毛白杨抗锈病基因筛选与NBS型抗病基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(Populus tomentosa Carr.)是我国特有的白杨派乡土树种,具有分布广、速生、抗逆性强、材质优良等特性,深受生产者欢迎。然而,毛白杨在生长发育过程中常常受到病原物的危害,尤其是毛白杨锈病,使得其生长与生产受到严重影响,已引起人们的广泛关注。目前有关毛白杨抗病研究十分薄弱,在抗病遗传资源筛选、抗病品种选育、抗病基因定位与克隆等方面仍属空白,这远远落后于黑杨派与青杨派树种的抗病研究,也与毛白杨生产中迫切期待解决病害的需求形成了鲜明的反差。为此,本研究通过毛白杨锈病活体接种试验,筛选到具有强抗病能力的无性系;运用PCR方法,从中克隆到NBS型抗病基因同源序列,对这些基因的进化关系与表达模式进行分析,并从中筛选到1个毛白杨锈病抗性相关基因(DQ324288);通过RACE-PCR分析,克隆到DQ324288基因家族的2个成员,并对其组织表达特性与诱导表达规律进行研究。在构建抗病基因原核表达载体、RNAi干扰载体和正义表达载体基础上,开展原核表达以及烟草和杨树的遗传转化研究,获得一批转基因植株,并对转基因烟草进行抗病试验。此外,以毛白杨RGA为探针,运用生物信息学方法从毛果杨基因组中克隆到74个NBS型抗病基因,研究这些基因的结构特点和进化关系,并对这些毛果杨基因在三倍体毛白杨各组织器官中的表达特性以及在多种生物和非生物诱导胁迫下的表达规律进行分析。通过上述研究可得到以下主要结果:
     1.本研究以先前筛选得到的抗逆性强的28个毛白杨杂种无性系为试材,以致病性强的马格
     栅锈菌(Melampsora magnusiana Wanger)为病原物,进行毛白杨锈病活体接种试验,结
     果发现,在供试材料中,有13个具有不同发病程度的感病无性系和15个无发病症状的
     抗病无性系,通过分析进一步筛选得到2个具有过敏性反应的强抗病三倍体毛白杨[(P.
     tomentosa×P bolleana)×P tomentosa]无性系。利用抗病R基因NBS结构域保守区域
     设计简并引物,运用PCR方法从抗病无性系中克隆得到59个NBS型抗病基因同源序列
     (RGA)。依据进化关系,59个RGA可被划分为10个亚家族,其中具有完整开放阅读
     框(ORF)的54个RGA可被进一步划分为TIR型与non-TIR型。序列比对分析发现,
     59个RGA在毛果杨基因组内共有96个高度同源区域,它们分布在基因组的37个位点,
     表明三倍体毛白杨基因组内具有丰富的NBS型抗病基因。另外,在亚家族1至3中,异
     义突变与同义突变的平均比值(ω)显著小于1,说明毛白杨NBS序列承受着极强的纯
     化选择压力,但NBS区域的一些氨基酸位点的ω值显著大于1,这些位点承受着正向选
     择压力。同时,在这3个亚家族的RGA中还检测到大量的基因交换,这说明基因交换
     在NBS序列的纯化过程中发挥着重要作用。荧光定量PCR分析发现,序列差异显著的
     21个RGA中有18个在三倍体毛白杨的成熟叶片、茎和根中组成型表达,但不同基因间
     的表达水平存在显著差异,其中2个基因的表达具有成熟树皮特异性,4个基因具有成
     熟叶片特异性,14个基因具有地上部分特异性,这些基因可能具有抵抗组织器官特异性病害的功能。
     2.通过序列比对分析,从59个毛白杨RGA中筛选到基因DQ324288,它与美洲黑杨叶锈病抗性位点MER的基因组序列以及其中的6012G11基因同源性高达93%;而且在28个毛白杨无性系内均发现有此同源序列,并可在叶片中呈组成型特异表达,其表达水平与毛白杨无性系的抗病能力呈正相关,表明DQ324288基因可能为毛白杨锈病抗性相关基因。在此基础上,采用RACE-PCR方法克隆到该基因家族2个成员的全长cDNA序列,分别命名为PtDRG01和PtDRG02基因。序列分析与实验结果表明,它们分别为TIR-NBS-LRR和TIR-NBS基因,在基因组内具有多拷贝,与DQ324288基因具有相同的组织表达特性,而且受伤诱导、甲基茉莉酸和水杨酸处理后表达上调,但对暗培养和农杆菌侵染无响应。生物信息学分析结果表明,PtDRG01与PtDRG02基因所编码蛋白的等电点pHi分别为8.165和10.325,且蛋白内存在大量亲水性二级结构,表明它们为碱性、亲水性蛋白。原核表达研究均可检测到目标长度的特异表达蛋白,说明所获得的PtDRG01和PtDRG02基因均具有完整的编码框,而且蛋白表达量随温度上升和诱导时间延长而增加。为了研究PtDRG01基因的功能,本研究在PtDRG01基因的正义表达载体构建的基础上,开展农杆菌介导的烟草遗传转化研究,获得了一批转基因植株。分子检测表明,外源基因已成功导入烟草基因组并稳定存在,而且外源基因在基因组内的拷贝数是内源ACTIN基因的0.1或0.2倍,但在转基因烟草的不同无性系内具有不同的表达水平。烟草花叶病毒(TMV)接种试验结果发现,接种1周后的转基因烟草的发病程度和顶叶中的病毒数量显著低于未转基因对照植株,而且叶片中的病毒数量与外源基因的表达水平呈负相关;接种6周后,未转基因烟草新萌发顶端叶片出现畸形,而外源基因高效表达的转基因无性系Pt-11顶端叶片保持正常叶型,而且转基因顶端叶片的病毒数量也显著低于对照叶片,这些结果说明PtDRG01基因具有较强的抗TMV能力。此外,本研究还构建了PtDRG基因家族的RNA干扰表达载体,并采用基因枪法进行抗病三倍体毛白杨无性系的遗传转化研究,获得了一批卡那霉素抗性植株,PCR检测证实外源基因已整合到三倍体毛白杨基因组内。
     3.应用基因预测软件,从与毛白杨RGA高度同源的毛果杨基因组区域中克隆得到74个NBS型抗病基因。它们的外显子和内含子的长度、数量各不相同,而且所编码的氨基酸所含结构域种类、数量、长度也存在显著差异。依据基因结构组成,74个毛果杨抗病基因可分为9种类型,依据进化关系则可分为11个亚家族。从中筛选出结构与序列高度相似的8个Group抗病基因进行进化分析,结果发现,基因的平均ω值大于、小于或接近1,表明这些Group基因的进化整体上分别承受着正向选择、纯化选择或中性选择压力。除Group 6基因外,其余基因包含不同数量的正向选择氨基酸位点,其ω值均显著大于1,而且多数氨基酸位点不均匀地集中在基因中下游区域,表明抗病基因的中下游可能是决定基因作用对象特异性的主要区域。另外,在进化树的7个亚家族和8个基因组位点的基因中检测到许多基因转换,说明基因转换在基因进化中具有重要作用。为了进一步了解抗病基因与毛白杨的关系,本研究定量分析了74个毛果杨抗病基因在三倍体毛白杨6种组织器官(组培苗叶片、成熟叶片、幼嫩叶片、成熟树皮、幼嫩树皮与根)中的表达水平,结果表明,共有27个毛果杨抗病基因在三倍体毛白杨中呈现组成型表达,但不同基因间的表达水平存在显著差异。进一步比较分析发现,在树干顶端叶片、顶端幼嫩树皮和下部成熟树皮具有特异高效表达特性的基因分别有6个、2个和3个,表明这些基因可能参与组织器官特异的抗病反应。另外,24个基因在幼嫩树叶中的表达水平显著高于成熟树叶中的表达水平,22个基因在成熟树皮中的表达水平也显著高于幼嫩树皮中的表达水平,5个基因在各组织器官的表达水平均显著高于其它抗病基因的表达水平。逆境胁迫实验结果发现,表达水平受伤诱导下调的基因有2个,受伤诱导、暗培养、甲基茉莉酸(MeJA)处理、水杨酸(SA)处理和野生根癌农杆菌侵染而上调的分别有22个、20个、14个、6个和11个基因,表明三倍体毛白杨体内可能存在复杂的信号传递途径,它们相互交织在一起,协同调控着抗病基因的表达。
     上述研究初步揭示了毛白杨抗病资源、杨树抗病基因的进化与表达,获得了具有抗病功能的毛白杨锈病抗性相关基因,填补了毛白杨抗病研究在此领域的空白,并可为将来开展抗病基因分离、功能鉴定以及杨树抗病基因工程研究奠定坚实基础,并提供了科学借鉴。
Populus tomentosa Carr. is an indigenous tree species of white poplar (in section Leuce) in China and widely employed for forestation and landscape in northern China. However, this poplar species is susceptible to a wide variety of diseases, particularly the leaf rust caused by Melampsora magnusiana Wagner, which often severely affect the poplar growth and yield. In contrast to tremendous progress in the identification and characterization of resistance loci in poplars (in section Tacamahaca and Aigeiros) as well as of putative disease resistance genes from genome sequences of P. trichocarpa, little is known about disease resistance in P. tomentosa so far.
    In this study, inoculation bioassays were performed on hybrids of P. tomentosa with leaf rust fungi and screened out 2 highly resistant clones of white poplars. Many resistance gene analogs (RGAs) were isolated from one resistant clone using PCR-based approach for the analyses of evolution and expression profile of disease resistance genes in white poplar and one RGA (DQ324288) was identified that showed putative involvement in resistance against leaf rust in P. tomentosa. Two members of DQ324288 gene family were cloned using RACE-PCR analysis and the expression profile of these 2 genes was analyzed using real time PCR analyses. Based on the construction of prokaryotic expression vector, RNA interference vector and sense expression vector, prokaryotic expression analysis and genetic transformation on resistant poplar and tobaccos were conducted to reveal the potential function of the above two genes. In addition, a number of resistance genes were identified from the genome of P. trichocarpa based on the RGAs of white poplar, and organization, evolution as well as expression profile of these genes in a triploid white poplar clone were studied. The main results from the above mentioned studies are described as below:
    1. The inoculation assays with leaf rust fungi were performed on 28 clones of hybrids of P. tomentosa and identified 13 susceptible clones with various degrees of rusting sypmton and 15 resistant clones without sympton, of which 2 clones of triploid white poplars [(P. tomentosa × P. bolleana) × p tomentosa] were considered highly resistant to leaf rust since hypersensitive response was observed. Based on the highly resistant poplars and presence of a nucleotide binding site (NBS) domain in majority of cloned plant disease resistance genes (R genes), 59 resistance gene analogs (RGAs) were identified by using PCR analysis with degenerate primers. The 59 RGAs were phylogenetically classified into 10 subfamilies and 54 RGAs with open reading frames (ORFs) were further grouped into two classes, toll and interleukin-1 receptor (TIR) and non-TIR. BLAST searches with reference to the genomic sequence of P. trichocarpa found 96 highly homologous regions distributed in 37 loci, suggesting the abundance and divergence of NBS encoding genes in the triploid poplar genome. Within subfamilies 1 to 3, the average nonsynonymous/synonymous substitution (ω) rates were < 1, indicating purifying selection on these RGAs, but some sites were clearly under diversifying selection with ω > 1. Many intergenic exchanges were also detected among these RGAs, indicating the probable role in homogenizing the NBS domains. Quantitative real-time PCR analysis revealed dramatic variations in the transcript level of 18 RGAs in the mature leaves, bark and roots of the triploid poplar and identified 2 RGAs that had significantly higher level of transcripts in bark, 4 RGAs in mature leaves, and 14 in the above ground portion of poplars, suggesting their probable roles respectively involved in resistance against the pathogens attacking the organs.
    2. A RGA (DQ324288 gene) was identified out of triploid poplar RGAs that shared high similarity (93%) with the genomic sequence of P. deltoides cultivar S9-2 MER locus, conferring resistance to three races of rust fungi M. larici-populina Kleb, and with the 60I2G11 gene within the MER locus. DQ324288 had homologous genes in twenty-eight triploid poplar clones, and was expressed constitutively and specifically in leaf tissue. Its expression level was increasing along with the increase in the level of resistance of the hosts against leaf rust, indicating its close relationship with the resistance against this pathogen. RACE-PCR analysis revealed two members of this gene family: PtDRGOl and PtDRG02 gene, encoding TIR-NBS-LRR and TIR-NBS proteins, respectively. These two genes displayed similar expression profile with DQ324288 gene, and positive responses to wounding, MeJA and SA rather than darkness and A. tumefaciens. Bioinformatic analysis showed that the deduced proteins of two genes were soluble and hydrophilic with respective pHi 8.165 and 10.325. The high level expression of fusion proteins of two genes in Escherichia coli was induced the IPTG and the expression level was elevated with the increase in induction temperature and time. The PtDRGOl gene was cloned into an expression vector and transferred to tobaccos via A. tumefaciens-mediated transformation. The integration of foreign genes into the genome of transgenic tobaccos was confirmed by PCR analyses with two sets of primers and the number of foreign genes in the genome of tobaccos were identified to be
    0.1-fold or 0.2-fold of that of native ACTIN gene by quantitative real-time PCR analysis. The expression of PtDRG01 gene varied dramatically among different transgenic lines. One-week-period inoculation with tobacco mosaic virus (TMV) revealed that the transgenic tobaccos contained less number of viruses than non-transgenic ones and that the number of viruses was negatively correlated with the expression level of PtDRG01 gene. Moreover, six-week-period inoculation induced abnormal morphology of apical leaves on the non-transgenic tobaccos and normal morphology of apical leaves on the transgenic tobaccos with high level transcripts of PtDRG01 gene, indicating that PtDRG01 gene has the potential to enhance resistance of tobaccos to TMV. In addition, a RNA interference expression vector of PtDRG gene family was constructed and transferred into the resistant triploid poplar through particle bombardment. Many transgenic poplars were obtained and the integration of RNAi sequences into the host genome was confirmed by the PCR analysis with two sets of gene specific primers.
    3. A total of 74 R genes with the NBS domains were identified from the genomic sequences of P. trichocarpa that were highly homologous to the RGAs from triploid white poplar. The extrons and introns in these genes varied significantly in both length and number, and the protein domains showed dramatic variations in organization, number and length. These 74 R genes were structurally classified into 9 classes with distinct protein domain organizations and phylogeneitcally divided into 11 subfamilies according to the degree of the nucleotide sequence similarity. Within 8 groups of genes with high similarity in nucleotide sequences and length, the average ω rates were > 1, < 1, or close to 1, respectively, indicating the positive selection, purifying selection or neutral selection on these resistance genes, but many sites within genes of 7 groups (except for group 6) were clearly under diversifying selection with co > 1. Many intergenic exchanges were also detected among these resistance genes, indicating the important roles that gene conversions play in the evolutionary process of resistance genes from P. trichocarpa. For a better understanding of resistance genes in white poplars, the expression patterns of these 74 genes in various organs of a triploid white poplar, under different growth conditions, were examined by using quantitative real-time PCR. Twenty-seven of 74 genes from P. trichocarpa were expressed in 6 examined organs at various levels. Six, two and three genes, respectively, displayed significantly higher expression levels in apical leaves, young bark and mature bark than in other organs, indicating that these genes may be involved in organ specific disease resistance. Twenty-four genes had dramatically greater expression in apical leaves than in mature leaves, 22 genes higher in the mature bark than in the young bark, and five genes systematically displayed dramatically stronger expression than other genes. Wounding induced an increase in the transcript level of 22 genes and a reduction for 2 genes. Twenty genes were up-regulated by darkness, 14 by methyl jasmonate acid (MeJA), 6 by salicylic acid (SA), and 11 by the compatible Agrobacterium tumefaciens, implying a complex interconnecting signal transduction pathways that regulates the expression of poplar R genes.
    Our results shed light on the genetic resources of poplar resistance, the evolution and expression profiling of poplar resistance genes, and the preliminary features of putative resistance gene against leaf rust in P. tomentosa, which will be helpful for the further characterization of their function.
引文
1.杜国英,王锡锋,周广和.2004.地高辛标记的cDNA探针检测烟草花叶病毒、黄瓜花叶病毒及马铃薯Y病毒.植物病理学报,34(1):75-79.
    2.黄金光,田国忠,范在丰,李怀方.2004.侵染扶桑的烟草花叶病毒分离物鉴定.植物保护,30(3):33-37.
    3.林元震.2006.甜杨葡萄糖-6-磷酸脱氢酶基因克隆及结构分析与功能鉴定.北京林业大学博士学位论文.
    4.沈瑞祥,樊自红,周仲铭.1989.毛白杨不同无性系对叶锈病(Melampsora magnusiana)抗病性的研究.林业科学,25(5):420-424.
    5.沈瑞祥,周仲铭,贺正兴.1979a.马格栅锈菌(Melampsora magnusiana Wagner)夏孢子萌发生理的探讨.北京林学院学报,1:66-69.
    6.沈瑞祥,周仲铭,贺正兴,雷增普.1979b.毛白杨对马格栅锈菌所致锈病抗病性研究.北京林学院学报,1:61-66.
    7.王建革.2006.基因枪转多基因杨树的获得.中国林科院博士后工作出站报告.
    8.魏益宁.1984.毛白杨叶片受马格栅锈菌侵染以后多酚氧化酶和过氧化物酶活性及同工酶谱带变化趋势的研究.北京林学院学报,3:73-92.
    9.袁毅.1984.我国杨树叶锈病菌种类的研究.北京林学院学报,1:48-82.
    10.张谦,林善枝,林元震,张志毅,王泽亮,杨俊杰.2005.树木抗病基因研究进展.西北植物学报,25:1921-1930.
    11.张谦,张志毅,林善枝,林元震,李琰,李海霞.2006.基因毛白杨NBS型抗病基因类似序列克隆毛果杨抗病基因.全国博士学术论坛论文集,中国北京,pp105.
    12.张祥喜,罗广林.2003.植物抗病基因研究进展.分子植物育种,1:531-537.
    13.周仲铭主编.2000.林木病理学(修订版).中国林业出版社,pp 85.
    14. Ayliffe MA, Frost DV, Finnegan EJ, Lawrence GJ, Anderson PA, Ellis JG. 1999. Analysis of altemative transcripts of the flax L6 rust resistance gene. Plant J, 17: 287-292.
    15. Baker B, Zambryski P, Staskawicz B. 1997. Singaling in plant microbe interaction. Science, 276: 726-733.
    16. Baumgarten A, Cannon S, Spangler R, May G. 2003. Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics, 165:309-319.
    17. Bergelson J, Kreitman M, Stahl EA, Tian D. 2001. Evolutionary dynamics of plant R-genes. Science, 292: 2281-2285.
    18. Bowles DJ. 1990. Defense-related proteins in higher plants. Annu Rev Biochem, 59: 873-907.
    19. Brasier C. 2000. The rise of the hybrid fungi. Nature, 405:134-135.
    20. Brommonschenkel SH, Frary A, Frary A. 2000. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact, 13: 1130-1138.
    21. Bubner B, Baldwin IT. 2004a. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep, 23: 263-271.
    22. Bubner B, Gase K, Baldwin IT. 2004b. Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnol, 4: 14-24.
    23. Buschges R, Hollricher K, Panstruga R. 1997. The Barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88: 695-705.
    24. Campbell MM, Brunner A, Jones HM, Strauss SH. 2003. Forestry's fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J, 1: 141-154.
    25. Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND. 2002. Diversity, distribution, and ancient taxonomic relationships within the TIR and Non-TIR-NBS-LRR resistance gene subfamilies. J Mol Evol, 54: 548-562.
    26. Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, Smith A, Love J, Ronald PC, Whalen MC. 1999. Development control of Xa21-mediated disease resistance in rice. Plant J, 20: 231-236.
    27. Cervera MT, Gusmno J, Steenackers M, Peleman J, Storme V, Vanden Broeck A, Van Montagu M, Boerjan W. 1996. Identification of AFLP molecular markers linked to for resistance to Melampsora larici-populina in Populus. Theor Appl Genet, 93: 733-737.
    28. Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Van Slycken J, Van Montagu M, Boerjan W. 2001. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics, 158: 787-809.
    29. Cheng Q, Zhang B, Zhuge Q, Zeng YR, Wang MX, Huang MR. 2006. Expression profiles of two novel lipoxygenase genes in Populus deltoides. Plant Sci, 170: 1027-1035.
    30. Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T. 1999. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell, 11:1365-1376.
    31. Collins N, Park R, Spielmeyer W, Ellis J, Pryor AJ. 2001. Resistance gene analogs in barley and their relationship to rust resistance genes. Genome, 44: 375-381.
    32. Concetta de Pinto M, Tommasi F, De Gara L. 2002. Changes in the antioxidant systems as part of the signaling pathway responsiblefor the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiol, 130: 698-708.
    33. Constabel CP, Yip L, Patton JJ, Christopher ME. 2000. Polyphenol oxidase from hybrid poplar: Cloning and expression in response to wounding and herbivory. Plant Physiol, 124: 285-295.
    34. Dangl JL, Jones JDG. 2001. Plant pathogens and integrated defense responses to infection. Nature, 411: 826-833.
    35. Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG Jr. 2000. Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in cirrus. Theor Appl Genet, 101:814-822.
    36. Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS. 2004. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics, 166: 461-481.
    37. Dowkiw A, Bastien C. 2004. Characterization of two major genetic factors controlling quantitative resistance to Melampsora larici-populina leaf rust in hybrid poplars: strain specificity, field expression, combined effects, and relationship with defeated qualitative resistance gene. Phytopathol, 94: 1358-1367.
    38. Dowkiw A, Bastien C. 2007. Presence of defeated qualitative resistance genes frequently has major impact on quantitative resistance to Melampsora larici-populina leaf rust in P. × interamericana hybrid poplars. Tree Genetics Genomes, (In press).
    39. Dowkiw A, Husson C, Frey P, Bastien C. 2003. Partial resistance to Melampsora larici-populina leaf rust in hybrid poplars: genetic variability in inoculated excised leaf disk bioassay and relationship with complete resistance. Phytopathol, 93: 421-427.
    40. Ellis J, Dodds P, Pryor T. 2000. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol, 3:278-284.
    41. Ellis J. 2006. Insights into nonhost disease resistance: can they assist disease control in agriculture? Plant Cell, 18: 523-528.
    42. Faivre-Rampant F, Bataille L, Bresson A, Boudet N, Chalhoub B, Jorge V, Dowkiw A, Guerin V, Masle JP, Villar M, Bastien C. 2006. Genetic and physical mapping of a genetic factor involving in partial rust resistance in Populus trichocarpa. International Poplar Symposium IV Abstracts, pp27.
    43. Fourmann M, Chariot F, Froger N, Delourme R, Brunei D. 2001. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome, 44: 1083-1099.
    44. Gachon C, Mingam A, Charrier B. 2004. Real-time PCR: what relevance to plant studies? J Exp Bot, 55: 1445-1454.
    45. Gerrard DT, Filatov DA. 2005. Positive and Negative Selection on Mammalian Y Chromosomes. Mol Biol Evol,22: 1423-1432.
    46. Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J. 1982. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA, 79: 5818-5822.
    47. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp.japonica). Science, 296: 92-100.
    48. Graham MA, Marek LF, Shoemaker RC. 2002. Organization, expression and evolution of a disease resistance gene cluster in soybean. Genetics, 162: 1961-1977.
    49. Grant M, Mansfield J. 1999. Early events in host-pathogen interactions. Curr Opin Plant Biol, 2: 312-319.
    50. Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269: 843-846.
    51. Hammond-Kosack KE, Jones JDG. 1997. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol, 48: 575-607.
    52. Haurogne K, Bach JM, Lieubeau B. 2007. Easy and rapid method of zygosity determination in transgenic mice by SYBR Green real-time quantitative PCR with a simple data analysis. Transgenic Res, 16:127-131.
    53. Hazen SP, Wu Y, Kreps JA. 2003. Gene expression profiling of plant responses to abiotic stress. Funct Integrat Genomics, 3: 105-111.
    54. He LM, Du CG, Covaleda L, Xu ZY, Robinson AF, Yu JZ, Kohel RJ, Zhang HB. 2004. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Mol Plant-Microbe Interact, 17: 1234-1241.
    55. He ZH. 2001. Signal network of plant disease resisatnce. Acta Phytophysiol Sinica, 27: 281-290.
    56. Hoist-Jensen A, Ronning SB, Lovseth A, Berdal KG. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal Bioanal Chem, 375: 985-993.
    57. Hsiang T, Chastagner GA, Dunlap JM, Stettler RF. 1993a. Genetic variation and productivity of Populus trichocarpa and its hybrids. VI. Field susceptibility of seedlings to Melampsora occidentalis leaf rust. Can J For Res, 23: 436-441.
    58. Hsiang T, Chastagner GA. 1993b. Variation in Melampsora occidentalis rust on poplars in the Pacific Northwest. Can J Plant Pathol, 15: 175-181.
    59. Hsiang T, van Der Kamp BJ. 1985. Variation in rust virulence and host resistance of Melampsora on black cottonwood. Can J Plant Path, 7: 247-252.
    60. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G. 2003. Overexpression of a gene encoding hydrogen peroxide generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol, 133: 170-181.
    61. Huettel B, Santra D, Muehlbauer FJ, Kahl G. 2002. Resistance gene analogues of chickpea (Cicer arietinum L.): Isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet, 105: 479-490.
    62. Hulbert SH, Webb CA, Smith SM, Sun Q. 2001. Resistance gene complexes: Evolution and utilization. Annu Rev Phytopathol, 39: 285-312.
    63. Ingvarsson PK. 2005. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics, 169: 945-953.
    64. Innes L, Marchand L, Frey P, Bourassa M, Hamelin RC. 2004. First report of Melampsora larici-populina on Populus spp. in eastern north America. Plant Dis, 88: 85.
    65. Johal GS, Briggs SP. 1992. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 258: 985-987.
    66. Johnson R. 1984. A critical analysis of durable resistance. Annu Rev Phytopathol, 22: 309-330.
    67. Jones DA, Jones JDG. 1996. The roles of leucine rich repeat in plant defenses. Adv Bot Res Adv Plant Pathol, 24:90-167.
    68. Jorge V, Dowkiw A, Faivre-Rampant P, Bastient C. 2005. Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytologist, 167: 113-119.
    69. Kajava AV, VassartG, Wodak SJ. 1995. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure, 3: 867-877.
    70. Kanazin V, Marek IF, Shoemaker RC. 1996. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA, 93: 11746-11750.
    71. Karlin S, Altschul SF. 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA, 87: 2264-2268.
    72. Kobe B, Deisenhofer J. 1994. The leucine-rich repeat, a versatile binding motif. Trends Biochem Science, 19: 415-421.
    73. Kuang HH, Woo SS, Meyers BC, Nevo E, Michelmore RW. 2004. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in Lettuce. Plant Cell, 16: 2870-2894.
    74. Kuhn DN, Heath MA, Winterstein MC, Wisser RW, Meerow AW, Brown JS, Lopes U, Schnell II RJ. 2003. Resistance gene homologues in Theobroma cacao as useful genetic markers. Theor Appl Genet, 107: 191-202.
    75. Kumar S, Tamura K, Jakobsen IB, Nei M. 2001. MEGA 2: molecular evolutionary genetics analysis software. Arizona State University, Tempe, Ariz.
    76. Lamb C, Dixon R A. 1997. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol, 48: 251-275.
    77. Larson PR, Isebrands JG. 1971. The plastochron index asapplied to developmental studies of cottonwood. Can J For Res, 1: 1-11.
    78. Lefevre F, Goue-Mourier MC, Faivre-Rampant P, Villar M. 1998. A single gene cluster controls incompatibility and partial resistance to various Melampsora larici-populina races in hybrid poplars. Phytopathol, 88: 156-163.
    79. Lefevre F, Pichot C, Pinon J. 1994. Intra- and interspecific inheritance of some components of the resistance to leaf rust (Melampsora larici-populina Kleb.) in poplars. Theor Appl Genet, 88:501-507.
    80. Legionnet A, Muranty H, Lefevre F. 1999. Genetic variation of the riparian pioneer tree species Popolus nigra. II. Variation in susceptibility to the foliar rust Melampsora larici-populina. Heredity, 82: 318-327.
    81. Leister D, Ballvora A, Salamini F, Gebhardt C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 14: 421-429.
    82. Leister D, Kurth J, Laurie DA, Yano M, Susnki T, Devos K, Grancer A, Schulze-Lefert P. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA, 95: 370-375.
    83. Lescot M, Rombauts S, Zhang J, Aubourg S, Mathe C, Jansson S, Rouze P, Boerjan W. 2004. Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and Class II transposable elements. Theor Appl Genet, 109: 10-22.
    84. Li JY, Zhang ZY. 2000. Genetic variation in photosynthetic traits of triploid clones of Populus tomentosa. J Beijing For Univ, 22: 12-15.
    85. Liu JJ, Ekramoddoullah AKM. 2004. Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol Genet Genomics, 270: 432-441.
    86. Luke JE, Lawrence GJ, Dodds PN, Shepherd KW, Ellis JG. 2000. Regions ouside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell, 12: 1367-1377.
    87. Mago R, Nair S, Mohan M. 1999. Resistance gene analogues from rice: Cloning, sequencing and mapping. Theor Appl Genet, 99: 50-57.
    88. Martin GB, Frary A, Wu TY, Brommonschenkel S, Chunwongse J, Earle ED, Tanksley SD. 1994. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell, 6: 1543-1552.
    89. Matthew L. 2004. RNAi for plant functional genomics. Comp Funct Genom, 5: 240-244.
    90. McDowell JM, Dangl JL. 2000. Signal transduction in the plant innate immune response. Trends Biochem Sci, 25: 79-82.
    91. Mes JJ, Van Doom AA, Wijbrandi J, Simons G, Comelissen BJC, Haring MA. 2000. Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J, 23: 183-193.
    92. Meyers BC, Dickerman AW, Michelmore RW. 1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 20: 317-332.
    93. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. 2003. Genome-wide analysis of NBS-LRR encoding genes in Arabidopsis. Plant Cell, 15: 809-834.
    94. Meyers BC, Morgante M, Michelmore RW. 2002. TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J, 32: 77-92.
    95. Michelmore RW, Meyers BC. 1998. Clusters of resistance genes in plants evolved by divergent selection and a birth-and-death process. Genome Res, 8: 1113-1130.
    96. Michelmore RW, Paran I, Kesseli RV. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 88: 9828-9832.
    97. Mondragon-Palomino M, Gaut BS. 2005. Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol, 22: 2444-2456.
    98. Mondragon-Palomino M, Meyers BC, Michelmore RW, Gaut BS. 2002. Patterns of positive selection in the complete NBSLRR gene family of Arabidopsis thaliana. Genome Res, 12: 1305-1315.
    99. Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol, 3: 418-426.
    100. Nei M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, N. Y.
    101. Newcombe G, Chastagner GA, Schuette W, Stanton, BJ. 1994. Mortality among hybrid poplar clones in a stool bed following leaf rust caused by Melampsora medusae f. sp. deltoides. Can J For Res, 24:1984-1987.
    102. Newcombe G, Chastagner GA. 1993a. First report of the Eurasian poplar leaf rust fungus. Melampsora larici-populina in North America. Plant Dis, 77: 532-535.
    103. Newcombe G, Chastagner GA. 1993b. A leaf rust epidemic of hybrid poplar along the lower Columbia River caused by Melampsora medusae. Plant Dis, 77: 528-531.
    104. Newcombe G, Stifling B, Bradshaw HD, McDonald S. 2000. Melampsora×columbiana, a natural hybrid of M. rnedusae and M. occidentalis. Mycol Res, 104: 261-274.
    105. Newcombe G, Stifling B, Bradshaw Jr HD. 2001. Abundant pathogenic variation in the new hybrid rust Melampsora×colurnbiana on hybrid poplar. Phytopathol, 91: 981-985.
    106. Newcombe G. 1998. Association of Mindl, a major gene for resistance to Melampsora medusae f. sp. deltoides with quantitative traits in poplar rust. Phytopathol, 88: 114-121.
    107. Newcombe G., Bradshaw HD Jr, Chastagner GA, Stettler RF. 1996. A major gene for resistance to Melampsora medusae f. sp. deltoides in hybrid poplar pedigree. Phytopathol, 86: 87-94.
    108. Noir S, Combes MC, Anthony F, Lashermes P. 2001. Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Genet Genom, 265: 654-662.
    109. Ohmori T, Murata M, Motoyoshi F. 1998. Characterization of disease resistance gene-like sequences in near-isogenic lines of tomato. Theor Appl Genet, 96:331-338.
    110. Paal J, Henselewski H, Muth J, Meksem K, Menendez CM, Salamini F, Ballvora A, Gebhardt C. 2004. Molecular cloning of potato Crol-4 gene conferring resistance to pathotype Rol of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J, 38: 285-297.
    111. Pan Q, Wendel J, Fluhr W. 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol, 50: 203-213.
    112. Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD. 1997. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell, 9: 879-894.
    113. Pearce F. 1995. Seeing the wood for the trees. New Sci, 145: 12-13.
    114. Pei MH, Ruiz C, Harris J, Hunter T. 2003. Quantitative inoculation of poplars with Melampsora larici-populina. Euro J Plant Path, 109: 269-276.
    115. Picot C, Teissier du Cros E. 1993a. Susceptibility of P. deltoides Bartr. to Melampsora larici-populina and M. allii-populina Ⅰ. Quantitative analysis of a 6×6 factorial mating design. Silvae Genefica, 42: 179-187.
    116. Picot C, Teissier du Cros E. 1993b. Susceptibility of P. deltoides Bartr. to Melampsora larici-populina and M. allii-populina Ⅱ. Quantitative analysis of a 6×6 factorial mating design. Silvae Genetica, 42:188-199.
    117. Pinon J, Frey P. 1997. Structure of Melampsora larici-populina populations on wild and cultivated poplar. Euro J Plant Pathol, 103: 159-173.
    118. Pinon J, Newcombe G, Chastagner GA. 1994. Identification of races of Melatnpsora larici-populina, the Eurasian rust fungus, on Populus species in California and Washington. Plant Dis, 78: 101.
    119. Pinon J. 1992. Variability in the genus Populus in sensibility to Melampsora rusts. Silvae Genetica, 41: 25-33.
    120. Pinon J. van Dam BC, Genetet I, De Kam M. 1987. Two pathogenic races of Melampsora larici-populina in north-western Europe. Eur J For Pathol, 17: 47-53.
    121. Prakash CS, Heather WA. 1986. Inheritance of resistance to races of Melampsora medusae in Populus deltoides. Silvae Genetica, 35: 74-77.
    122. Prakash CS, Heather WA. 1989. Inheritance of partial resistance to two races of leaf rust, Melarnpsora medusae in eastern cottonwood, Populus deltoides. Silvae Genetica, 38: 90-94.
    123. Prakash CS, Thielges BA. 1987. Pathogenic variation in Melampsora medusae leaf rust of poplars. Euphytica, 36: 563-570.
    124. Pu JW, Song JL, Xie YM, Gu RJ. 2002. Characteristics of lignin structure of triploid clones of Populus tomentosa Carr. J Beijing For Univ, 24: 211-215.
    125. Radwan O, Mouzeyar S, Nicolas P, Bouzidi MF. 2005. Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmopara halstedii. J Exp Bot, 56: 567-575.
    126. Rogers S O, Bendich AJ. 1985. Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol Biol, 5: 1041-1045.
    127. Rozas J, Rozas R. 1999. DnaSP version 3, an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics, 15: 174-175.
    128. Ryan CA. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol, 28: 425-449.
    129. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 4: 406-425.
    130. Sawyer SA. 1999. GENECONV: a computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University, St. Louis.
    131.Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. 1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science, 274: 2063-2065.
    132. Seah S, Spielmeyer W, Jahier J, Siwasithamparam K, Lagudah ES. 2000. Resistance gene analogs within an introgressed chromosomal segment derived from Triticm vemricusum that confers resistance to nematode and rust pathogens in wheat. Mol Plant-Microbe Interact, 13: 334-341.
    133. Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA. 2003. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochem, 64: 153-161.
    134. Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE, Lavelle DO, Wroblewski T, Meyers BC, Michelmore RW. 2002. Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant-Microbe Interact, 15: 251-261.
    135. Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW. 1998. Resistance gene candidates identified by PCR with degenerated oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant-Micorbe Interact, 11: 815-823.
    136. Smith NA, Singh SP, Wang M. B, Stoutjesdijk PA, Green AG, Waterhouse PM. 2000. Total silencing by intron-spliced hairpin RNAs. Nature, 407: 319-320.
    137. Song P, Cai CQ, Skokut M, Kosegi BD, Petolino JF. 2002. Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS~(TM)-derived transgenic maize. Plant Cell Rep, 20: 948-954.
    138. Spiers AG, Hopcroft DH. 1994. Comparative studies of the popular rust Melampsora medusae, M. laricis-populina, and their interspecific hybrid M. medusae-populina. Mycol Res, 98: 889-903.
    139. Spiers AG, Hopcroft HD. 1990. Ultrastructural studies of interactions between resistant and susceptible poplar cultivars and the rusts, Melampsora medusae and Melampsora larici-populina. New Zealand J Bot, 28: 307-322.
    140. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD. 1995. Molecular genetics of plant disease resistance. Science, 268: 661-667.
    141. Steimel J, Chen W, Harrington TC. 2005. Development and characterization of microsatellite markers for the poplar rust fungi Melampsora medusae and Melampsora larici-populina. Mol Ecol Notes, 5: 484-486.
    142. Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Campaa L, Jonsson-Lindvall J, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S. 2004. A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA, 101: 13951-13956
    143. Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J. 1998. Gene discovery in the wood-forming tissues of poplar: Analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA, 95: 13330-13335.
    144. Stirling B, Newcomb G, Vrebalov J, Bosdet I, Bradshaw Jr HD. 2001. Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust. Theor Appl Genet, 103: 1129-1137.
    145. Stirling B, Yang ZK, Gunter LE, Tuskan GA, Bradshaw Jr HD. 2003. Comparative sequence analysis between orthologous regions of the Arabidopsis and Populus genomes reveals substantial synteny and microcollinearity. Can J For Res, 33: 2245-2251.
    146. Tabor G.M, Kubisiak TL, Klopfenstein NB, Hall RB, McNab HS Jr. 2000. Bulked segregant analysis identifies markers linked to Melampsora medusae resistance in Populus deltoides. Phytopathol, 90: 1039-1042.
    147. Tabor GM, Kubisiak TL, Klopfenstein NB, Hall RB, McNab HS Jr. 1998. Molecular marker linked to Melampsora medusae resistance in Populus deltoides (Abstr.). Phytopathol, 88 (Suppl.): S118.
    148. Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC. 2002. The tomato R gene products 1-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell, 14: 2929-2939.
    149. Tang XY, Frederick RD, Zhou JM, Halterman DA, Jia YL, Martin GB. 1996. Physical interaction of avrpot and the Pot kinase defines a recognition event involved in plant disease resistance. Science, 274:2060-2063.
    150. Taylor G. 2002. Populus: Arabidopsis for forestry. Do we need a model tree? Annals Bot, 90: 681-689. 151.Thielges BA, Adams JC. 1975. Genetic variation and habitability of Melampsora leaf rust resistance in eastern cottonwood. For Sci, 22: 278-282.
    152. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res, 25: 4876-4882.
    153. Thordal-Christensen H. 2003. Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol, 6: 351-357.
    154. Thurau T, Kifle S, Jung C, Cai D. 2003. The promoter of the nematode resistance gene HsI~(pro-1) acitvates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol Biol, 52: 643-660.
    155. Toyota K, Tamura M, Ohdan T, Nakamura Y. 2006. Expression profiling of starch metabolism-related plastidic translocator genes in rice. Planta, 223: 248-257.
    156. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan, W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313: 1596-1604.
    157. Van der Biezen EA, Jones JDG. 1998a. The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol, 8: R226-R227.
    158. Van der Biezen EA, Jones JDG. 1998b. Plant disease resistance proteins and the "gene-for-gene" concept. Trends Biochem Sci, 23: 454-456.
    159. Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML. 2003. In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol, 131: 1580-1590.
    160. Villar M, Lefevre F, Bradshaw Jr HD, Teissier du Cros E. 1996. Molecular genetics of rust resistance in poplars (Melampsora larici-populina Kleb/Populus sp.) by bulked segregant analysis in a 2 × 2 factorial mating design. Genetics, 143: 531-536.
    161. Wang ZX, Yamanouchi U, Katayose Y, Sasaki T, Yano M. 2001. Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defenses. Plant Mol Biol, 47: 653-661.
    162. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. 1999. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 19: 55-64.
    163. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM. 2001. Construct design for efficient, effective and high throughput gene silencing in plants. Plant J, 27: 581-590.
    164. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell, 78: 1101-1115.
    165. Widin KD, Scbipper AL. 1980. Epidemiology of Melampsora medusae leaf rust of poplars in north central United States. Can J For Res, 10: 257-263.
    166. Xiao SY, Ellwood S, Calis O, Patrick E, Li TX, Coleman M, Turner JG. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science, 291: 118-120.
    167. Xing XT, Zhang ZY. 2002. Genetic control of airdried wood density, mechanical properties and its application for veneer timber breeding of new triploid clones in Populus tomentosa Carr.. Forestry Studies in China, 4: 52-60.
    168. Yaish MWF, Saenz de Miera LE, Perez de la Vega M. 2004. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome, 47: 650-659.
    169. Yang Z. 1997. PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS, 13: 555-556.
    170. Yang ZH, Nielsen R, Goldman N, Pedersen AMK. 2000. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 155: 431-449.
    171. Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D. 2005. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep, 23: 759-763.
    172. Yin TM, DiFazio SP, Gunter LE, Jawdy SS, Boerjan W, Tuskan A. 2004. Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytologist, 164: 95-105.
    173. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 95: 1663-1668.
    174. Yu YG, Buss GR, Maroof MAS. 1996. Isolation of a super family of candidate disease resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA, 93: 11751-11756.
    175. Yu D, Chen C, Chen Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 13: 1527-1539.
    176. Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ. 2003. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J, 34: 768-777.
    177. Zhang D, Zhang Z, Yang K, Li B. 2004. Genetic mapping in (Populus tomentosa × Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theor Appl Genet, 108: 657-662.
    178. Zhang J, Steenackers M, Storme V, Neyrinck S, Van Montagu M, Gerats T, Boerjan W. 2001. Fine mapping and identification of nucleotide binding site/leucine-rich repeat sequences at the MER locus in Populus deltoides s9-2. Phytopathol, 91: 1069-1073.
    179. Zhang Q, Zhang ZY, Lin SZ, Lin YZ. 2005. Resistance of transgenic hybrid triploids in Populus tomentosa Carr. against 3 species of Lepidopterans following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genetica, 54: 108-116.
    180. Zhang XS, He X. 2003. Botany, China Agriculture Press, pp112.
    181. Zhang Z Y, Li FL, Zhu ZT. 1997. Doubling technology of pollen chromosome of Populus tomentosa and its hybrids. J Beijing For Univ (English ed.), 6: 9-20.
    182. Zhang ZY, Li FL, Zhu ZT. 1992. Chromosome doubling and triploid breeding of Populus tomentosa Carr. and its hybrid. J Beijing For Univ, 14: 52-58.
    183. Zhang ZY, Li FL, Zhu ZT. 1992. Chromosome doubling and triploid breeding of Populus tomentosa Can. and its hybrid. J Beijing For Univ, 14 (Suppl): 52-58.
    184. Zhang ZY, Li FL, Zhu ZT. 1997. Doubling technology of pollen chromosome of Populus tomentosa and its hybrids. J Beijing For Univ, 6: 9-20.
    185. Zhu HY, Cannon SB, Young ND, Cook DR. 2002. Phylogeny and genomic organization of the TIR and non-TIR-NBS-LRR resistance gene family in Medicago truncatula. Mol Plant-Microbe Interact, 15: 529-539.
    186. Zhu ZT, Zhang ZY. 1997. Status and advances of genetic improvement of Populus tomentosa Carr.. J Beijing For Univ, 6: 1-7.
    187. Zhu ZT, Zhang ZY. 1997. Status and advances of genetic improvement of Populus tomentosa Carr.. J Beijing For Univ, (English ed.) 6: 1-7.
    188. Ziller WG. 1965. Studies of western tree rusts. VI. The aecial host ranges of Melampsora albertensis, M. medusae, and M. occidentalis. Can J Bot, 43: 221-238.
    189. Ziller WG. 1974. The tree rusts of western Canada. Can For Serv Pub1, 1329.
    190. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. 2004. GENEVESTIGATOR, Arabidopsis microarray database and analysis toolbox. Plant Physiol, 136: 2621-2632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700