杨树抗病防御相关基因克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究使用杨树基因组数据库JGI P.trichocarpa v1.0(http://genome.jgi-psf.org/Poptr1/Poptr1.home.html)对38个差显序列进行了重新注释。注释结果显示11个差显序列为功能未知或和抗病防御相关;进而使用实时定量RT-PCR进行验证工作,实验结果显示在抗病植株Ⅰ-69(Populus deltoides cv.'Lux' (Ⅰ-69/55))中两个差显序列69-Ⅲ-4和69-Ⅱ-6受病原菌(Marssonina brunnea f. sp. multigermtubi)诱导剧烈上调,69-Ⅲ-4为脂肪氧化酶基因,其在病原侵染后的晚期被诱导表达上调;69-Ⅱ-6为DNA损伤修复蛋白基因,其在病原诱导早期诱导上调。在本研究中,作者从RNA的提取,内对照基因的选择和扩增效率3个方面对实时定量RT-PCR技术进行了优化,建立了一套简便可靠的实时定量RT-PCR的方法,并使用方差分析给与验证。本研究在美洲黑杨Ⅰ-69中克隆得到两个脂肪氧化酶基因PdLOX1和PdLOX2(GenBank accession no.DQ131178,DQ131179)。原核表达分析PdLOX1和PdLOX2,外源蛋白与预测分子量吻合并具有脂肪氧化酶活性。推导氨基酸序列与已知的脂肪氧化酶进行系统发生分析发现PdLOX1和PdLOX2属于脂肪氧化酶类型Ⅱ 13-LOX类群,该类群脂肪氧化酶同多种生物和生物胁迫相关。使用实时定量RT-PCR对PdLOX1和PdLOX2受杨树真菌病原,机械损伤,茉莉酸甲酯,水杨酸处理时的表达情况进行分析表明:PdLOX1和PdLOX2均受M.f.sp.Multkiermtubi诱导上调,PdLOX1受诱导能力较强;两个基因均受茉莉酸甲酯和机械损伤诱导上调;在水杨酸处理时PdLOX1和PdLOX2表达水平下降,通过正向高效液相色谱分析表明两个脂肪氧化酶的酶产物主要为13-HPOD,表现为13-LOX活性,可能参与了茉莉酸的体内合成。通过以上结果我们推测这两个脂肪氧化酶可能在杨树抵抗生物和非生物胁迫中具有重要的作用。本研究中利用杨树基因组初步注释结果和美洲黑杨受真菌病原Marssonina诱后的特异表达的差显片段69-Ⅱ-6序列,克隆了一个DRT100同源基因。原核表达分析发现其具有互补宿主菌recA突变的能力,而且其表达可受真菌病原和水杨酸诱导上调,在茉莉酸甲酯处理下其表达量下降。在本研究中,还同源克隆了一个杨树PGIP基因,其与拟南芥中的PGIP1,2基因高度相似,以上工作为阐述DRT100基因同PGIP基因功能的异同提供了基础。本研究中利用实时定量RT-PCR方法分析杨树抗黑斑病QTLs目标区段候选基因在黑斑病病原诱导下的表达情况,结果显示,一个AP2类型转录因子在抗病植株中表达上调,而在感病植物中其表达量没有明显变化。
Compared with the poplar genome database JGI P. trichocarpa v1.0 (http://genome. jgi-psf. org/Poptr1/Poptr1. home. html), thirty-eight differential display sequences were annotated newly. Eleven sequences were found to be associated with plant defense or were functionally unknown. Upon examination by real-time quantitative PCR, two of 11 differential display (DD) sequences - 69-III-4 and 69-II-6 -were found to be induced intensively by the pathogen. According to the genome annotation database for the species, 69-III-4 is associated with lipoxygenase (LOX) and 69-II-6 refers to a DNA damage-repair/toleration protein. In this study, we set up a sort of simple real time RT-PCR method and analyzed the reliability using ANOVA method .In the present study, we cloned two lipoxygenase genes, PdLOX1 and PdLOX2 (GenBank accession no. DQ131178, DQ131179). from Populus deltoides cv. 'Lux' (1-69/55). A prokaryotic expression analysis of PdLOX1 and PdLOX2 revealed that the encoded exogenous proteins were identical to the predicted molecular weights and possessed the expected lipoxygenase activities. Chromatogram analysis indicated that the two lipoxygenase mainly possess 13-LOX activity. Phylogenetic analysis of the derived amino acid sequences of known lipoxygenases revealed that PdLOX1 and PdLOX2 were members of the type 2 13-LOX family of genes. This class of lipoxygenases is known to be involved in biotic and abiotic stress. Using real-time RT-PCR, we evaluated PdLOX1 and PdLOX2 expression following exposure to a Poplar fungal pathogen (Marssonina brunnea f. sp. Multigermtubi), mechanical injury, methyl jasmonate (MeJA), or salicylic acid (SA). We report that both PdLOX1 and PdLOX2 expression levels were increased following exposure to M. brunnea f. sp. Multigermtubi, with the pathogen exerting a relatively stronger influence on PdLOX1 expression. Furthermore, expression levels of the two genes were also up-regulated by mechanical damage and exposure to MeJA. In contrast, both PdLOX1 and PdLOX2 expression was down-regulated by SA treatment. We propose that the two novel lipoxygenases may play an important role in Poplar resistance to biotic and abiotic stress. According DD sequences and poplar genome database, we cloned a DNA damage-repair/toleration, PdDRT100. A prokaryotic expression analysis of PdDRT100 revealed that complementation of E. coli reck Mutation. PdDRT100 were increased following exposure to fungal pathogen and SA. In present study, we cloned a PGIP gene homolog from Populus deltoids.The sequence was highly homologous to Arabidopsis PGIP1, 2. Candidate genes in the QTLs involved in poplar black spot disease were identified based on populus gemone database. Using real-time RT-PCR, we analyzed expression level of 19 candidate gene in I-69(resistance)
引文
[1] Allen, R.L., Bittner-Eddy, P.D., Grenville-Briggs, L.J., Meitz, J.C., Rehmany, A. P., Rose, L.E., and Beynon, J.L. (2004). Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306, 1957-1960.
    [2] Asiegbu, F.O., Choi, W., Li, G., Nahalkova, J., and Dean, R.A. (2003). Isolation of a novel antimicrobial peptide gene (Sp-AMP) homologue from Pinus sylvestris (Scots pine) following infection with the root rot fungus Heterobasidion annosum. FEMS Microbiol Lett 228, 27-31.
    [3] Axtell, M. J., and Staskawicz, B.J. (2003). Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377.
    [4] B.B.布坎南,W.格鲁伊森姆,R.L.琼斯.(2003).植物生物化学与分子生物学.科学出版社,221-222.
    
    [5] Bachmann, A., Hause, B., Haucher, H., Garbe, E., Voros, K., Weichert, H., Wasternack, C., and Feussner, I. (2002). Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol Chem 383, 1645-1657.
    [6] Barton, N.H., and Keightley, P.D. (2002). Understanding quantitative genetic variation. Nat Rev Genet 3, 11-21.
    [7] Basile, A., Alba di Nuzzo, R., Capasso, C., Sorbo, S., Capasso, A., and Carginale, V. (2005). Effect of cadmium on gene expression in the liverwort Lunularia cruciata. Gene 356, 153-159.
    [8] Berney, C., and Danuser, G. (2003). FRET or no FRET: a quantitative comparison. Biophys J 84, 3992-4010.
    [9] Bleuyard, J.Y., Gallego, M.E., Savigny, F., and White, C. I. (2005). Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J 41, 533-545.
    [10]Bohland, C., Balkenhohl, T., Loers, G., Feussner, I., and Grambow, H.J. (1997). Differential Induction of Lipoxygenase Isoforms in Wheat upon Treatment with Rust Fungus Elicitor, Chitin Oligosaccharides, Chitosan, and Methyl Jasmonate. Plant Physiol 114, 679-685.
    [11]Bonas, U., and Lahaye, T. (2002). Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr Opin Microbiol 5, 44-50.
    [12]Bray, C.M., and West, C.E. (2005). DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168, 511-528.
    [13]Brown, B. A., Cloix, C., Jiang, G.H., Kaiserli, E., Herzyk, P., Kliebenstein, D. J., and Jenkins, G.I. (2005). A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102, 18225-18230.
    [l4]Brunner, A.M, Yakovlev, I.A., and Strauss, S.H. (2004). Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4, 14.
    
    [15]Buonaurio, R., and Servili, M. (1999). Involvement of lipoxygenase, lipoxygenase pathway volatiles, and lipid peroxidation during the hypersensitive reaction of pepper leaves to Xanthomonas campestris pv. vesicatoria. Physiological and Molecular Plant Pathology 54, 155-169.
    [16]Bustin, S.A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29, 23-39.
    [17]Bustin, S.A., and Nolan, T. (2004). Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15, 155-166.
    [18]Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. (1994). Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell 6, 1583-1592.
    [19]Cato, S., McMillan, L., Donaldson, L., Richardson, T., Echt, C., and Gardner, R. (2006). Wood formation from the base to the crown in pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression. Plant Mol Biol 60, 565-581.
    [20]Cervera, M.T., Gusmao, J., Steenackers, M., Peleman, J., and Storme, V. (1996). Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theoretical and Applied Genetics 733-737
    [21]Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J. A., Harper, J. F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J. L., Wang, X., and Zhu, T. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559-574.
    [22]Czechowski, T., Bari, R.P., Stitt, M., Scheible, W. R., and Udvardi, M.K. (2004). Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38, 366-379.
    [23]D'Ovidio, R., Mattei, B., Roberti, S., and Bellincampi, D. (2004). Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta 1696, 237-244.
    [24]Dodds, P. N., and Schwechheimer, C. (2002). A breakdown in defense signaling. Plant Cell 14 Suppl, S5-8.
    
    [25]Dong, X. (2004). NPR1, all things considered. Curr Opin Plant Biol 7, 547-552.
    
    [26]Emanuelsson, O., Nielsen, H., and von Hei jne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8, 978-984.
    [27]Fan, W., and Dong, X. (2002). In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14, 1377-1389.
    [28]Ferrari, S., Vairo, D., Ausubel, F.M., Cervone, F., and De Lorenzo, G. (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15, 93-106.
    [29]Feussner, I., and Wasternack, C. (2002). The lipoxygenase pathway. Annu Rev Plant Biol 53, 275-297.
    [30]Frary, A., Nesbitt, T.C., Grandillo, S., Knaap, E., Cong, B., Liu, J., Meller, J., Elber, R., Alpert, K.B., and Tanksley, S.D. (2000). fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85-88.
    [31]Frye, C. A., Tang, D., and Innes, R. W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98, 373-378.
    [32]Gallego, F., Fleck, O., Li, A., Wyrzykowska, J., and Tinland, B. (2000). AtRAD1, a plant homologue of human and yeast nucleotide excision repair endonucleases, is involved in dark repair of UV damages and recombination. Plant J 21, 507-518.
    [33]Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25, 386-401.
    [34]Gobel, C., Feussner, I., Schmidt, A., Scheel, D., Sanchez-Serrano, J., Hamberg, M., and Rosahl, S. (2001). Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells. J Biol Chem 276, 6267-6273.
    [35]GOM, K., YAMAMOTO, H., and AKIMITSU, K. (2002). Characterization of a Lipoxygenase Gene in Rough Lemon Induced by Alternaria alternata. J. Gen. Plant Pathol. 68, 21-30.
    [36]Gomez-Gomez, L., and Boiler, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003-1011.
    [37]Gomez-Gomez, L., Bauer, Z., and Boiler, T. (2001). Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13, 1155-1163.
    [38]Gutterson, N., and Reuber, T. L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7, 465-471.
    [39]Halitschke, R., and Baldwin, I. T. (2003). Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 36, 794-807.
    [40]Hammond-Kosack, K. E., and Parker, J. E. (2003). Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14, 177-193.
    [41]Heitz, T., Bergey, D. R., and Ryan, C. A. (1997). A gene encoding a chloroplas.t-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol 114, 1085-1093.
    [42]Huang, Y.F., Lan, W.Z., Chen, C., and Yu, L.J. (2005). The role of lipoxygenase in elicitor-induced taxol production in Taxus chinensis cell cultures. Process Biochemistry 40, 2793 - 2797.
    [43]Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A, Shirasu, K., and Dangl, J. L. (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. Embo J 22, 5679-5689.
    [44]Innes, R.W. (2004). Guarding the goods. New insights into the central alarm system of plants. Plant Physiol 135, 695-701.
    [45]Jean-Luc, M., Jean-Pierre, A., Michel, P., and Fabienne, V. (2002). Lipoxygenase-mediated production of fatty acid hydroperoxides is a specific signature of the hypersensitive reaction in plants. Plant Physiol. Biochem. 40, 633-639.
    [46]Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. Embo J 19, 4004-4014.
    [47] Jiang, C.Z., Yee, J., Mitchell, D.L, and Britt, A.B. (1997). Photorepair mutants of Arabidopsis. Proc Natl Acad Sci U S A 94, 7441-7445.
    [48]Johnk, N., Hietala, A.M., Fossdal, C.G., Collinge, D.B., and Newman, M.A. (2005). Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia so.). Tree Physiol 25, 1533-1543.
    [49]Jones, D. A., and Takemoto, D. (2004). Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16, 48-62.
    [50]Kang, L, Li, J., Zhao, T, Xiao, F., Tang, X., Thilmony, R., He, S., and Zhou, J.M. (2003). Interplay of the Arabidopsis nonhost resistance gene NH01 with bacterial virulence. Proc Natl Acad Sci U S A 100, 3519-3524.
    [51]Katagiri, F. (2004). A global view of defense gene expression regulation—a highly interconnected signaling network. Curr Opin Plant Biol 7, 506-511.
    [52]Kearsey, M. J., and Farquhar, A. G. (1998). QTL analysis in plants; where are we now? Heredity 80 ( Pt 2), 137-142.
    [53]Khazi, F. R., Edmondson, A. C., and Nielsen, B. L. (2003). An Arabidopsis homologue of bacterial RecA that complements an E. coli recA deletion is targeted to plant mitochondria. Mol Genet Genomics 269, 454-463.
    [54]Kim, Y. J., Lin, N. C., and Martin, G. B. (2002). Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109, 589-598.
    [55]Kjemtrup, S., Nimchuk, Z., and Dangl, J. L. (2000). Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. Curr Opin Microbiol 3, 73-78.
    [56]Kliebenstein, D. J., Lim, J.E., Landry, L.G., and Last, R. L. (2002). Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130, 234-243.
    [57]Kolomiets, M.V., Chen, H., Gladon, R.J., Braun, E.J., and Hannapel, D.J. (2000). A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol 124, 1121-1130.
    [58]Kunkel, B. N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5, 325-331.
    [59] Landry, L.G., Stapleton, A.E., Lim, J., Hoffman, P., Hays, J.B., falbot, V., and Last, R.L. (1997). An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proc Natl Acad Sci U S A 94, 328-332.
    [60]Laval, V., Koroleva, O.A., Murphy, E., Lu, C, Milner, J.J., Hooks, M.A., and Tomos, A.D. (2002). Distribution of actin gene isoforms in the Arabidopsis leaf measured in microsamples from intact individual cells. Planta 215, 287-292.
    [61]Lekanne Deprez, R. H., Fijnvandraat, A. C., Ruijter, J. M., and Moorman, A. F. (2002). Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal Biochem 307, 63-69.
    [62]Leon, J., Royo, J., Vancanneyt, G., Sanz, C., Silkowski, H., Griffiths, G., and Sanchez-Serrano, J. J. (2002). Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. J Biol Chem 277, 416-423.
    [63]Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325-327.
    [64]Lescot, M., Rombauts, S., Zhang, J., Aubourg, S., Mathe, C., Jansson, S., Rouze, P., and Boerjan, W. (2004). Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theor Appl Genet 109, 10-22.
    [65]Li, G., and Asiegbu, F.O. (2004). Induction of Pinus sylvestris PsACRE, a homology of Avr9/Cf-9 rapidly elicited defense-related gene following infection with root rot fungus Heterobasidion annosum Plant Science 167, 535-540.
    
    [66]Liang, P. (2002). A decade of differential display. Biotechniques 33, 338-344, 346.
    [67]Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-971.
    [68]Liu, J. J., and Ekramoddoullah, A. K. (2003). Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine ( Pinus monticola Dougl. ex. D. Don.). Mol Genet Genomics 270, 432-441.
    [69]Lorenzo, O., and Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8, 532-540.
    [70]Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L., and Baulcombe, D.C. (2003). High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. Embo J 22, 5690-5699.
    [71]Mackey, D., Holt, B. F., Wiig, A., and Dangl, J. L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754.
    [72]Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389.
    [73]Maldonado, A.M., Doerner, P., Dixon, R.A., Lamb, C. J., and Cameron, R.K. (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419, 399-403.
    [74]Marathe, R., and Dinesh-Kumar, S.P. (2003). Plant defense: one post, multiple guards?! Mol Cell 11, 284-286.
    [75]Marras, S.A., Kramer, F.R., and Tyagi, S. (2002). Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 30, el22.
    [76]Martin, G. B., Bogdanove, A.J., and Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54, 23-61.
    [77]Meyers, B.C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809-834.
    [78]Moffett, P., Farnham, G., Peart, J., and Baulcombe, D.C. (2002). Interaction between domains of a plant NBS-LRR protein in disease resistance-related .cell death. Embo J 21, 4511-4519.
    [79]Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944.
    [80]Mysore, K. S., and Ryu, C.M. (2004). Nonhost resistance: how much do we know? Trends Plant Sci 9, 97-104.
    [81]Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boiler, T., and Jones, J. D. (2004). The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135, 1113-1128.
    [82]Nimchuk, Z., Marois, E., Kjemtrup, S., Leister, R. T., Katagiri, F., and Dangl, J.L. (2000). Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101, 353-363.
    [83]Pang, Q., Hays, J. B., and Rajagopal, I. (1992). A plant cDNA that partially complements Escherichia coli recA mutations predicts a polypeptide not strongly homologous to RecA proteins. Proc Natl Acad Sci U S A 89, 8073-8077.
    [84]Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J., and Osbourn, A.E. (1999). Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci U S A 96, 12923-12928.
    [85]Pastuglia, M., Roby, D., Dumas, C., and Cock, J.M. (1997). Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9, 49-60.
    [86] Peart, J.R., Lu, R., Sadanandom, A., Malcuit, I., Moffett, P., Brice, D.C, Schauser, L., Jaggard, D. A., Xiao, S., Coleman, M. J., Dow, M., Jones, J. D., Shirasu, K., and Baulcombe, D.C. (2002). Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci U S A 99, 10865-10869.
    [87]Peng, Y. L, Shirano, Y., Ohta, H., Hibino, T., Tanaka, K., and Shibata, D. (1994). A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus. J Biol Chem 269, 3755-3761.
    [88]Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., Martienssen, R., Mattsson, O., Jensen, A.B., and Mundy, J. (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111-1120.
    
    [89]Ponchel, F., Toomes, C, Bransfield, K., Leong, F.T., Douglas, S.H., Field, S.L., Bell, S.M., Combaret, V., Puisieux, A., Mighell, A.J., Robinson, P. A., Inglehearn, C.F., Isaacs, J.D., and Markham, A.F. (2003). Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3, 18.
    [90]Ramakers, C., Ruijter, J.M., Deprez, R.H., and Moorman, A. F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339, 62-66.
    [91]Rance, I.I., Fournier, J., and Esquerre-Tugaye, M.T. (1998). The incompatible interaction between phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci U S A 95, 6554-6559.
    [92]Rodrigues, P., Garrood, J.M., Shen, Q.H., Smith, P.H., and Boyd, L.A. (2004). The genetics of non-host disease resistance in wheat to barley yellow rust. Theor Appl Genet 109, 425-432.
    [93]Royo, J., Vancanneyt, G., Perez, A. G., Sanz, C., Stormann, K., Rosahl, S., and Sanchez-Serrano, J.J. (1996). Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem 271, 21012-21019.
    [94]Royo, J., Leon, J., Vancanneyt, G., Albar, J. P., Rosahl, S., Ortego, F., Castanera, P., and Sanchez-Serrano, J. J. (1999). Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of Proteinase inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci U S A 96, 1146-1151.
    [95]Rushton, P. J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K., and Somssich, I.E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. Embo J 15, 5690-5700.
    [96]Rutledge, R.G., and Cote, C. (2003). Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31, e93.
    
    [97]Schaffrath, U., Zabbai, F., and Dudler, R. (2000). Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators. Eur J Biochem 267, 5935-5942.
    [98]Scofield, S. R., Tobias, C.M., Rathjen, J.P., Chang, J.H., Lavelle, D. T., Michelmore, R. W., and Staskawicz, B.J. (1996). Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science 274, 2063-2065.
    
    [99]Shah, J. (2003). The salicylic acid loop in plant defense. Curr Opin Plant Biol 6, 365-371.
    [100] Shah, J., and Klessig, D.F. (1996). Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related beta-1, 3-glucanase gene, PR-2d. Plant J 10, 1089-1101.
    [101] Shanmugam, V. (2005). Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiol Res 160, 83-94.
    [102] Shibata, D., Slusarenko, A., Casey, R., Hildebrand, D., and Bell, E. (1994). Lipoxygenases. Plant Mol. Biol. Report 12, S41-42.
    [103] Sinha, R.P., and Hader, D. P. (2002). UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1, 225-236.
    [104] Slaymaker, D.H., and Keen, N.T. (2004). Syringolide elicitor-induced oxidative burst and protein phosphorylation in soybean cells, and tentative identification of two affected phosphoproteins. Plant Science 166, 387-396.
    [105] Smith, C.M., Rodriguez-Buey, M., Karlsson, J., and Campbell, M.M. (2004). Blackwell Publishing, Ltd.
    [106] The response of the poplar transcriptome to wounding and subsequent infection by a viral pathogen. New Phytologist 164, 123-136.
    [107] St'ephanie Pflieger, V. e. L., and Mathilde Causse. (2001). The candidate gene approach in plant genetics: a review. Molecular Breeding, 275-291.
    [108] Takahashi, A., Casais, C, Ichimura, K., and Shirasu, K. (2003). HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100, 11777-11782.
    [109] Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., Zhu, T., Zou, G., and Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell .15, 317-330.
    [110] Taylor, G. (2002). Populus: arabidopsis for forestry. Do we need a model tree? Ann Bot (Lond) 90, 681-689.
    [111] Thordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6, 351-357.
    [112] Tomos, A.D., and Sharrock, R.A. (2001). Cell sampling and analysis (SiCSA): metabolites measured at single cell resolution. J Exp Bot 52, 623-630.
    [113] Turner, J.G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway. Plant Cell 14 Suppl, S153-164.
    [114] Tuteja, N., Singh, M.B., Misra, M. K., Bhalla, P.L., and Tuteja, R. (2001). Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36, 337-397.
    [115] Ulm, R., and Nagy, F. (2005). Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol 8, 477-482.
    [116] van den Burg, H. A., Spronk, C. A., Boeren, S., Kennedy, M. A., Vissers, J. P., Vuister, G.W., de Wit, P.J,, and Vervoort, J. (2004). Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: the chitin-binding site of AVR4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J Biol Chem 279, 16786-16796.
    [117] Van der Biezen, E. A., and Jones, J. D. (1998). Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23, 454-456.
    [118] Vandesompele, J., De Paepe, A., and Speleman, F. (2002a). Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal Biochem 303, 95-98.
    [119] Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002b). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.
    [120] Veronesi, C., Rickauer, M, Fournier, J., Pouenat, M.L., and Esquerre-Tugaye, M.L (1996). Lipoxygenase gene expression in the tobacco-Phytophthora parasitica nicotianae interaction. Plant Physiol 112, 997-1004.
    [121] Wang, C., and Liu, Z. (2006). Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18, 350-365.
    [122] Wang, R.L., Stec, A., Hey, J., Lukens, L., and Doebley, J. (1999). The limits of selection during maize domestication. Nature 398, 236-239.
    [123] Weigel, R.R., Pfitzner, U.M., and Gatz, C. (2005). Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell 17, 1279-1291.
    [124] White, F.F., Yang, B., and Johnson, L.B. (2000). Prospects for understanding avirulence gene function. Curr Opin Plant Biol 3, 291-298.
    [125] Yang, L., Ding, J., Zhang, C., Jia, J., Weng, H., Liu, W., and Zhang, D. (2004). Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep.
    [126] Yin, T.-M., DiFazio, S.P., Gunter, L.E., Jawdy, S.S., Boerjan, W., and Tuskan, G.A. (2004). Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytologist 164, 95-105.
    [127] Yun, B.W., Atkinson, H.A., Gaborit, C., Greenland, A., Read, N.D., Pallas, J.A., and Loake, G.J. (2003). Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34, 768-777.
    [128] ZENG, Y., CHENG, Q., ZHANG, B., and ZHANG, X. (2005). Studies of Black Spot Disease Response Genes Induced by M. brunnea f. sp. multigermtubi in Poplar. Submitted.
    [129] Zhang, J., Steenackers, M., Storme, V., Neyrinck, S., Montagu, M.V., Gerats, T., and Boerjan, W.(2001). Fine Mapping and Identification of Nucleotide Binding Site/Leucine-Rich Repeat Sequences at the MER Locus in Populus deltoides 'S9-2'.Phytopathology 91, 1069-1073.
    [130] Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boiler, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767.
    [131] 张博,黄敏仁,诸葛强和韩正敏.(2002).美洲黑杨抗黑斑病基因的RAPD标记筛选和连锁分析.遗传24,543-547.
    [132] 韩正敏等.(1997).杨生褐盘二孢菌两个专化型的进一步研究.南京林业大学学报21,20~24.
    [133] 韩正敏等.(1998).用RAPD研究我国杨生褐盘二孢菌的群体分化.植物病理学学报28,347~352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700