合作杨与一品红伤害信息传递的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物的信息传递是生命科学中引人入胜的研究领域之一,生物种内和个体内都存在物理和化学等各种信息交流方式。植株受到机械伤害或昆虫取食后,释放出的伤诱导挥发物能够向邻近的同种或异种植物进行报警信息的传递已经得到了证明,但是该领域的研究还处于起步阶段。以木本植物为材料,继续这方面的深入研究能使我们充分理解植物进化过程中形成的自身防御策略,为森林病虫害的生物防治提供理论依据。
     本次实验利用热脱附—气相色谱—质谱联用技术(TCT-GC-MS),研究了几种化合物对合作杨(P.Simonii×P.Pyramibalis c.v)挥发物的诱导能力。结果表明,合作杨对Z-3-己烯醛和E-3-己烯醛这两种构型不同的绿叶性气体具有显著的识别能力;乙烯在合作杨植株间信号传递过程中具有重要调节作用,它对Z-3-己烯醛诱导的挥发性信号物质的释放具有促进作用;单独的乙烯信号对来自于茉莉酸信号途径有关的挥发性组分的释放有抑制作用;苯骈噻唑和水杨酸甲酯对合作杨挥发性信号物质没有明显的诱导能力。
     通过伤诱导挥发物熏蒸的方法研究表明,健康合作杨植株接受损伤植株的气体报警信号分子后,其体内产生主动性的防御反应,启动了茉莉酸信号转导途径,导致具有生理生态功能的绿叶性气体、萜烯类挥发物大量的时序性释放,这种挥发物性气体释放的时序性规律表明,植株间伤害信息的完整传递不是一次完成的,己醛和1-己烯-3-醇这些熏蒸后早期释放的挥发性信号物质能够在植株间起到快速传递伤害信息的作用。试验表明,先前感受到伤害信息的合作杨植株遭受损伤时挥发性信号物质的释放量高于直接损伤的植株,接受伤诱导挥发物的合作杨植株具有记忆先前所处环境的能力。
     我们采用叶绿素荧光手段,以一品红(Euphorbia pulcherrima)为试验材料研究发现,植株损伤后不同部位FV/FM的变化存在异质性。据我们所知,这是目前唯一证明植物伤害信号在植物体内进行双向系统性传递的直观证据,表明植物体内伤害信号的系统性传递是通过多条途径来完成的。
Bio-signalling transduction is one of the exciting fields in life science. There are variously physical and/or chemical modes for communication among organisms and their cells and organs. It has been well established that volatiles plays an essential role in plant-to-plant communication when the plant is mechanically damaged or herbivored.However the study of plant to plant signal transduction has few progress. In a word, studies used woody plants as materials will be important for understanding the defense strategies of plants and providing instruction for forestry pest biological control.
     With thermo-desorption cold trap transfer-gas chromatography-mass spectrometry (TCT-GC-MS) device, we compared effects of some synthesized compounds on volatiles emission of poplar trees (P.Simonii×P.Pyramibalis c.v).The result show that ethylene plays an important role in interplant signal transduction mediated by Z-3-hexenal by synergizing volatile signals emission in neighboring plants. However exposed to ethylene alone did not differently induced volatile signals emission. We found that either Salicylic acid or Benzothiadiazole did not have remarkable ability induced volatile signals emission.
     Based on our data, healthy poplar trees exposed wounding volatiles can activate defense responses, which are involved in the jasmonate signaling pathway. The result of this, healthy poplar trees produced large amounts of volatile terpenoids and green leaf volatiles, which may be, have important function of ecophysiology. Moreover, we had timing the volatiles release, and found that the volatiles were emitted in succession. Which indicated that plant-to-plant signal transduction was conducted through time after time. Hexanal and 1-hexen-3-ol that was released at early stage of damage may be fast transfer wounding signals in interplant. This shows that previous exposure of plants to volatiles from wounding trees results in a stronger response of plants in terms of volatiles emission when their had been damaged again, which indicated poplar trees exposed wound-induced volatiles had the ability of remembering previous environmental conditions.
     Besides, another experiments-Euphorbia pulcherrima as a material, with method of chlorophyll fluorescence, it was found that the change of FV/FM was heterogeneity.among damaged leaves and different health leaves. To our knowledge, this is the first direct evidence that wounding signal can be transducted through acropetal and basipetal direction in damaged plants, thus plants may have multiple pathways that enable long–distance systemic wounding signal transduction.
引文
孔垂华, 胡飞. 植物化学通讯研究进展[J]. 植物生态学报, 2003, 27(4): 561-566.
    娄永根, 程家安. 虫害诱导的植物挥发物:基本特征、生态学功能及释放机制[J]. 生态学报, 2000, 20(6): 1097-1106.
    平立岩, 沈应柏. 植物创伤诱导挥发物及其信号功能[J]. 植物生理学通讯, 2001, 37(2): 166-172.
    徐涛, 周强, 夏嫱, 等. 虫害诱导的水稻挥发物对褐飞虱寄主选择行为的影响[J]. 科学通报, 2002, 47(11): 849-853.
    杨迪, 李庆, 胡增辉, 等. 损伤与邻近健康复叶槭植株内脱落酸和茉莉酸含量变化[J]. 北京林业大学学报, 2003, 26(03): 35-38.
    张可文, 安钰, 胡增辉, 等. 脂氧合酶、脱落酸与茉莉酸在合作杨损伤信号传递中的相互关系[J]. 林业科学研究, 2005, 18(03): 300-304.
    Abou-Mandour A A, Binder G. Effect of exogenous growth regulators on plant regenerates from tissue cultures of Mentha spicata and production of volatiles[J]. Journal Of Applied Botany-Angewandte Botanik, 1998, 72(5-6): 233-243.
    Alborn H T, Turlings T C J, Loughrin J H, et al. An elicitor of plant volatiles from beet armyworm oral secretion[J]. Science, 1997, 276(5314): 945-949.
    Almeras E, Stolz S, Vollenweider S, et al. Reactive electrophile species activate defense gene expression in Arabidopsis[J]. Plant J, 2003, 34(2): 205-216.
    Ament K, Haring M A, Schuurink R C, et al. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato[J].Plant physicalogy, 2004, 135(4): 2025-2037.
    Arimura G-I, Kost C, Boland W. Herbivore-induced, indirect plant defences[J]. Biochimica Et Biophysica Acta, 2005, 1734(2): 91-111.
    Arimura G-i, Ozawa R, Horiuchi J-i, et al. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites[J]. Biochemical Systematics and Ecology, 2001, 29(10): 1049-1061.
    Arimura G, Huber D P, Bohlmann J. Forest tent caterpillars induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar: cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1[J]. Plant J, 2004, 37(4): 603-616.
    Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000, 406(6795): 512-515.
    Baldwin I T, Kessler A, Halitschke R. Volatile signaling in plant-plant-herbivore interactions: what is real?[J]. Current Opinion in Plant Biology, 2002, 5(4): 351-354.
    Baldwin I T, Schultz J C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants[J]. Science ,1983, 221(4607): 277-279.
    Bate N J, Rothstein S J. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes[J]. Plant J, 1998, 16(5): 561-569.
    Baverstock J, Elliot S L, Alderson P G, et al. Response of the entomopathogenic fungus Pandora neoaphidis to aphid-induced plant volatiles[J]. Journal of Invertebrate Pathology, 2005, 89(2): 157-164.
    Bi J L, Murphy J B, Felton G W. Antinutritive and Oxidative Components as Mechanisms of Induced Resistance in Cotton to Helicoverpa zea[J]. Journal of Chemical Ecology, 1997, 23(1): 97-117.
    Bleecker A B, Kende H. Ethylene: A gaseous signal molecule in plant[J]. Annual Review of Cell and Developmental Biology, 2000, 16(12): 1-18.
    Boughton A J, Hoover K, Felton G W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum[J]. J Chem Ecol, 2005, 31(9): 2211-2216.
    Bruce T J, Martin J L, Pickett J A, et al. cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae)[J]. Pest Manag Sci, 2003, 59(9): 1031-1036.
    Bruin J, Dicke M. Chemical information transfer between wounded and unwounded plants: backing up the future[J]. Biochemical Systematics and Ecology, 2001, 29(10): 1103-1113.
    Bruin J, Sabelis M W, Dicke M. Do plant tap SOS signals from their infested neighbours?[J]. Trends in Ecology and Evolution, 1995, 10(4): 167-170.
    Bruxelles G L d, R.Roberts M. Signals Regulating Multiple Responses to Wounding and Herbivores[J]. Critical Reviews in Plant Sciences, 2001, 20(5): 487-521.
    Chen F, D'Auria J C, Tholl D, et al. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense[J]. Plant J, 2003, 36(5): 577-588.
    Choh Y, Shimoda T, Ozawa R, et al. Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?[J]. J Chem Ecol, 2004, 30(7): 1305-1317.
    Cipollini D, Enright S, Traw M B, et al. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua[J]. Mol Ecol, 2004, 13(6): 1643-1653.
    de Boer J G, Posthumus M A, Dicke M. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite[J]. J Chem Ecol, 2004, 30(11): 2215-2230.
    De Moraes C M, Lewis W J. Analyses of two parasitoids with convergent foraging strategies[J]. Journal Of Insect Behavior, 1999, 12(5): 571-583.
    De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females[J]. Nature, 2001, 410(6828): 577-580.
    Dicke M. Local And Systemic Production Of Volatile Herbivore-Induced Terpenoids - Their Role In Plant-Carnivore Mutualism[J]. Journal Of Plant Physiology, 1994, 143(4-5): 465-472.
    Dicke M, Bruin J. Chemical information transfer between damaged and undamaged plants[J]. Biochemical Systematics and Ecology, 2001, 29(10): 979-980.
    Dicke M, Dijkman H. Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants[J]. Biochemical Systematics and Ecology, 2001, 29(10): 1075-1087.
    Dicke M, Hilker M. Induced plant defences: from molecular biology to evolutionary ecology[J]. Basic And Applied Ecology, 2003, 4(1): 3-14.
    Dicke M, Sabelis M W, Takabayashi J, et al. Plant Strategies Of Manipulating Predator-Prey Interactions Through Allelochemicals - Prospects For Application In Pest-Control[J]. Journal Of Chemical Ecology, 1990, 16(11): 3091-3118.
    Dicke M, van Loon J J A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context[J]. Entomologia Experimentalis Et Applicata, 2000, 97(3): 237-249.
    Doss R P, Oliver J E, Proebsting W M, et al. Bruchins: insect-derived plant regulators that stimulate neoplasm formation[J]. Proc Natl Acad Sci U S A, 2000, 97(11): 6218-6223.
    Dudareva N, Pichersky E, Gershenzon J. Biochemistry of Plant Volatiles[J]. Plant Physiol., 2004, 135(4): 1893-1902.
    Engelberth J, Alborn H T, Schmelz E A, et al. Airborne signals prime plants against insect herbivore attack[J]. Proc Natl Acad Sci USA, 2004, 101(6): 1781-1785.
    Engelberth J, Koch T, Schuler G, et al. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean[J]. Plant Physiol, 2001, 125(1): 369-377.
    Fall R, Karl T, Hansel A, et al. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry[J]. Journal of Geophysical Research D: Atmospheres, 1999, 104(D13): 15963-15974.
    Farag M A, Pare P W. C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato[J]. Phytochemistry, 2002, 61(5): 545-554.
    Farag M A, Zhang H, Par P W, et al. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize[J].Planta,2005, 220(6): 900-909.
    Farmer E E. Surface-to-air signals[J]. Nature, 2001, 411(6839): 854-856.
    Farmer E E, Ryan C A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves[J]. Proc Natl Acad Sci U S A, 1990, 87(19): 7713-7716.
    Firn R D, Jones C G. Plants may talk, but can they hear?[J]. Trends in Ecology & Evolution, 1995, 10(9): 371-371.
    Frey M, Spiteller D, Boland W, et al. Transcriptional activation of Igl, the gene for indole formation in Zea mays: a structure-activity study with elicitor-active N-acyl glutamines from insects[J]. Phytochemistry, 2004, 65(8): 1047-1055.
    Frey M, Stettner C, Pare P W, et al. An herbivore elicitor activates the gene for indole emission in maize[J]. Proc Natl Acad Sci U S A, 2000, 97(26): 14801-14806.
    Gatehouse J A. Plant resistance towards insect herbivores: a dynamic interaction[J]. New Phytologist, 2002, 156(2): 145-169.
    Gorlach J, Volrath S, Knauf-Beiter G, et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat[J]. Plant Cell, 1996, 8(4): 629-643.
    Gouinguene S, Alborn H, Turlings T C J. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis[J]. Journal Of Chemical Ecology, 2003, 29(1): 145-162.
    Govrin E M, Levine A. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR)[J]. Plant Molecular Biology, 2002, 48(3): 267-276.
    Halitschke R, Kessler A, Kahl J, et al. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata[J]. Oecologia, 2000, 124(3): 408-417.
    Halitschke R, Schittko U, Pohnert G, et al. Molecular interactions between the specialist herbivore Manduca sexta and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses[J]. Plant Physiol, 2001, 125(2): 711-717.
    Hampel D, Mosandl A, Wust M. Induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of Vitis vinifera L[J]. Journal Of Agricultural And Food Chemistry, 2005, 53(7): 2652-2657.
    Harms K, Atzorn R, Brash A, et al. Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes[J]. Plant Cell, 1995, 7(10): 1645-1654.
    Herbers K, Meuwly P, Frommer W B, et al. Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway[J]. Plant Cell, 1996, 8(5): 793-803.
    Hilker M, Kobs C, Varama M, et al. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids[J]. J Exp Biol, 2002, 205(Pt 4): 455-461.
    Hoballah M E, Kollner T G, Degenhardt J, et al. Costs of induced volatile production in maize[J]. Oikos, 2004, 105(1): 168-180.
    Hollick J B, Gordon M P. Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes[J]. Plant Physiology, 1995, 109(1): 73-85.
    Horiuchi J, Arimura G, Ozawa R, et al. Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves[J]. FEBS Lett, 2001, 509(2): 332-336.
    Howe G A. Jasmonates as signals in the wound response[J]. Journal Of Plant Growth Regulation, 2004, 23(3): 223-237.
    Inbar M, Doostdar H, Gerling D, et al. Induction of systemic acquired resistance in cotton by BTH has a negligible effect on phytophagous insects[J]. Entomologia Experimentalis Et Applicata, 2001, 99(1): 65-70.
    Kahl J, Siemens D H, Aerts R J, et al. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore[J]. Planta, 2000, 210(2): 336-342.
    Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001, 291(5511): 2141-2144.
    Kessler A, Halitschke R, Baldwin I T. Silencing the jasmonate cascade: Induced plant defenses and insect populations[J]. Science, 2004, 305(5684): 665-668.
    Kessler A, Halitschke R, Diezel C, et al. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata[J]. Oecologia, 2006,7(1): 1-13.
    Koch T, Krumm T, Jung V, et al. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway[J]. Plant Physiol, 1999, 121(1): 153-162.
    Kodama H, Nishiuchi T, Seo S, et al. Possible involvement of protein phosphorylation in the wound-responsive expression of Arabidopsis plastid omega-3 fatty acid desaturase gene[J]. Plant Science, 2000, 155(2): 153-160.
    Kong C-H, Hu F. Advance in the research on chemical communication between plants[J]. Zhiwu Shengtai Xuebao, 2003, 27(4): 561-566.
    Kost C, Heil M. Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae)[J]. Basic and Applied Ecology, 2005, 6(3): 237-248.
    Krumm T, Bandemer K, Boland W. Induction of volatile biosynthesis in the Lima bean by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway[J]. FEBS Letters, 1995, 377(3): 523-529.
    Kruzmane D, Jankevica L, Ievinsh G. Effect of regurgitant from Leptinotarsa decemlineata on wound responses in Solanum tuberosum and Phaseolus vulgaris[J]. Physiol Plant, 2002, 115(4): 577-584.
    Kunert M, Biedermann A, Koch T, et al. Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: Kinetic and quantitative aspects of plant volatile production[J]. Journal of Separation Science, 2002, 25(10): 677-684.
    Laudert D, Weiler E W. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling[J]. Plant J, 1998, 15(5): 675-684.
    Lawrence S D, Novak N G. Maize genes induced by herbivory and volicitin[J]. J Chem Ecol, 2004, 30(12): 2543-2557.
    Lee G I, Howe G A. The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression[J]. Plant J, 2003, 33(3): 567-576.
    Li L, Li C, Lee G I, et al. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato[J]. Proc Natl Acad Sci U S A, 2002, 99(9): 6416-6421.
    Li X, Schuler M A, Berenbaum M R. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes[J]. Nature, 2002, 419(6908): 712-715.
    Loughrin J H, Manukian A, Heath R R, et al. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant[J]. Proc Natl Acad Sci U S A, 1994, 91(25): 11836-11840.
    Lucker J, Bouwmeester H J, Schwab W, et al. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside[J]. Plant J, 2001, 27(4): 315-324.
    Maeda T, Takabayashi J. Production of herbivore-induced plant volatiles and their attractiveness to Phytoseius persimilis (Acari: Phytoseiidae) with changes of Tetranychus urticae (Acari: Tetranychidae) density on a plant[J].Applied Entomology and Zoology,2001, 36(1): 47-52.
    Maffei M, Bossi S, Spiteller D, et al. Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. I. Membrane Potentials, Intracellular Calcium Variations, Oral Secretions, and Regurgitate Components[J]. Plant Physiol., 2004, 134(4): 1752-1762.
    Maldonado A M, Doerner P, Dixon R A, et al. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis[J]. Nature, 2002, 419(6905): 399-403.
    Matsui K, Kurishita S, Hisamitsu A, et al. A lipid-hydrolysing activity involved in hexenal formation[J]. Biochem Soc Trans, 2000, 28(6): 857-860.
    Mattiacci L, Dicke M, Posthumus M A. β-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps[J]. Proc Natl Acad Sci U S A, 1995, 92(6): 2036-2040.
    Mattiacci L, Rocca B A, Scascighini N, et al. Systemically induced plant volatiles emitted at the time of "danger"[J]. Journal Of Chemical Ecology, 2001, 27(11): 2233-2252.
    Mattiacci L, Rudelli S, Rocca B A, et al. Systemically-induced response of cabbage plants against a specialist herbivore, Pieris brassicae[J]. Chemoecology, 2001, 11(4): 167-173.
    McGurl B, Pearce G, Ryan C A. Polypeptide Signaling for Plant Defense Genes[J]. In Molecular Botany: Signals and the Environment,1994,60(1):149-154.
    McGurl B, Ryan C A. The Organization of the Prosystemin Gene[J]. Plant Molecular Biology, 1992, 20(3): 405-409.
    Miller B, Madilao L L, Ralph S, et al. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce[J]. Plant Physiology, 2005, 137(1): 369-382.
    Miller B, Oschinski C, Zimmer W. First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli[J]. Planta, 2001, 213(3): 483-487.
    Mithofer A, Wanner G, Boland W. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission[J]. Plant Physiol, 2005, 137(3): 1160-1168.
    Moran P J, Thompson G A. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways[J]. Plant Physiol, 2001, 125(2): 1074-1085.
    Narvaez-Vasquez J, Florin-Christensen J, Ryan C A. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves[J]. Plant Cell, 1999, 11(11): 2249-2260.
    O'Donnell P J, Calvert C, Atzorn R, et al. Ethylene as a Signal Mediating the Wound Response of Tomato Plants[J]. Science, 1996, 274(5294): 1914-1917.
    Oliveira G, Penuelas J. Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen Mediterranean woody species during winter[J]. Australian Journal of Plant Physiology, 2001, 28(6): 471-480.
    Orozco-Cardenas M, McGurl B, Ryan C A. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae[J]. Proc Natl Acad Sci U S A, 1993, 90(17): 8273-8276.
    Orozco-Cárdenas M L, Narváez-Vásquez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate[J]. Plant Cell, 2001,13(1): 179-191.
    Ozawa R, Arimura G, Takabayashi J, et al. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants[J]. Plant Cell Physiol, 2000, 41(4): 391-398.
    Pare P W, Tumlinson J H. Plant volatile signals in response to herbivore feeding[J]. Florida Entomologist, 1996, 79(2): 93-103.
    Pare P W, Tumlinson J H. De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants[J]. Plant Physiol, 1997, 114(4): 1161-1167.
    Pare P W, Tumlinson J H. Cotton volatiles synthesized and released distal to the site of insect damage[J]. Phytochemistry, 1998, 47(4): 521-526.
    Pare P W, Tumlinson J H. Plant Volatiles as a Defense against Insect Herbivores[J]. Plant Physiol., 1999, 121(2): 325-332.
    Penuelas J, Llusia J. Plant VOC emissions: making use of the unavoidable[J]. Trends in Ecology & Evolution, 2004, 19(8): 402-404.
    Penuelas J, Llusia J, Asensio D, et al. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions[J]. Plant Cell and Environment, 2005, 28(3): 278-286.
    Ping L-y, Shen Y-b, Jin Y-j. Volatiles released in succession from artificially damaged ashleaf maple leaves[J]. Aust.J.Plant Physiol, 2001, 28(6): 513-517.
    Ping L Y, Shen Y B, Jin Y J, et al. Leaf volatiles induced by mechanical damage from diverse taxonomic tree species[J]. Acta Botanica Sinica, 2001, 43(3): 261-266.
    Preston C A, Laue G, Baldwin I T. Methyl jasmonate is blowing in the wind, but can it act as a plant-plant airborne signal?[J]. Biochemical Systematics and Ecology, 2001, 29(10): 1007-1023.
    Preston C A, Laue G, Baldwin I T. Plant-Plant Signaling: Application of trans- or cis-Methyl Jasmonate Equivalent to Sagebrush Releases Does Not Elicit Direct Defenses in Native Tobacco[J]. Journal of Chemical Ecology, 2004, 30(11): 2193-2214.
    Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense gene expression[J]. Current Opinion in Plant Biology, 1998, 1(5): 404-411.
    Rhoades D F. Responses of alder and willow to attack by tent caterpillars and webworms: Evidence for pheromonal sensitivity of willows[J]. American Chemical Society Symposium Series ,1983, 208(1): 55-68.
    Rose U S, Tumlinson J H. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds[J]. Planta, 2004, 218(5): 824-832.
    Royo J, Leon J, Vancanneyt G, et al. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests[J]. Proc Natl Acad Sci U S A, 1999, 96(3): 1146-1151.
    Ruther J, Hilker M. Attraction of forest cockchafer Melolontha hippocastani to (Z)-3-hexen-1-ol and 1,4-benzoquinone: Application aspects[J].Entomologia Experimentalis et Applicata,2003, 107(2): 141-147.
    Ruther J, Kleier S. Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol[J]. J Chem Ecol, 2005, 31(9): 2217-2222.
    Ryals J A, Neuenschwander U H, Willits M G, et al. Systemic Acquired Resistance[J]. Plant Cell, 1996, 8(10): 1809-1819.
    Scheer J M, Ryan C A, Jr. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family[J]. Proc Natl Acad Sci U S A, 2002, 99(14): 9585-9590.
    Schmelz E A, Alborn H T, Banchio E, et al. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory[J]. Planta, 2003, 216(4): 665-673.
    Schnitzler J P, Zimmer I, Bachl A, et al. Biochemical properties of isoprene synthase in poplar (Populus canescens)[J]. Planta, 2005, 222(5): 777-786.
    Schroder R, Forstreuter M, Hilker M. A plant notices insect egg deposition and changes its rate of photosynthesis[J]. Plant Physiology, 2005, 138(1): 470-477.
    Scutareanu P, Bruin J, Posthumus M A, et al. Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees[J]. Chemoecology, 2003, 13(2): 63-74.
    Seo H S, Song J T, Cheong J J, et al. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses[J]. Proc Natl Acad Sci U S A, 2001, 98(8): 4788-4793.
    Sivasankar S, Sheldrick B, Rothstein S J. Expression of allene oxide synthase determines defense gene activation in tomato[J]. Plant Physiol, 2000, 122(4): 1335-1342.
    Spiteller D, Boland W. N-(17-Acyloxy-acyl)-glutamines: novel surfactants from oral secretions of lepidopteran larvae[J]. J Org Chem, 2003, 68(23): 8743-8749.
    Staswick P E, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis[J]. Plant Cell, 2004, 16(8): 2117-2127.
    Steeghs M, Bais H P, de Gouw J, et al. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis[J]. Plant Physiol, 2004, 135(1): 47-58.
    Stintzi A, Weber H, Reymond P, et al. Plant defense in the absence of jasmonic acid: the role of cyclopentenones[J]. Proc Natl Acad Sci U S A, 2001, 98(22): 12837-12842.
    Ted C J T, Philip J M, Hans T A, et al. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps[J]. Journal of Chemical Ecology ,1993, 19(3): 411-425.
    Thomma B P H J, Eggermont K, Penninckx I A M A, et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 15107-15111.
    Truitt C L, Wei H X, Pare P W. A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin[J]. Plant Cell, 2004, 16(2): 523-532.
    Tscharntke T, Thiessen S, Dolch R, et al. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa[J]. Biochemical Systematics and Ecology, 2001, 29(10): 1025-1047.
    Turlings T C, Tumlinson J H. Systemic release of chemical signals by herbivore-injured corn[J]. Proc Natl Acad Sci U S A, 1992, 89(17): 8399-8402.
    Turlings T C J, Lengwiler U B, Bernasconi M L, et al. Timing of induced volatile emissions in maize seedlings[J]. Planta, 1998, 207(1): 146-152.
    Turner J G, Ellis C, Devoto A. The jasmonate signal pathway[J]. Plant Cell, 2002, 14 (1):153-164.
    Underwood B A, Tieman D M, Shibuya K, et al. Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas[J]. Plant Physiol., 2005, 138(1): 255-266.
    van Poecke R M, Dicke M. Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway[J]. J Exp Bot, 2002, 53(375): 1793-1799.
    van Poecke R M, Dicke M. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant[J]. Plant Biol , 2004, 6(4): 387-401.
    Van Poecke R M P, Dicke M. Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1[J]. Plant, Cell & Environment ,2003, 26(9): 1541-1548.
    Vuorinen T, Nerg A M, Ibrahim M A, et al. Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies[J]. Plant Physiology, 2004, 135(4): 1984-1992.
    Walling L L. The Myriad Plant Responses to Herbivores[J]. Journal Of Plant Growth Regulation, 2000, 19(2): 195-216.
    Wang C, Zien C A, Afitlhile M, et al. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in arabidopsis[J]. Plant Cell, 2000, 12(11): 2237-2246.
    Weber H, Chetelat A, Reymond P, et al. Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde[J]. The Plant Journal, 2004, 37(6): 877-888.
    Wildon D C, Thain J F, Minchin P E H, et al. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant[J]. Nature, 1992, 360(6399): 62-65.
    Yan Z G, Wang C Z. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize[J]. Phytochemistry, 2006, 67(1): 34-42.
    Yasuyuki C, Takeshi S, Rika O, et al. Exposure of Lima Bean Leaves to Volatiles from Herbivore-Induced Conspecific Plants Results in Emission of Carnivore Attractants: Active or Passive Process?[J]. Journal of Chemical Ecology, 2004, 30(7): 1305.
    Yoshinaga N, Morigaki N, Matsuda F, et al. In vitro biosynthesis of volicitin in Spodoptera litura[J]. Insect Biochemistry and Molecular Biology, 2005, 35(2): 175-184.
    Yukimune Y, Tabata H, Higashi Y, et al. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures[J]. Nat Biotechnol, 1996, 14(9): 1129-1132.
    ZeringueJr H J. Changes in cotton leaf chemistry induced by volatile elicitors[J]. Phytochemistry, 1987, 26(5): 1357-1360.
    Zhao J, Davis L C, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnology Advances, 2005, 23(4): 283-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700