolium ,Festuca and Dactylis [J]. Plant Science Lett, 1997.9:333-338
    Dale P J. Embryoids from cultured immature embryos of Lolium multiflorum. Z. pflanzenphysiol, 1980. 100:73-77
    Dalton S H., Bettany A J E., Timms E, et al. Transgenie plants of Lolium multiflorum, Lolium perenne, Festuca arund-inacea and Agrostis stolonifera by silicaon carbide fibre-mediated transformation of cell suspension cultures [J]. Plant Sci, 1998. 132:31-43
    Dalton S J. Plant regeneration from cell suspension protoplast of Festuca arundinacea Schreb. (tall fescue) and Lolium perenne L. (perennial ryegrass). J. Plant Physiol, 1988a. 132:170-175
    Ahn B J., Hung F H. and King J W. Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) plants produced by microprojectile bombardment. Plant Cell Rep, 1999. 18:721-726
    Dalton S J., Bettany A J E., Timms E, et al. Co-transformed ,diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) plants produced by microprojectile bombardment. Plant Cell Rep, 1999. 18:721-726
    Dalton S J., Bettany A J E., Timms E, et al. The effects of selection pressure on transformation frequency and copy number in transgenie plants of tall fescue (Festuca arundinacea Schreb.). Plant Sci, 1995. 108:63-70
    Denchev P D., Songstad D D., McDaniel J K, et al. Transgenic orchardgrass (Dactylis glomerata) plants by direct embryogenesis from microprojectile bombarded leaf cells. Plant Cell Rep, 1997. 16: 813-819
    Dudeck A E., Singh S., Giordano C E, et al. Effects of sodium chloride on Cynodon turfgrasses. [J]. Agron. J, 1983. 75: 927-930.
    Eizenga G C. Meiotic analysis of tall fescue somaclones. Genome, 1989. 32:373-379
    Eizenga G C., Dahleen L S. Callus production, regeneration and evaluation of plants from cultured inflorescences of tall fescue (Festuca arundinacea Schreb.). Plant Cell Organ Cult, 1990.22: 7-15
    Fennel S., Bohorova N., Van M., Ginkel J, et al. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theor. Appl. Genet, 1996. 92:163-169
    Femando N., Jose M., Alonso J R.E, et al. CBF2_DREB1C is a negative regulator of CBF1_ DREB1B and CBF3_ DREB1A expression and plays a central role in stress tolerance in Arabidopsis. PNAS, 2004. 3985-3990
    Flowers T J., Troke P F., Yeo A R. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol, 1977. 28:89-121
    Fournier D., Ghesquiere M. and Poisson C. Plant regeneration from cell suspension cultures of tetraploid tall fescue. Plant Cell Tissue Organ Cult, 1996.46: 165-168
    Fowler S. and Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002,.14:1675-1690
    Frame B R., Drayton P R., Bagnall S V, et al. Production of fertile transgenic maize plants by silicon car-bide whisker-mediated transformation. [J]. Plant J, 1994.6:941~948
    Fredy A., Jianping X. Rapid production of transgenic turfgrass (Festuca rubra L.) plants. J. Plant Physiol, 2000. 157: 441-448
    Fromm M., Taylor L P. and Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature, 1986. 319:791-793
    Fukuda A., Nakamura A., Tanaka Y. Molecular cloning and expression of the Na~+/H~+exchanger gene in Oryza sativa. Biochim. Biophys, Acta, 1999. 1446: 149-155
    Gamborg O L., Murshige T., Thorpe TA, et al. Plant tissue culture media. In Vitro, 1976. 12:473-478
    Garcia A., Dalton S J., and Humphreys M O. Reproductive disturbances and phosphoglucoisomerase instability in Festuca arundinacea (tall fescue) plants regenerated from callus and cell suspension cultures. Heredity, 1994. 73:355-362
    Gaxiola R A., Rao R., Sherman A, et al. The Arabidopsis thaliana proton transporter, AtNhx1, and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA, 1999. 96:1480-1485
    Gaxiola R A. Drought-and salt-tolerant plants result from overexpression of the AVPl-H~+-pump. Proc. Natl. Acad. Sci, 2001. 98:11444-11449
    Gilmour S J., Sebolt A M., SalaZar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124. 1854-1865
    Gilmour S J., Zarka D G., Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998. 16, 433-442.
    Glenn E P., Brown J J., Blumwald E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci, 1999. 18:227-255
    Green D E, Vargas J M, Chai B, et al. The use of transgenic plants to confer resistance to brown patch caused by Rhizoctonia solani in Agrostispalustris [A]. In: Clark J M, Kenna M P (eds), Fate and Management of Turfgrass Chemicals[C]. Washington, DC, Oxford University Press, 2000. 330-341
    Gueta-Dahan Y., Yaniv Z., Zilinskas B A, et al. Salt oxidative stress: similar and specific responses and their relationship to salt tolerance in citrus. Planta, 1997. 203:460-469
    Guo G M., Maiwald F., Lorenzen P, et al. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Res. Com, 1998. 26(1): 15-22
    Ha S B., Wu F S. and Thome T K. Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Rep, 1992. 11:601-604
    Haake V., Cook D., Riechmann J L, et al. Transcritption factor CBF4 is a regulator of drought adaption in Abidopsis. Plant Physiol, 2002. 130:639-648
    Hairier U., Ishitani M., Zhu J-K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proe. Natl. Acad. Sci, 2000. 97: 3735-3740
    Hamada A., Shono M., Xia T, et al. Isolation and characterization ofa Na~+/H~+ antiporter gene from halophyte Atriplex gmeline. Plant Mol. Biol, 2001. 46: 43-56.
    Hansoo A D., Rathinasabapathi B., Rivoal J, et al. Osmoprotective compound in the Plumbaginaceae: A natural experiment in metabolic engineering of stress tolerance. Proc. Natl. Acad. Sci, 1994. 91: 306-310
    Harivandi M A., Butler J D., Wu L. Turf2 grass Agronomy Monograph [J]. 1992. 32: 2072
    Hartman C L., Lee L., Day P R, et al. Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Bio/Technology, 1994. 12: 919-923
    Hassidim M., Braun Y., Lwrner Y H R, et al. Na~+/H~+ and K~+/H~+ antiport in root membrane vesicles isolated from the halophyte Atriplex and glycophyte cotton. Plant Physiol, 1990. 94:1795-1801
    Hensgens L A M., Bakker E P H M., Os-Ruygrok E P, et al. Transient and stable expression of gusA fusions with rice genes in rice, barly and perennial ryegrass. Plant Mol. Biol, 1993. 22:1101-1127
    Hiei Y., Ohta S., Komari T, et al. Efficient transformation of rice (Oryza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994. 6:671-682
    Hisano H., Kanazawa A., Kawakami A, et al. Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci, 2004. 167: 861-868
    Hshieh T H., Lee J H., Yang P T, et al. Heterologous expressionof the Arabidopsis CBF1gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002a. 129: 1086-1094
    Hshieh T H., Lee J H., Yang P T, et al. Tomato plants ectopically expression Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002b. 130: 618-626
    Ingram J and Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Mol. Biol, 1996. 47:377-403
    Inokuma C., Sugiura K., Cho C, et al. Plant regeneration from protoplasts of Japanese lawngrass. Plant Cell Rep, 1996. 15: 737-741
    Ishida Y., Saito H., Ohta S, et al. High efficiency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens. Nat Biotechnol, 1996.4: 745-750
    Jacklson J A. and Dale P J. Callus induction, plant regeneration and an assessment of cytological variation in regenerated plants ofLolium multiflorum L. J. Plant. Physisl, 1988. 132:351-355
    Jaglo K R., Kleff S., Amundsen K L, et al. a Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001. 127: 910-917
    Jaglo-Ottosen K R., Gilmour S J., Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998. 280: 104-106
    Jiang C., Lu B. and Singh J. Requirement ofa CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol, 1996. 30:679-684
    Jiang W., Cho M J. and Lemaux P G. Improved callus quality and prolonged regenerability in model and recalcitrant barley (Hordeum vulgare L.) cultivars. Plant Biotechn, 1998. 15:63-69
    Jian-kang Zhu. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 2000. 124: 941-948
    Joseph G., Dubouzet 1., Yoh Sakumal, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. The Plant Journal, 2003.33:751-763
    Kaeppler H F., Gu W., Somers D A, et al. Silicon carbide fiber-mediated DNA delivery into plant cells [J]. Plant Cell Rep, 1990.9: 415-418
    Kaeppler H F., Somers D A., Rines H W, et al. Siliconearbide fiber-mediated stable transformation of plant cells [J]. Theor. Appl. Genet, 1992.84: 560-566
    Kareiva P. Studying and managing the risk of cross-fertilization between transgenie crops and wild relatives [J]. Mol Ecol, 1994.3: 15-21.
    Kasperbauer M J. and Eizenga G C. Tall fescue doubled haploids via tissue culture and plant regeneration. Crop Sci, 1985. 25:1091-1095
    Kasuga M., Liu Q., Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol, 1999. 17: 287-291
    Kasuga M., Miura S., Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and Stress-Inducible rd29A promoter improved drought-and low-temperature stress tolerance in Tobacco by gene transfer. Plant Cell Physiol, 2004.37: 720-729
    Kavi kishor P B., Hong Z., Miao G H, et al. Overexpression of Δ~1-pyrrolin-5-carboxylate synthase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995. 108:1387-1394
    Knight H., Trewavas A J., Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J, 1997. 12: 1067-1078
    Kuai B. and Morris P. Screening for stable transformants and stability of β-glucuronidase gene expression in suspension cultured cells of tall fescue (Festuca arundinacea Schreb). Plant Cell Rep, 1996. 15: 804-808
    Lazar M D., Collins G B., Vian W E. Genetic and environmental effects on the growth and differentiation of wheat somatic cell cultures. J. Heredity, 1983.74: 353-357
    Lee L., Laramore C L., Day PR, et al. Transformation and regeneration of creeping bentgrass (Agrostis palustris Huds.) protoplasts. Crop Sci., 1996. 36: 401-406
    Lee L. Turfgrass biotechnology. Plant Sci, 1996. 115:1-8
    Linsmaier E M and Skoog F. Organic growth factor requirement for tobacco tissue cultures. Physiol. Plant, 1965.18:100-127
    Liu J., Zhu J-K. A calcium sensor homolog required for plant salt tolerance. Science. 1998. 80: 1943-1945
    Liu Q., Kasuga M., Sakuma Y, et al. Two transcription factors DREBI and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transcription pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998. 10: 1391-1406
    Lowe K W. and Conger B V. Root and shoot formation from callus cultures of tall fescue. Crop Sci, 1979. 19:397-400
    LUhrs R. and Lorz H. Plant regeneration in vitro from embryogenic cultures of spring-and winter-type barley (Hordeum vulgare L.) varieties.Theor. Appl. Genet, 1987. 75:16-25
    Lupotto E., Reali A., Oassera S, et al. Maize elite inbred lines are susceptible to Agrobacterium tumefaciens-mediated transformation. Maydica, 1999. 44: 211-218
    M P(eds) .Turfgrass biotechnology-cell and molecular geneticapproaehes to turfgrass improvement [C]. MI: Ann Arbor press, 1997. 203-210
    Madsen S., Olesen A., Dennis B, et al. Inheritance of anther culture response in perennial ryegrass (Lolium perenne L.). Plant Breed, 1995.114:165-168
    Magone H., Yamaguchi S., Hanada A, et al. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. The Plant J, 2004. 37: 720-729
    Marls P A., Gilad S A., Wayne A, et al. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science, 1999. 285: 1256-1258
    Marousky F J., West S H. Somatic embryogenesis plant regeneration from cultured mature caryopses of bahiagrass (Paspalum notatum flugge). Plant Cell Tissue Cult, 1990. 20:125-129
    Maruyama K., Sakuma Y., Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The Plant J, 2004, 38. 982-993
    Masaru O., Yasuyuki H., Asae N, et al. Introduction of a Na~+/H~+ antiport gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters, 2002. 532:279-282
    Mcdonnell R E. and Conger B V. Callus induction and plantlet formation from mature embryo explants of Kentucky bluegrass. Crop Sci, 1984. 24: 573-578
    Meyer W., Zhang G, Lu S, et al. Trans-formation of Kentucky bluegrass (Poa pratensis L.) with be-taine aldehyde dehydrogenase gene for salt and drought tolerance [A]. Annual Meetings Abstracts American Society of Agronomy, Crop Science Society of America, Soil Science Society of American[C]. Minneapolis Minnesota, 2000. 167: 5-9,
    Mittler R., Shulaev V., Lam E. Coordinated activation of programmed cell death and defense mechanisms in transgenic tobaco plants expressing abacterial proton pump [J]. Plant Cell, 1995.7: 29~42
    Murashige T. and Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962. 15: 473-497
    Nadolska-Orezyk A., Orezyk W., Przetakiewicz A. Agrobacterium-mediated transformation of cereals from technique development to application. Acta Physiol Plant, 2000. 22:77-88
    Nakashima K., Shinwari Z K., Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and highsalinity-responsive gene expression. Plant Mol. Biol, 2000.42: 657-665.
    Niu X., Bressan R A., Hasegawa P M, et al. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995. 109: 735-742
    Noctor G., Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant mol. Biol, 1998. 49: 249-279
    Olesen A., Andersen S B. and Due I K. Anther culture response in perennial ryegrass (Lolium perenne L). Plant Breed, 1988. 101:60-65
    Olesen A., Storgaard M., Madsen S, et al. Somatic in vitro culture response of Lolium perenne L.: genetic effects and correlations with anther culture. Erphytica, 1995.86: 199-209
    Opsahl-Ferstad H G, Bj(?)rnstad A. and Rognli O A. Genetic control of androgenetic response in Lolium perenne L. Theor. Appl. Genet, 1994b. 89:133-138
    Opsahl-Ferstad H G, Bj(?)rnstad A. and Rognli O A. Influence of medium and cold pretreatment on androgenetic response in Lolium perenne L. Plant Cell Rep, 1994a. 13:594-600
    Papenfuss J M. and Carman J G. Enchanced regeneration from wheat callus cultures using dicamba and kinetin. Crop Science, 1987.27: 588-593
    Paszkowski J., Shillito R D., Saul M W, et al. Direct gene transfer to plants. EMBO J. 1984. 3: 2717-2722
    Paul G J., Terrance P R. A review of Issue Pertaining to Transgenic Turfgrasses. HortScience, 1999. 34: 595-597
    Perez M., Ishioka G Y., Walker L E, et al. cDNA clonging and immunological characterization of the ryegrass allergen Lol pI. J. Biol. Chem, 1990. 265: 16210-16215
    Perez-Vicente R., Wen X D., Wang Z Y, et al. Culture of vegetative and floral meristems in ryegrass: potential targets for microballistic transformation. J. Plant Physiol, 1993. 142: 610-617
    Pilon-Smits E A H, et al. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol, 1995. 107: 125-130
    Potrykus I. Direct gene transfer to protoplasts. In: Gene Transfer to Plants, 1995. pp.55-57. Potrykus, I. and Spangenberg, G., Eds., Springer, Berlin.
    Potrykus I., Saul M W., Petruska J, et al. Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet, 1985. 199:183-188
    Raghava Ram N V. and Nabors M W. Cytokinin mediated long-term, high-frequency plant regeneration in rice tissue cultures. Z. Pflanxenpysiol, 1984. 113: 315-323
    Rajoelina S R., Alibert G. and Planchon C. Continuous plant regeneration from established embryogenic cell suspension cultures of Italian ryegrass and tall fescue. Plant Breed, 1990. 104:265-271
    Reed J N. and Conger B V. Meiotic analysis of tall fescue plants regeneration from callus cultures. Environ. Exp. Bot, 1985. 25: 277-284
    Richard H A., Rudas V A., Sun H, et al. Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep, 2001. 20: 48-54
    Ruiz J M. and Blumwald. Salinity-induced glutathione synthesis in Brassica napus. Planta, 2002. 214: 965-967
    Sakamoto A. and Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ, 2002.25: 163-171
    Sakuma Y., Liu Q., Dubouzet J G, et al. DNA bingding specificity of the ERF/AP2 domain of Abidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun, 2002. 290: 998-1009
    Sambrook J., Fritsch E F., Maniatis T. Molecular Cloning: A Lab. Mannal. 2nd ed. New York: Cold Spring Harber Laboratory Press. 1989. 31-58
    Saul M W. and Potrykus I. Direct gene transfer to protoplasts: fate of the transferred genes. Dev. Genet, 1990. 11: 176-181
    Seki M., Narusaka M., Kamiya A, et al. Functional annotation of a full-length Arabidopsis cDNA collection. Science, 2002. 296:141-145
    Serik O., Ainur I., Murat K, et al. Silicon carbidefiber-mediated DNA delivery into cells of wheat (Triticum aestivum L.) mature embryo [J]. Plant Cell Rep, 1996. 16:133~136
    Shatters R G., Wheeler R A. and West S H. Somatic embryogenesis and plant regeneration from callus cultures of "Tifton 9: ahiagrass." Crop Sci, 1994. 34: 1378-1384
    Shi H Z., Byeong-haLee., Shaw-Jye, et al. Overexperssion of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2003.21: 81-85
    Shi H., Ishitani M., Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proc. Natl. Acad. Sci, 2000. 97: 6896-6901
    Shi H., Quinero F J., Pardo J M, et al. The putative plasma membrane Na~+/H~+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002. 14: 465-477
    Shinozaki K. and Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol, 2000.3: 217-223
    Shinwari Z K., Nakashima K., Miura S, et al. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys, Res. Commun, 1998. 22: 161-170.
    Sidoli A., Tamborini E., Giuntini I, et al. Clonging, expression and immunological characterization of recombinant Lolium perenne allergen Lol pⅡ. J. Biol. Chem, 1993. 268: 21819-21825
    Singh M B., Hough T., Theerakulpisut P, et al. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: intracellular targeting to the amyloplast. Proc. Natl. Acad. Sci, 1991. 88: 1384-1388
    Spangenberg G., Wang Z Y., Nagel J, et al. Transgenic tall fescue (Festuca arundinacea) and red fescue (F.rubra) plants from microprojectile bombardment of embryogenic suspension cells. J. Plant Physiol, 1995d. 145: 693-701
    Spangenberg G., Wang Z Y., Wu X L, et al. Transgenic perennial ryegrass (Lolium perenne ) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci, 1995c. 108:209-217
    Spangenberg G., Wang Z Y., Nagel J, et al. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci, 1994b. 97:83-94
    Spangenberg G., Wang Z Y., Ye X D, et al. Transgenic ryegrass (Lolium ssp.). In: Biotechnology in Agriculture and Forestry: Transgenic Crops Part Ⅰ. 2000. Vol. 46. pp.172-187. Bajaj, P.S. Ed., Springer, Heidelberg.
    Spangenberg G., Wang Z Y., Wu, X L, et al. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci, 1995c. 108:209-217
    Stochinger E J, Gilmour S J. and Thomashow M F. Arabidopsis thaliana CBFI encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Nati. Acad. Sci. USA, 1997. 94: 1035-1040
    Storey R., Pitman M G., Stelzer R, et al. X-ray micro-analysis of cells and cell compartments of Atriplex spongiosa. J. ExP. Bot, 1983. 34: 778-794
    Takamizo T., Fukase N., Saruwatari Y, et al. Genetic variation in plant regeneration from callus culture of tall fescue (Festuca arundinacea Schreb) cultivars. JARQ, 1994. 28: 200-205
    TakamizoT., Suginobu K I. and Ohsugi R. Plant regeneration from suspension culture derived protoplasts of tall rescue (Festuca arundinacea Schreb.) of a single genotype. Plant Sci, 1990. 72: 125-131
    Tarcynski M C., Jensen R G., Bohnert H J, et al. Stress protection in transgenetic tobacco producing a putative osmsprotetant mannitioi. Science, 1993. 259: 508-510
    Taylor M G. and Vasil I K. Histology of, and physical factors affecting transient GUS expression inbryos following microprojectile bombardment. Plant Cell Rep, 1991. 10: 120-125
    Terakawa T., Sato T. and Koike M. Plant regeneration from protoplasts isolated from embryogenic suspension cultures of creeping bentgrass (Agrostis palustris Huds.). Plant Cell Rep, 1992. 11: 457-461
    Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol, 1999. 50, 571-599
    Tingay S., McElroy D., Kalla R, et al. Agrobacterium tumefaciens-mediated barley transformation. Plant J, 1997. 11: 1369-1376
    Torello W A. and Rufner R. and Symington A G. Regeneration from perennial ryegrass callus tissue. HortScience, 1984. 19:56-57
    Trifonova A., Madsen S., Olesen A. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci, 2001. 162: 871-880
    Uze M., Pot rykus., Sautter C, et al. Factors influencing T-DNA transfer from Agrobactered in mature wheat embryos (Triticum aestivum L.). Cereal Res. Com, 2000. 28 (1-2): 17-23
    Vander M H M., Jong E R., Rueb S, et al. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.). Plant Mol. Biol, 1994. 24: 401-405
    Vasil V. and Vasil I K. Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum P. purpureum hybrid. Am. J. Bot, 1981. 68: 864-872
    Venema K., Quintero F J., Pardo J M, et al. The Arabidopsis Na~+/H~+ exchanger AtNHX1 catalyzes low affinity Na~+ and K~+ transport in reconstituted liposomes. J. Biol. Chem, 2002. 277: 2413-2418
    Wada M., Urayama O., Satoh S, et al. A marine algal Na~+-activated ATPase possesses an immunologically identical epotope to Na~+/K~+ -ATPase. FEBS lett, 1992.309: 272-274
    Wang Z Y., Legris G., Nagel J, et al. Cryopreservation of embryogenic cell suspensions in Festuca and Lolium species. Plant Sci., 1994. 103:93-106
    Wang Z Y., Nagel J., Potrykus I, et al. Plants from cell suspension -derived protoplasts in Lolium species. Plant Sci, 1993a. 94:179-193
    Wang Z Y., Takamizo T., Iglesias V A, et al. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology, 1992. 10:691-696
    Wang Z Y., VallEs M P., Montavon P, et al. Fertile plant regeneration from protoplasts of meadow fescue (Festuca pratensis Huds). Plant Cell Rep, 1993b. 12:95-100
    Wang, G R., Binding H. and Posselt U K. Fertile transgenie plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam. J. Plant Physiol, 1997. 151:83-90
    Warkentin D., Chai B, Hajela R K, et al. Development of transgenic creeping bentgrass (Agrostispalustris Huds.) for fungal disease resistnce [A]. In: Sticklen M B, Kenna M P (eds). Turfgrass biotechnology-Cell and molecular genetic approaches to turfgrass improvement [C]. Michigan: Ann Arbor Press, 1997. 153~161
    Wu G., Shortt B J., Lawrence E B, et al. Disease resistance conferred by expression of agene encoding H_2O_2 generating glucose oxidase in transgenic potato plants [J]. Plant Cell, 1995.7:1357-1368
    Wu S-J., Lei D., Zhu J-K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8:617-627
    Wu, X L., Ye X D., Wang Z Y, et al. Gene transfer to ryegrass: down-regulation of major pollen allergens in transgenic plants. In: Proc. ⅩⅧ Int. Grassland Congr. Vol. 1, pp. 1997.35-36
    Xiao L. and Ha S B. Efficient selection and regeneration of creeping bentgrass transformats following particle bombardment. Plant Cell Rep, 1997. 16: 874-878
    Xu, D., Duan X., Wang B. Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol., 1996. 110: 249-257
    Xue Z Y., Zhi D Y., Xue G P, et al. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na~+/H~+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na~+. Plant Sci, 2004. 167:849-859
    Yamaguchi-Shinozaki K and Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responses to drought, low-temperture or high-salt stress. Plant Cell, 1994.6:251-264
    Yanaguehi-Shinozaki, K. and Shinozaki K A. novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress. Plant Cell, 1994. 6:251-264
    Ye X, Wang Z Y, Wu X, et al. Spangenberg G. Transgenic Italian ryegrass (Lolium rnuitiflorum) plants from microprojectile bombardmentof embryogenic suspension cells [J]. Plant Cell Rep, 1997. 16: 379~384
    Yu TT., Skinner D Z., Liang G H, et al. Agrobacteriurn-mediated transformation of creeping bentgrass using GFP as a report gene. Hereditas, 2000. 133:229-233
    Zaghmout O M E and Torello WA. Somatic embryogenesis and plant from embryogenic suspension cultures of perennial ryegrass. In Vitro Cell Dev. Biol, 1990.26: 419-424
    Zaghmout O M E and Torello W A. Enhanced regeneration in long-term callus cultures of red fescue by pretreatment with activated charcoal. HortSci, 1988.23:615-616
    Zengyu W, Andrew H and Rouf M. Forage and turf grass biotechnology. Critical Reviews in Plant Sciences, 2001. 20 (6): 573-619
    Zhang H X. and Eduardo B. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 2001.19: 765-768
    Zhang H X., Joanna N., Hodson W J P, et al. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. PNAS, 2001.98: 12832-12836
    Zhao Z-Y., Cai T., Tagliani L, et al. Agrobacterium-mediated sorghum transformation. Plant Mol Biol, 2000.44: 789-798
    Zhong H., Liu C A., Vargas J, et al. Simultaneous control of weeds, dollar spot, and brown patch deseases in transgenic creeping bentgrass [A]. In: Sticklen M B, Kenna
    Zhong H., Bolyard M G., Srinivasan C, et al. Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Rep, 1993.13:1-6
    Zhong H., Srinivasan C. and Sticklen M B. Plant regeneration via somatic embryogenesis in creeping bentgrass (Arostis palustris Huds.). Plant Cell Rep, 1991.10: 453-456
    Zhu J-K., Liu J., Xiong L. Genetic analysis of salt tolerance in Arabidopsis thaliana: evidence of a critical role for potassium nutrition. Plant Cell, 1998. 10: 1181-1192
    Zhu J-K. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis. Plant Physiol, 2000. Vol. 124: 941-948,
    Zoubenko O., Uckun F., Hur Y, et al. Plant resistance to fungai infection induced by nontoxic pokeweed antiviral protein mutants [J]. Nature Biotechnology, 1997. 15:992~996
    杨富裕,周禾。草坪草抗盐性研究进展。草原与草坪,2001,1:10-13
    赵世杰,许长城,邹琦,孟庆伟。植物组织中丙二醛测定方法的改进。植物生理学通讯,1994,30(3):207-210
    刘强,DREB转录因子在植物抗逆性中的作用。科学通报,2000,45(1):11—16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700